1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
State of knowledge of the Glomeromycota of Costa Rica
María Mabel De Jesús-Alarcón1; https://orcid.org/0000-0002-2575-0372
Laura Yesenia Solís-Ramos2*; https://orcid.org/0000-0002-8935-5507
Antonio Andrade-Torres3*; https://orcid.org/0000-0001-9387-0483
1. Maestría en Ciencias en Ecología y Biotecnología, Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana.
CAUVER 173 Ecología y manejo de la biodiversidad. Xalapa, Veracruz, México. mdejesusalarcon@gmail.com
2. Biotecnología de Plantas y Hongos Micorrícicos Arbusculares (Biotec-PYHMA), Escuela de Biología y Centro de
Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro de Montes de Oca,
San José 11501-2060, Costa Rica. laura.solisramos@ucr.ac.cr (*Correspondonce).
3. Biotecnología y Ecología de Organismos Simbióticos, CAUV-173 Ecología y Manejo de la Biodiversidad, INBIOTECA
(Instituto de Biotecnología y Ecología Aplicada), Universidad Veracruzana, Av. de las Culturas Veracruzanas No. 101,
Col. E. Zapata, Xalapa 91090, Veracruz, México. aandrade@uv.mx (*Correspondonce).
Recibido 30-VIII-2024. Corregido 30-I-2025. Aceptado 07-IV-2025.
ABSTRACT
Introduction: Arbuscular mycorrhizal fungi (AMF) play a pivotal role in plant nutrition and soil stability, also
play an important role for sustainable agriculture and the restoration of degraded areas. In Costa Rica, research
has been conducted on the diversity of AMF in select ecosystems. However, a comprehensive compilation of
these studies is currently lacking.
Objective: To compile an updated list of arbuscular mycorrhizal fungi (AMF) in Costa Rica, organised by vegeta-
tion types and life zones. This will facilitate a more comprehensive understanding of their diversity and serve as a
foundation for future research in taxonomy, distribution, ecology and biotechnological applications.
Methods: A comprehensive literature search was conducted in Google Scholar, Scopus and Web of Science,
utilising Spanish and English terms related to arbuscular mycorrhizal fungi (AMF) and Costa Rica, spanning the
period from 1971 to 2024. The selection criterion included studies that identified species based on morphological
or molecular criteria. The following information was integrated into a database.
Results: We compiled 57 studies published from 1975-2024 and after screening 549 initial records, 115 records
corresponding to species level were confirmed. 60 AMF species belonging to five orders were identified, rep-
resenting 16 % of the global diversity known as Glomeromycota. The families Glomeraceae (23 species) and
Acaulosporaceae (19 species) were the best represented. Furthermore, it was observed that studies have been
conducted in only four of the 12 life zones described for Costa Rica, and include agroecosystems and trap crops
(consortia) or pure crops (monospecific).
Conclusions: It is evident that there has been a degree of advancement in the comprehension of the ecology,
diversity and distribution of AMF. Nevertheless, further ecological and taxonomic research is required, encom-
passing both morphological and molecular analyses, to facilitate the expansion of knowledge concerning the
distribution and diversity of AMF in Costa Rica.
Keywords: Arbuscular mycorrhizal fungi; distribution; ecological diversity; taxonomy; life zones.
https://doi.org/10.15517/rev.biol.trop..v73iS2.64710
SUPPLEMENT
SECTION: MUSEUM
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
INTRODUCTION
Arbuscular mycorrhizal fungi (AMF) are a
fungal group that is widely distributed in most
terrestrial ecosystems (Schüβler et al., 2001),
which are associated with 72 % of vascular
plants (Brundrett & Tedersoo, 2018). AMF
belonging to the phylum Glomeromycota were
previously classified within the Zygomycota
(Morton & Benny, 1990), but in recent decades,
they have been recognized as an independent
and ancient phylum of the kingdom Fungi
(Schüßler et al., 2001). These fungi are obli-
gate symbionts of terrestrial plants and play
an important role in nutrient uptake, particu-
larly phosphorus absorption, improving plant
growth and the tolerance to different types of
stress (Brundrett & Tedersoo, 2018; Smith &
Read, 2010; Wang & Qiu, 2006). They also con-
tribute to soil stabilization (Rillig & Steinberg,
2002), and facilitate plant establishment and
recruitment through multiple hyphal networks
that connect plant-plant (Van der Heijden &
Horton, 2009; Van der Heijden et al., 2015).
They also play an important role in agro-
ecosystems because of their biotechnological
use as biofertilizers (Jeffries & Barea, 2012).
This highlights their importance for sustaina-
ble agriculture and the restoration of degraded
areas (Carrillo-Saucedo et al., 2022).
The phylum Glomeromycota includes
approximately 371 species distributed in three
classes, five orders, 16 families, and 48 genera
(Goto & Jobim, 2024; Wijayawardene et al.,
2022). A number of compilations of AMF
diversity have been made at multiple levels,
providing valuable information on their bio-
geographic distribution and ecological roles.
At the biogeographic region level, Stürmer and
Kemmelmeier (2021) documented 221 AMF
species in the Neotropics, representing 69% of
the global diversity described for the phylum
Glomeromycota. The study encompassed 11
biomes and 52 ecological regions, emphasizing
the ecological significance of AMF in diverse
ecosystems, including tropical rainforests and
grasslands. However, it should be noted that the
study did not include data for Costa Rica.
RESUMEN
Estado del conocimiento de los Glomeromycota de Costa Rica
Introducción: Los hongos micorrícicos arbusculares (HMA) son clave para la nutrición vegetal y la estabi-
lidad del suelo, también juegan un papel importante en la agricultura sostenible y la restauración de áreas
degradadas. En Costa Rica, su diversidad ha sido estudiada en algunos ecosistemas, pero a la fecha no hay una
compilación integral.
