
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e64045, enero-diciembre 2025 (Publicado Mar. 03, 2025)
Aquatic Toxicology, 14(4), 345–352. https://doi.
org/10.1016/0166-445X(89)90032-5
De-Bashan, L. E., & Bashan, Y. (2010). Immobilized
microalgae for removing pollutants: review of prac-
tical aspects. Bioresource Technology, 101(6), 1611–
1627. https://doi.org/10.1016/j.biortech.2009.09.043
De Philippis, R., Colica, G., & Micheletti, E. (2011).
Exopolysaccharide-producing cyanobacteria in heavy
metal removal from water: molecular basis and prac-
tical applicability of the biosorption process. Applied
Microbiology and Biotechnology, 92, 697–708. https://
doi.org/10.1007/s00253-011-3601-z
García, N. J. M., & Azofeifa, I. V. (2020). Arsénico en suelos
y rocas de origen volcánico en un área de Aguas Zar-
cas y La Palmera, zona norte de Costa Rica. Revista de
Ciencia y Tecnología, 36(1), 23–36.
Instituto Costarricense de Acueductos y Alcantarillados.
(2016). Informe de parámetros que incumplen con el
reglamento para la calidad del agua potable operados
por asociación administradoras de acueductos y alcan-
tarillados (ASADAS) 2012-2015 [Informe técnico].
Laboratorio Nacional de Aguas, Instituto Costarri-
cense de Acueductos y Alcantarillados, Costa Rica.
Instituto Costarricense de Acueductos y Alcantarillados
(2017). Informe sobre la Eficiencia de las Plantas de
Remoción de Arsénico en Cañas, Bagaces y Los Chiles
Periodo 2014-2016 [Informe técnico]. Laboratorio
Nacional de Aguas, Instituto Costarricense de Acue-
ductos y Alcantarillados, Costa Rica.
Jiang, Y., Purchase, D., Jones, H., & Garelick, H. (2011).
Effects of arsenate (As5+) on growth and production
of glutathione (GSH) and phytochelatins (PCS) in
Chlorella vulgaris. International Journal of Phytoreme-
diation, 13(8), 834–844. https://doi.org/10.1080/1522
6514.2010.525560
Kalinowska, R., & Pawlik-Skowrońska, B. (2010). Response
of two terrestrial green microalgae (Chlorophyta,
Trebouxiophyceae) isolated from Cu-rich and unpo-
lluted soils to copper stress. Environmental Pollu-
tion, 158(8), 2778–2785. https://doi.org/10.1016/j.
envpol.2010.03.003
Kalra, Y. (1998). Handbook of reference methods for plant
analysis. Soil and Plant Analysis Council.
Kaplan, G. (2013). Absorption and adsorption of heavy
metals by microalgae. In A. Richmond & Q. Hu (Eds.),
Handbook of microalgal culture: applied phycology and
biotechnology (2nd Ed., pp. 602–611), John Wiley and
Sons, Ltd. https://doi.org/10.1002/9781118567166.
ch32
Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin,
K. H. (2015). Microalgae–a promising tool for heavy
metal remediation. Ecotoxicology and Environmen-
tal Safety, 113, 329–352. https://doi.org/10.1016/j.
ecoenv.2014.12.019
Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman
Jr, C. U., Trakal, L., & Mohan, D. (2019). Emerging
technologies for arsenic removal from drinking water
in rural and peri-urban areas: Methods, experien-
ce from, and options for Latin America. Science
of the Total Environment, 694, 133427. https://doi.
org/10.1016/j.scitotenv.2019.07.233
Leong, Y. K., & Chang, J. S. (2020). Bioremediation of
heavy metals using microalgae: Recent advances and
mechanisms. Bioresource Technology, 303, 122886.
https://doi.org/10.1016/j.biortech.2020.122886
Lima, S., Villanova, V., Grisafi, F., Caputo, G., Brucato, A.,
& Scargiali, F. (2020). Autochthonous microalgae
grown in municipal wastewaters as a tool for effec-
tively removing nitrogen and phosphorous. Journal
of Water Process Engineering, 38, 101647. https://doi.
org/10.1016/j.jwpe.2020.101647
Llorente-Mirandes, T., Ruiz-Chancho, M. J., Barbero, M.,
Rubio, R., & López-Sánchez, J. F. (2010). Measure-
ment of arsenic compounds in littoral zone algae
from the Western Mediterranean Sea. Occurrence of
arsenobetaine. Chemosphere, 81(7), 867–875. https://
doi.org/10.1016/j.chemosphere.2010.08.007
Lomax, C., Liu, W. J., Wu, L., Xue, K., Xiong, J., Zhou, J.,
McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2012).
Methylated arsenic species in plants originate from soil
microorganisms. New Phytologist, 193(3), 665–672.
https://doi.org/10.1111/j.1469-8137.2011.03956.x
Mao, Q., Xie, Z., Irshad, S., Zhong, Z., Liu, T., Pei, F., Gao,
B., & Li, L. (2022). Effect of arsenic accumulation on
growth and antioxidant defense system of Chlore-
lla thermophila SM01 and Leptolyngbya sp. XZMQ.
Algal Research, 66, 102762. https://doi.org/10.1016/j.
algal.2022.102762
Monteiro, C. M., Castro, P. M., & Malcata, F. X. (2012).
Metal uptake by microalgae: underlying mechanisms
and practical applications. Biotechnology Progress,
28(2), 299–311. https://doi.org/10.1002/btpr.1504
Montero-Campos, V., Quesada-Kimsey, J., Ledezma-Espi-
noza, A., & Sandoval-Mora, J. A. (2010). Determi-
nación de arsénico en abastecimientos de agua para
consumo humano de la provincia de Cartago, Costa
Rica. Acta Médica Costarricense, 52(2), 96–101.
Naja, G., & Volesky, B. (2011). The mechanism of metal
cation and anion biosorption. In P. Kotrba, M.
Mackova, & T. Macek (Eds.), Microbial biosorp-
tion of metals (pp. 19–58). Springer. https://doi.
org/10.1007/978-94-007-0443-5_3
Pacheco, M. M., Hoeltz, M., Moraes, M. S., & Schneider,
R. C. (2015). Microalgae: cultivation techniques and
wastewater phycoremediation. Journal of Environ-
mental Science and Health, Part A, 50(6), 585–601.
https://doi.org/10.1080/10934529.2015.994951