Objetivo: Compilar una lista actualizada de hongos micorrícicos arbusculares (HMA) en Costa Rica, organizada
por tipos de vegetación y zonas de vida, que amplíe la comprensión de su diversidad y sirva de base para estudios
futuros en taxonomía, distribución, ecología y aplicaciones biotecnológicas.
Métodos: Se realizó una búsqueda bibliográfica en Google Scholar, Scopus y Web of Science, empleando térmi-
nos en español e inglés relacionados con hongos micorrícicos arbusculares (HMA) y Costa Rica, en el periodo
1971-2024. Se incluyeron únicamente estudios que identificaran especies basándose en criterios morfológicos o
moleculares, integrando la siguiente información en una base de datos.
Resultados: Compilamos 57 estudios publicados entre 1975-2024 y después de depurar 549 registros iniciales, se
confirmó que 115 registros corresponden al nivel de especie. Se identifican 60 especies de HMA pertenecientes
a cinco órdenes, lo que representa el 16 % de la diversidad global conocida como Glomeromycota. Las familias
Glomeraceae (23 especies) y Acaulosporaceae (19 especies) fueron las mejor representadas. Además, se obser
que los estudios se han llevado a cabo únicamente en cuatro de las 12 zonas de vida descritas para Costa Rica,
además de algunos estudios en agroecosistemas, cultivos trampa (consorcios) y cultivos puros (monoespecíficos).
Conclusiones: Se ha avanzado en el conocimiento de la ecología, diversidad y distribución de los HMA, sin
embargo, es necesario continuar realizando investigaciones ecológicas y taxonómicas que incluyan tanto análisis
morfológicos como moleculares, con el fin de ampliar el conocimiento sobre la distribución y diversidad de los
HMA en Costa Rica.
Palabras clave: Hongos micorrícicos arbusculares; distribución; diversidad ecológica; taxonomía; zonas de vida.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
Research has been published from Mexico
and Peru, two countries which are characterised
by high biodiversity. In Mexico, Álvarez-López-
tello et al. (2023) and Polo-Marcial et al. (2021)
identified 160 AMF species, highlighting that
the majority of studies have been conducted
in agroecosystems and xerophytic shrublands,
with Oaxaca identified as a prominent bio-
logical hotspot. In Peru, Vega-Herrera et al.
(2023) reported 93 species classified according
to natural regions (Amazon, Andes and Coast),
reflecting the ecological heterogeneity of the
country and the predominance of families such
as Glomeraceae and Acaulosporaceae. At the
ecosystem-specific level, Marinho et al. (2018)
addressed AMF diversity in Costa Ricas tro-
pical forests. This research highlighted that
tropical rainforests, a representative ecosystem
of the country, harbour a significant proportion
of AMF species, underscoring their ecological
importance in processes such as enhancing
nutrient uptake and soil stabilisation. Notably,
Costa Rican specimens have played a pivotal
role in the taxonomic classification of novel
species, underscoring the country’s significance
in mycological research. For instance, Acaulos-
pora foveata and A. tuberculata were described
using paratypes collected in Costa Rica (Mor-
ton, 1990), while Acaulospora splendida was
identified with a holotype from the country
(Sieverding et al., 1988). Beyond these contri-
butions, however, there is no compilation that
comprehensively analyses the AMF species of
Costa Rica.
Costa Rica, with its great biodiversity and
diverse geography, offers ideal conditions for
a wide diversity of AMF. Its geography, with
mountain ranges that create numerous micro-
climates and a rich variety of ecosystems, con-
tributes to this diversity (Lobo et al., 2021).
The life zone classification system, develo-
ped by Leslie Holdridge (1979), identifies 12
life zones in Costa Rica, which reflects its
ecological diversity.
Studies on the Glomeromycota in Costa
Rica began in 1975 with an ecological survey
developed by Janos (Janos, 1975), this study was
the first of its kind in the country to address
the associations between AMF and various tree
species in tropical forests. Initially, research
focused on the biotechnological potential of
AMF and their impact on plant phenology,
and the first taxonomic records were published
years later (Blanco & Salas, 1997; Fischer et
al., 1994; Sieverding et al., 1988). Most studies
have focused on the impact of AMF on plants
rather than on their taxonomic identification or
geographic distribution (Aldrich-Wolfe, 2007;
Fischer et al., 1994; Picone, 2000; Salas & Blan-
co, 2000; Sharrock et al., 2004; Shepherd et al.,
2007; Sieverding et al., 1988). This analysis is
grounded in scientific literature available in
English and Spanish. The bibliographic search
encompasses articles from the period between
1971 and 2024.
The objective of the present study was to
compile an updated list of AMF of Costa Rica,
organized by vegetation type and life zone.
These new records broaden our knowledge of
the diversity of AMF in Costa Rica and pro-
vide a basis for making decisions about future
studies on the taxonomy, distribution, ecology
and biotechnological applications of the Glo-
meromycota of Costa Rica.
MATERIALS AND METHODS
We conducted a literature search of AMF
recorded in Costa Rica using the following
databases: Google Scholar, Scopus, and Web
of Science. The terms used in the search were:
arbuscular”, “vesicular, “mycorrhizal, “Glo-
meromycota, and each family and genus of
AMF, which were included in combination
with the words “native” and “Costa Rica” both
in Spanish and English, and we also included
articles published between 1971 and 2024 to
compile a checklist of AMF.
We included articles that employ identi-
fication criteria based on the morphological
and/or molecular characteristics of arbuscular
mycorrhizal fungi up to species level and taxon
descriptions and integrated the information
in a database with the reported species name,
associated plant species, locality where it was
reported, ecological data, molecular data, life
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
zone, soil type, and the phenotypic characte-
ristics of the glomerospores considered in the
determination of the species.
To generate the AMF checklist, we ordered
the AMF species according to the taxono-
mic classification proposed by Błaszkowski
(2012), Oehl et al. (2008) and Oehl et al.
(2011), including additional taxa proposed by
Błaszkowski et al. (2015), Błaszkowski et al.
(2017), Błaszkowski et al. (2018), Corazón-
Guivin et al. (2019), Goto et al. (2012), Jobim et
al. (2016), Marinho et al. (2018) and Symanczik
et al. (2018). We used the life zone classification
by Leslie Holdridge (1979), which considers 12
life zones (Tropical dry forest, tropical moist
forest, tropical wet forest, premontane moist
forest, premontane wet forest, premontane
rainforest, lower montane moist forest, lower
montane wet forest, lower Montane rain forest,
montane wet forest, montane rain forest and
subalpine rain paramo).
In order to illustrate the distribution of
AMF species across the various life zones iden-
tified in Costa Rica, a Sankey diagram was
constructed utilising the RStudios ggsankey
package. This diagram, based on presence/
absence data, aims to graphically show the
associations between AMF species and life
zones, indicating where the species have been
recorded. Furthermore, a network diagram was
constructed using the RStudio igraph package,
with the objective of visualising the connections
between life zones and Glomeromycota species.
Rarefaction and extrapolation curves:
We performed rarefaction and extrapolation
curves based on individuals and sampling cove-
rage to estimate the state of knowledge about
the AMF community (species richness) in
different life zones in Costa Rica (Chao & Jost,
2012). Individual-based curves consider the
number of individuals collected in each sam-
ple, while sample coverage-based curves assess
the proportion of the total species community
expected to have been captured as a function
of sampling effort. In order to predict the
expected number of total species and to assess
the required sampling effort, data per life zone
were used considering their sampling cove-
rage (Chao & Jost, 2012; Chao & Lee, 1992).
Rarefaction curves were constructed both for
observed data and to extrapolate the expected
number of species beyond the original sample
size, allowing estimation of expected richness
with increased sampling effort. The correspon-
ding graphs were generated using the RStudio
iNEXT package.
RESULTS
We compiled and analyzed 57 articles that
addressed aspects related to arbuscular myco-
rrhizal fungi (AMF) in Costa Rica published
from 1975 to 2024 (Despite the fact that our
research has been conducted since 1971, the
first documented report was not published
until 1975). It is important to note that not all
of these studies focused on the identification or
geographic distribution of species; only 28 %
included taxonomic records (published from
1988 to 2024), while 38 % examined the eco-
logy (the analysis of the biological, functional
and ecological interactions between arbuscular
mycorrhizal fungi (AMF) and abiotic and biotic
factors present in these ecosystems) of AMF, 14
% investigated their physiological effect on host
plants, and 19 % mentioned the Glomeromyco-
ta of Costa Rica in terms of their potential use
and importance for ecosystems but without
exploring any aspect in detail or providing spe-
cific data (Fig. 1).
Following a screening process, we inclu-
ded a total of 549 records of AMF species in
our database. Of these records, 434 were only
determined at a genus level or designated as
related species and were thus eliminated. As
a result, we kept 115 records of AMF species
with a confirmed identification, which corres-
ponded to a total of 60 species classified into
three classes, five orders, ten families, and 17
genera of Glomeromycota in Costa Rica (Table
1 and Table 2).
The class Archaeosporomycetes is repre-
sented by the order Archaeosporales, the family
Ambisporaceae, the genus Ambispora, and
three species (Table 1 and Table 2).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
The distribution of AMF studies included
only four of the 12 identified life zones (Table
2, Fig. 2 and Fig. 3) (Holdridge, 1979): tropical
moist forest, premontane wet forest, tropical wet
forest and tropical dry forest; as well as agro-
ecosystems and trap crops (consortia) or pure
cultures (monospecific) (Fig. 2 and Fig. 3). Table
two shows detailed data of the hosts (plant spe-
cies) colonized by the 60 AMF species reported
in Costa Rica from 1988 to 2024.
As demonstrated in Table 2, the Glome-
romycota species with the highest number of
reported hosts can be organised as follows (in
decreasing order): Acaulospora scrobiculata (29
hosts), Acaulospora foveata (28 hosts), Glo-
mus clavisporum (26 hosts), Ambispora leptoti-
cha (21 hosts), Acaulospora spinosa (20 hosts),
Acaulospora denticulata (19 hots), Funnelifor-
mis monosporus (17 hosts), Acaulospora ele-
gans con (16 hosts), Glomus macrocarpum (17
hosts), Acaulospora mellea (15 hosts), Glomus
microcarpum (14 hosts), Rhizoglomus clarum
(14 hosts), Acaulospora tuberculata (13 hosts),
Paraglomus occultum (12 hosts), Acaulospo-
ra laevis (12 host), Rhizoglomus aggregatum
Fig. 1. Percentage distribution of studies on arbuscular
mycorrhizal fungi (AMF) in Costa Rica (1975–2024)
categorized by topics: taxonomic classification, ecological
aspects, ecosystems, and physiological effects on plants.
Table 1
Taxonomic classification of the arbuscular mycorrhizal fungi from Costa Rica.
Class (3) Order (5) Family (10) Genus (17) Species (60)
Archaeosporomycetes Archaeosporales Ambisporaceae Ambispora 3
Glomeromycetes Glomerales Glomeraceae Dominikia 1
Funneliformis 3
Glomus 6
Rhizoglomus 7
Sclerocystis 1
Entrophosporaceae Entrophospora 5
Diversisporales Diversisporaceae Diversispora 1
Sieverdingia 1
Acaulosporaceae Acaulospora 18
Kuklospora 1
Gigasporales Gigasporaceae Gigaspora 5
Scutellosporaceae Scutellospora 1
Racocetraceae Cetraspora 1
Racocetra 2
Dentiscutataceae Dentiscutata 3
Paraglomeromycetes Paraglomerales Paraglomeraceae Paraglomus 1
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
Table 2
Checklist of the reported arbuscular mycorrhizal fungi in Costa Rica from 1988 to 2024.
Species Life Zone or adapted/
modified system Associated plant species Reference
number
Archaeosporales
Ambispora appendicula (Spain,
Sieverd., N.C. Schenck)
C. Walker
Greenhouse and premontane
wet forest
Brachiaria decumbens, Cajanus bicolor 2, 4, 16
Ambispora gerdemannii (S.L.
Rose, B.A. Daniels & Trappe)
C. Walker, Vestberg &
A. Schüssler
Tropical wet forest Carapa guianensis, Dalbergia tucurensis, Dipterix
panamensis, Mimosa púdica, Pentaclethra macroloba,
Sinarouba amara, Solanum sp., Vochysia ferruginea
6
Ambispora leptoticha (N.C.
Schenck & T.H. Nicolson) Walker,
Vestberg &
A. Schüssler
Premontane wet forest,
tropical dry forest and tropical
wet forest.
Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Carapa
guianensis, Casearia aculeata, Cordia alliodora,
Chomelia spinosa, Dalbergia tucurensis, Dipterix
panamensis, Enterolobium cyclocarpum, Licania
arborea, Lonchocarpus spp., Luekea spp., Lysoma
seemannii, Pentaclethra macroloba, Sinarouba amara,
Spondias mombin, Tabebuia spp., Vochysia ferruginea,
Vriesea werkleana
5, 6
Diversisporales
Acaulospora bireticulata
(F.M. Rothwell & Trappe)
Agroecosystem and tropical
wet forest
Carapa guianensis, Cedrela odorata, Dalbergia
tucurensis, Dipterix panamensis, Mimosa pudica,
Pentaclethra macroloba, Sinarouba amara, Solanum sp.,
Vochysia ferruginea
6, 15
Acaulospora colossica (P.A.
Schultz, Bever & J.B. Morton)
Tropical wet forest Inga paterno, Tabebuia ochraceae 12
Acaulospora denticulata (Sieverd.
& S. Toro)
Tropical dry forest Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp.
5
Acaulospora elegans
(Trappe & Gerd)
Tropical dry forest Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp.
5
Acaulospora excavata
Ingleby & C. Walker
Agroecosystem Cedrela odorata 15
Acaulospora foveata
Trappe & Janos
Agroecosystem, greenhouse,
tropical dry forest, tropical
moist forest and tropical wet
forest
Allium cepa L., Astronium graveolens, Bombacopsis
quinata, Bursea simaruba, Calycophyllum
candidissimum, Carapa guianensis, Casearia aculeata,
Cedrela odorata, Ceiba pentandra, Chomelia spinosa,
Cordia alliodora, Dalbergia tucurensis, Dipterix
panamensis, Enterolobium cyclocarpum, Hyeronima
alchorneoides, Jatropha curcas, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Mimosa pudica, Pentaclethra macroloba, Psidium
guajava L., Sinarouba amara, Solanum sp., Spondias
mombin, Tabebuia spp., Vochysia ferruginea
3, 5, 6, 10,
15, 16
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
Species Life Zone or adapted/
modified system Associated plant species Reference
number
Acaulospora laevis
Gerd. & Trappe
Agroecosystem, premontane
wet forest and tropical wet
forest
Cedrela odorata, Coffea sp., Inga paterno, Vriesea
werkleana
14, 15
Acaulospora longula (Spain & N.C.
Schenck)
Premontane wet forest Not specified 2
Acaulospora mellea Spain & N.C.
Schenck
Agroecosystem, greenhouse,
tropical moist forest and
tropical wet forest
Carapa guianensis, Cedrela odorata, Ceiba pentandra,
Cordia alliodora, Dalbergia tucurensis, Dipterix
panamensis, Hyeronima alchorneoides, Jatropha curcas,
Mimosa pudica, Pentaclethra macroloba, Sinarouba
amara, Solanum sp., Vochysia ferruginea
6, 8, 10,
15, 16
Acaulospora minuta Oehl, Tchabi,
Hount., Palenz., I.C. Sánchez &
G.A. Silva
Agroecosystem Coffea sp.
14
Acaulospora morrowiae Spain &
N.C. Schenck,
Tropical moist forest Cedrela odorata, Ceiba pentandra
Cordia alliodora, Hyeronima alchorneoides, Zea mays
6, 8, 10
Acaulospora rehmii Sieverd. &
S. Toro
Agroecosystem and
greenhouse
Cedrela odorata, Jatropha curcas 5, 15, 16
Acaulospora rugosa J.B. Morton Greenhouse and premontane
wet forest
Jatropha curcas, Vriesea werkleana 2, 16
Acaulospora scrobiculata Trappe Agroecosystem, greenhouse,
premontane wet forest,
tropical dry forest, tropical
moist forest and tropical wet
forest
Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Carapa
guianensis, Casearia aculeata, Cedrela odorata, Ceiba
pentandra, Chomelia spinosa, Coffea sp., Cordia
alliodora, Dalbergia tucurensis, Dipterix panamensis,
Enterolobium cyclocarpum, Hyeronima alchorneoides,
Jatropha curcas, Licania arborea, Lonchocarpus spp.,
Luekea spp., Lysoma seemannii, Mimosa pudica,
Pentaclethra macroloba, Sinarouba amara, Solanum
sp., Spondias mombin, Tabebuia spp., Termilania
amazonia, Vochysia ferruginea, Vriesea werkleana
2, 5, 6, 8,
10, 13, 14,
15, 16
Acaulospora spinosa C. Walker
& Trappe
Agroecosystem, greenhouse,
premontane wet forest,
tropical dry forest and tropical
moist forest
Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Cedrela odorata, Ceiba pentandra, Chomelia
spinosa, Cordia alliodora, Enterolobium cyclocarpum,
Hyeronima alchorneoides, Jatropha curcas, Licania
arborea, Lonchocarpus spp., Luekea spp., Lysoma
seemannii, Spondias mombin, Tabebuia spp., Vriesea
werkleana
5, 6, 7, 8,
15, 16
Acaulospora spinosissima Oehl,
Palenz., Sánchez-Castro, Tchabi,
Hount. & G. A. Silva
Agroecosystem Cedrela odorata 15
Acaulospora splendida Sieverd.,
Chaverri & I. Rojas
Greenhouse Quercus costaricensis 1
Acaulospora tuberculata Janos
& Trappe
Agroecosystem, greenhouse
and tropical wet forest,
Carapa guianensis, Cedrela odorata, Dalbergia
tucurensis, Dipterix panamensis, Jatropha curcas,
Mimosa pudica, Pentaclethra macroloba, Sinarouba
amara, Solanum sp., Vochysia ferruginea
6, 15, 16
Kuklospora colombiana (Spain &
N.C. Schenck) Oehl & Sieverd
Agroecosystem Cedrela odorata 15
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
Species Life Zone or adapted/
modified system Associated plant species Reference
number
Sieverdingia tortuosa (N.C.
Schenck & G.S. Sm.) Błaszk.,
Niezgoda & B.T. Goto.
Tropical moist forest Cedrela odorata, Ceiba pentandra, Cordia alliodora,
Hyeronima alchorneoides
8, 10
Diversispora versiformis (P. Karst.)
Oehl, G.A. Silva & Sieverd
Greenhouse and premontane
wet forest
Tithonia diversifolia, Vriesea werkleana 11
Entrophosporales
Entrophospora claroidea (N.C.
Schenck & G.S. Sm.) Błaszk.,
Niezgoda, B.T. Goto & Magurno
Greenhouse, ropical moist
forest and premontane wet
forest
Brachiaria decumbens, Cajanus bicolor, Ceiba
pentandra, Vriesea werkleana
8
Entrophospora colombiana Spain
& N.C. Schenck
Premontane wet forest,
tropical wet forest
Carapa guianensis, Dalbergia tucurensis, Dipterix
panamensis, Mimosa pudica, Pentaclethra macroloba,
Sinarouba amara, Solanum sp., Vochysia ferruginea,
Vriesea werkleana
2, 6
Entrophospora etunicata
(W.N. Becker & Gerd.) Błaszk.,
Niezgoda, B.T. Goto & Magurno
Agroecosystem, premontane
wet forest and tropical moist
forest
Cedrela odorata, Coffea sp., Cordia alliodora,
Hyeronima alchorneoides, Vriesea werkleana, Zea mays
9, 14
Entrophospora infrequens (I.R.
Hall) R.N. Ames & R.W. Schneid.
Greenhouse Brachiaria decumbens, Cajanus bicolor 4
Entrophospora lutea (L.J. Kennedy,
J.C. Stutz & J.B. Morton) Błaszk.,
Niezgoda, B.T. Goto & Magurno
Tropical moist forest Termilania amazonia 13
Glomerales
Funneliformis geosporum (T.H.
Nicolson & Gerd.) C. Walker & A.
Schüssler
Agroecosystem, premontane
wet forest and tropical wet
forest
Carapa guianensis, Cedrela odorata, Dalbergia
tucurensis, Dipterix panamensis, Mimosa pudica,
Pentaclethra macroloba, Sinarouba amara, Solanum sp.,
Vochysia ferruginea, Vriesea werkleana
2, 15
Funneliformis monosporus (Gerd.
& Trappe) Oehl, G.A. Silva &
Sieverd
Tropical dry forest Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp.
5
Funneliformis mosseae (T.H.
Nicolson & Gerd.) C. Walker
& A. Schüssler
Agroecosystem, premontane
wet forest
Cedrela odorata, Vriesea werkleana 2, 15
Glomus brohultii (Sieverd. &
Herrera)
Premontane wet forest Not specified 2
Glomus clavisporum (Trappe)
R.T. Almeida & N.C. Schenck
Agroecosystem, tropical dry
forest, tropical moist forest
and tropical wet forest
Allium cepa L., Astronium graveolens, Bombacopsis
quinata, Bursea simaruba, Calycophyllum
candidissimum, Carapa guianensis, Casearia
aculeata, Cedrela odorata, Chomelia spinosa, Cordia
alliodora, Dalbergia tucurensis, Dipterix panamensis,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Pentaclethra macroloba, Psidium guajava L., Sinarouba
amara, Spondias mombin, Tabebuia spp., Vochysia
ferruginea
3, 5, 6, 15
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
Species Life Zone or adapted/
modified system Associated plant species Reference
number
Glomus microcarpum
(Tul. & C. Tul.)
Tropical dry forest Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp.
5
Glomus macrocarpum
(Tul. & C. Tul.)
Tropical dry forest and ropical
moist forest
Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp., Termilania amazonia
5,13
Glomus rubiforme (Gerd. &
Trappe) R.T. Almeida & N.C.
Schenck
Tropical wet forest Carapa guianensis, Dalbergia tucurensis, Dipterix
panamensis, Pentaclethra macroloba, Sinarouba amara,
Vochysia ferruginea
6
Glomus taiwanense (C.G. Wu &
Z.C. Chen) R.T. Almeida & N.C.
Schenck ex Y.J. Yao
Greenhouse Jatropha curcas 16
Dominikia indica (Błaszk., Wubet
& Harikumar) Błaszk., G.A. Silva
& Oehl
Agroecosystem Coffea sp. 14
Rhizoglomus aggregatum (N.C.
Schenck & G.S. Sm.) Sieverd.,
G.A. Silva & Oehl
Tropical dry forest Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp.
5
Rhizoglomus clarum (T.H.
Nicolson & N.C. Schenck)
Sieverd., G.A. Silva & Oehl
Agroecosystem, greenhouse,
premontane wet forest,
tropical moist forest and
tropical wet forest
Carapa guianensis, Cedrela odorata, Dalbergia
tucurensis, Dipterix panamensis, Hyeronima
alchorneoides, Inga paterno, Jatropha curcas, Mimosa
pudica, Pentaclethra macroloba, Sinarouba amara,
Solanum sp., Vochysia ferruginea, Vriesea werkleana
6, 10, 12,
15, 16
Rhizoglomus fasciculatum (Thaxt.)
Sieverd., G.A. Silva & Oehl
Agroecosystem, premontane
wet forest
Coffea sp., Vriesea werkleana 14
Rhizoglomus intraradices (N.C.
Schenck & G.S. Sm.) Sieverd.,
G.A. Silva & Oehl
Greenhouse, premontane wet
forest, tropical moist forest
and tropical wet forest
Tabebuia ochraceae, Termilania amazonia, Tithonia
diversifolia, Vriesea werkleana, Zea mays
9, 11, 12, 13
Rhizoglomus microaggregatum
(Koske, Gemma & P.D. Olexia)
Sieverd., G.A. Silva & Oehl
Greenhouse Brachiaria decumbens, Cajanus bicolor 4
Rhizoglomus proliferum (Dalpé
& Declerck) Sieverd., G.A. Silva
& Oehl
Tropical wet forest Vriesea werkleana 12
Rhizoglomus vesiculiferum
(Thaxt.) Błaszk., Kozłowska,
Niezgoda, B.T.Goto & Dalpé
Premontane wet forest Vriesea werkleana 12
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
Species Life Zone or adapted/
modified system Associated plant species Reference
number
Sclerocystis coremioides Berk. &
Broome
Agroecosystem, greenhouse,
premontane wet forest,
tropical moist forest and
tropical wet forest
Allium cepa L., Carapa guianensis
Cedrela odorata, Dalbergia tucurensis, Dipterix
panamensis, Jatropha curcas, Mimosa pudica,
Pentaclethra macroloba, Psidium guajava L.,
Sinarouba amara, Solanum sp., Vochysia ferruginea,
Vriesea werkleana
3, 6, 15, 16
Gigasporales
Dentiscutata heterogama (T.H.
Nicolson & Gerd.) Sieverd., F.A.
de Souza & Oehl
Greenhouse Brachiaria decumbens, Cajanus bicolor 4
Dentiscutata scutata (C. Walker
& Dieder.) Sieverd., F.A. de Souza
& Oehl
Tropical moist forest Cordia alliodora, Hyeronima alchorneoides 10
Dentiscutata nigra (J.F. Readhead)
Sieverd., F.A. de Souza & Oehl
Tropical dry forest Astronium graveolens, Bombacopsis quinata, Bursea
simaruba, Calycophyllum candidissimum, Casearia
aculeata, Chomelia spinosa, Cordia alliodora,
Enterolobium cyclocarpum, Licania arborea,
Lonchocarpus spp., Luekea spp., Lysoma seemannii,
Spondias mombin, Tabebuia spp.
5
Gigaspora albida N.C. Schenck &
G.S. Sm
Greenhouse and remontane
wet forest
Brachiaria decumbens, Cajanus bicolor,
Vriesea werkleana
4, 6
Gigaspora gigantea (T.H.
Nicholson & Gerd.) Gerd. &
Trappe
Premontane wet forest and
tropical wet forest
Carapa guianensis, Dalbergia tucurensis, Dipterix
panamensis, Pentaclethra macroloba, Sinarouba amara,
Vochysia ferruginea, Vriesea werkleana
6
Gigaspora margarita W.N. Becker
& I.R. Hall
Agroecosystem and
greenhouse
Coffea sp., Jatropha curcas 14, 16
Gigaspora ramisporophora Spain,
Sieverd. & N.C. Schenck
Greenhouse Brachiaria decumbens, Cajanus bicolor 4
Gigaspora rosea T.H. Nicolson &
N.C. Schenck
Tropical moist forest Zea mays 9
Cetraspora pellucida (T.H.
Nicolson & N.C. Schenck) Oehl,
F.A. de Souza & Sieverd
Greenhouse, premontane wet
forest, tropical moist forest
and tropical wet forest
Allium porrum, Cajanus cajans, Capsicum annum,
Carapa guianensis, Cedrela odorata, Cordia alliodora,
Cucumis sativus, Dalbergia tucurensis, Dipterix
panamensis, Hyeronima alchorneoides, Pentaclethra
macroloba, Sinarouba amara, Vochysia ferruginea,
Vriesea werkleana, Zea mays
6, 7, 10
Racocetra castanea (C. Walker)
Oehl, F.A. de Souza & Sieverd
Premontane wet forest and
tropical moist forest
Cedrela odorata, Hyeronima alchorneoides,
Vriesea werkleana
10
Racocetra coralloidea (Trappe,
Gerd. & I. Ho) Oehl, F.A. de
Souza & Sieverd
Tropical wet forest Carapa guianensis, Dalbergia tucurensis, Dipterix
panamensis, Pentaclethra macroloba, Sinarouba amara,
Vochysia ferruginea
6
Scutellospora calospora (T.H.
Nicolson & Gerd.) C. Walker &
F.E. Sanders
Greenhouse Brachiaria decumbens, Cajanus bicolor 4
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
Species Life Zone or adapted/
modified system Associated plant species Reference
number
Paraglomerales
Paraglomus occultum (C. Walker)
J.B. Morton & D. Redecker
Agroecosystem and tropical
moist forest, premontane wet
forest and tropical wet forest
Carapa guianensis, Cedrela odorata, Cordia alliodora,
Dalbergia tucurensis, Dipterix panamensis, Hyeronima
alchorneoides, Mimosa pudica Pentaclethra macroloba,
Sinarouba amara, Solanum sp., Vochysia ferruginea,
Vriesea werkleana
6, 10, 15
Citations arranged in ascending chronological order; Sieverding et al. (1988)1, Vargas (1990)2, Fischer et al. (1994)3, Blanco
& Salas (1997)4, Johnson & Wedin (1997)5, Picone (2000)6, Salas & Blanco (2000)7, Lovelock et al. (2003)8, Lovelock et al.
(2004)9, Lovelock et al. (2005)10, Sharrock et al. (2004)11, Shepherd et al. (2007)12, Aldrich-Wolfe (2007)13, Aldrich-Wolfe et
al. (2020)14, Polo-Marcial et al. (2023)15, Solís-Ramos et al. (2023)16.
(12 hosts), Entrophospora colombiana (12
hosts), Gigaspora gigantea (11 hosts), Acau-
lospora minuta (11 hosts), Glomus rubiforme
(11 hosts), Cetraspora pellucida (15 hosts),
Funneliformis mosseae (10 hosts), Acaulospora
excavata (10 hosts), Rhizoglomus intraradices
(10 hosts), Sieverdingia tortuosa (9 hosts), Scle-
rocystis coremioides (14 hosts), Acaulospora
rehmii (9 hosts), Acaulospora splendida con 8
and Ambispora gerdemannii (9 hosts) (Table 2).
In terms of their distribution by life zones,
of the 60 species identified in Costa Rica (Table
1 and Table 2; Fig. 2 and Fig. 3), 24 species (40
%) were recorded in the premontane wet forest,
with three species unique to this life zone; 22
species (36 %) were reported in agroecosys-
tems, with five unique species; 23 species (38
%) were reported in greenhouses (trap crops),
with three unique species; 19 species (31 %)
were reported in the tropical moist forest, with
six unique species; 21 species (35 %) in the tro-
pical wet forest, with seven unique species and
12 species (20 %) in the tropical dry forest, with
five unique species (Fig. 3).
With respect to family composition in
the different life zones, the families Acau-
losporaceae and Glomeraceae were the most
predominant, exhibiting a wide distribution
and diversity in these ecosystems (Table 1).
The families Ambisporaceae, Entrophospho-
raceae, Racocetraceae, Dentiscutataceae, and
Paraglomeraceae showed lower richness and
abundance, and were even absent in 8 life zones
(Table 3), which may indicate specific environ-
mental conditions that limit their presence or a
lack of sufficient studies in those areas.
Table 3
Diversity and Abundance of the reported Glomeromycota in Different Life Zones and Agroecosystems of Costa Rica from
1988 to 2024.
Life zone Families Genera Species Total Abundance
Tropical dry forest 3 4 5 98
Tropical moist forest 8 11 19 55
Tropical wet forest 7 12 21 130
Premontane moist forest 0 0 0 0
Premontane wet forest 11 14 24 38
Premontane rain forest 0 0 0 0
Lower montane moist forest 0 0 0 0
Lower montane wet forest 0 0 0 0
Lower Montane rain forest 0 0 0 0
Montane wet forest 0 0 0 0
Montane rain forest 0 0 0 0
Subalpine rain paramo 0 0 0 0
Agroecosystem 6 10 22 27
Greenhouse 8 10 23 39
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
Fig. 2. Sankey diagram depicting the families of arbuscular mycorrhizal fungi identified in different life zones and production systems. The width of the bands indicates the relative
proportion of each AMF genus associated with the life zones. The species of each genus are detailed on the right.
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
Fig. 3. Diagram of connection networks between life zones and reported Glomeromycota species in Costa Rica from 1988 to 2024. Life zones include Agroecosystem, Tropical Wet
Forest, Tropical Dry Forest, Premontane Wet Forest, Tropical Moist Forest and Greenhouse.
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
The analysis of the rarefaction and extra-
polation curves showed differences in the spe-
cies diversity captured according to the number
of individuals sampled in the different life
zones (Fig. 4). In the agroecosystems and pre-
montane wet forest, it is clear that diversity
showed a gradual increase without reaching an
asymptote. This indicates that more sampling
effort is required to capture the full diversity
present. The broad confidence bands indicate
uncertainty in the extrapolations (Fig. 4).
In contrast, in the tropical moist forest,
tropical wet forest, and tropical dry forest, the
curves reach a plateau, it is clear that most spe-
cies were recorded with the current sampling
(Fig. 4). The thinner confidence bands in these
cases indicate more precise estimates (Fig. 4). It
is important to mention that this analysis did
not consider trap or pure crops (greenhouses),
since they were grouped according to the life
zones where the samples were extracted from
the soil for the experiments. This analysis
Fig. 4. Individual-based rarefaction and extrapolation curves of arbuscular mycorrhizal fungi found in four different life
zones and in agroecosystems in Costa Rica from 1988-2024. a) Agroecosystem, b) Tropical moist forest, c) Premontane wet
forest, d) Tropical wet forest, e) Tropical dry forest. The dashed line represents the extrapolation curve, indicating the expected
number of species that could be found by increasing the sampling effort in the different life zones of our reference samples.
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
demonstrates that AMF species diversity varies
significantly between life zones and modified
systems. In certain regions, such as agroecosys-
tems and pre-montane moist forests, the full
diversity has not yet been documented due to
inadequate sampling efforts. Conversely, in
other regions, such as tropical dry forests, the
sampling appears to be adequate to reflect the
majority of species present. Furthermore, the
confidence bands indicate divergent levels of
precision in the estimates, contingent on the
quality and quantity of the available data.
DISCUSSION
Since the compilation made by Blanco and
Salas in 1997, where 19 species were recorded,
the present checklist shows an increase of
31 % in the recorded taxa. This illustrates Costa
Ricas biological potential in terms of biodi-
versity, since the species identified represent
16 % of the Glomeromycota species worldwi-
de (Goto & Jobim, 2024). Of the 15 Glome-
romycota families, ten are represented in the
present checklist, with Glomeraceae being the
most abundant, followed by Acaulosporaceae,
which is consistent with the records from other,
better studied megadiverse countries such as
Mexico and Brazil (Jobim & Goto, 2016; Polo-
Marcial et al., 2023; Stürmer & Kemmelmeier,
2021). The dominant genera is Acaulospora,
which has a high representativeness in Neo-
tropical ecosystems (Stürmer & Kemmelmeier,
2021), we found that in the four life zones and
vegetation types studied of Costa Rica, the
AMF community is dominated by Acaulospora
spp. (Johnson & Wedin 1997; Lovelock & Ewel
2005; Picone, 2000). Some reported studies on
AMF have focused on determining the physio-
logical response of different hosts with AMF
cultivated strains (Blanco & Salas, 1997; Her-
nández & Salas, 2009; Salas & Blanco, 2000).
Studies identifying and evaluating native AMF
communities are scarce, for example Polo-
Marcial et al. (2023) and Solís-Ramos et al.
(2023), studied the effect of AMF communities
in Cedrela odorata and Jatropha curcas respecti-
vely. However, a high morphological richness of
AMF has been found in tropical forests and dry
grasslands (Johnson & Wedin, 1997; Lovelock
& Ewel, 2005; Picone, 2000).
Among the life zones evaluated, the pre-
montane moist forest is the best studied, since
24 of the 60 species recorded in Costa Rica are
found in this life zone. This number of species
highlights the unique vegetation types of the
region and contrasts with the previous limited
taxonomic inventories in these areas (Aldrich-
Wolfe, 2007; Aldrich-Wolfe et al., 2020; Fischer
et al., 1994; Johnson & Wedin, 1997; Lovelock
et al., 2003, Lovelock et al., 2004; Lovelock et al.,
2005; Picone, 2000; Polo-Marcial et al., 2023;
Salas & Blanco, 2000; Sharrock et al., 2004;
Shepherd et al., 2007; Sieverding et al., 1988;
Solís-Ramos et al., 2023).
The evaluation of different areas provides
relevant information for understanding the
diversity of AMF in Costa Rica. Among its
life zones, the premontane moist forest, lower
montane rain forest, premontane rain forest,
lower montane moist forest, and montane wet
forest represent underexplored regions, there is
no record of any Glomeromycota species. These
underexplored or under-inventoried areas may
host new AMF species whose value for the local
flora remains unknown.
The rarefaction curves show the limited
knowledge of species richness in the few (four)
life zones where studies have been conduc-
ted. Given that Costa Rica is recognized by
its biodiversity (Acuña, 2002), studies focu-
sed on bioprospecting for AMF diversity in
understudied life zones will help to broaden
the knowledge of this group, which has sig-
nificant potential for applications in horticul-
ture, production of ornamentals, sustainable
agriculture and forest management, and the
restoration of degraded areas. The knowledge
generated will support the development of
public policies for the successful conservation
of biodiversity and the sustainable production
in Costa Rica. For example, some species of the
genera Acaulospora, Glomus, and one Ambis-
pora are dominant in terms of the number of
hosts and vegetation types on which they have
been reported. This information makes them
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
the obvious candidates for consideration in
mycorrhizal inoculum production. However,
further ecological and taxonomic research is
required, encompassing biotechnological tech-
niques, morphological and molecular analyses,
to validate the applications of the diversity of
AMF in Costa Rica
CONCLUSIONS
We compiled data on 60 AMF species
found in Costa Rica from 1988 to 2024, which
represents 16 % of the Glomeromycota known
in the world. Twenty percent of the species
reported in the studies were classified only at
the genus level and the reports include only 4 of
the 12 life zones of the country, which suggests
a high possibility of identifying new species.
If we consider the diversity of edaphoclimatic
conditions, the variability in the terrain, and
the different types of natural vegetation that
prevail in Costa Rica, which remain to be fur-
ther explored, we can expect the record of AMF
species to expand as further research is con-
ducted. It is fundamental to perform studies on
the interactions with different hosts, as well as
to make taxonomic inventories of AMF in the
different life zones and biogeographic districts,
combining morphological analyses and mole-
cular characterizations, since this information
allows a robust confirmation of taxonomic
identity, the establishment of phylogenetic rela-
tionships, the determination of AMF species
distribution, and complete characterizations
that aid in species recognition and tracking in
situ, in order to gain a more comprehensive
view of the richness and ecology of the Glo-
meromycota of Costa Rica. The data presented
here significantly contribute to the knowledge
of the diversity and distribution of this group in
the natural life zones of Costa Rica and to the
understanding of the diversity and distribution
of AMF worldwide, and also provide a basis for
making decisions about future studies on the
taxonomy, distribution, ecology, and biotech-
nological applications of the Glomeromycota
of Costa Rica.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is
no conflict of interest of any kind; and that we
followed all pertinent ethical and legal proce-
dures and requirements. All financial sources
are fully and clearly stated in the acknowled-
gments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGEMENTS
MMJA thanks the Consejo Nacional de
Ciencia y Tecnología de México (CONAH-
CyT) for the MSc scholarship (1288567) at
INBIOTECA, UV, and LYSR thanks to the
Vice-rectory of Research, at the University of
Costa Rica, for funding our project through the
research projects C4764 and C4058. We would
like to express our gratitude to the two anony-
mous reviewers who provided comments that
have contributed to the enhancement of this
manuscript.
REFERENCES
Acuña, V. O. (2002). Biodiversidad en Costa Rica. Editorial
INBio.
Aldrich-Wolfe, L. (2007). Distinct mycorrhizal commu-
nities on new and established hosts in a transitional
tropical plant community. Ecology, 88(3), 559–566.
https://doi.org/10.1890/05-117
Aldrich-Wolfe, L., Black, K. L., Hartmann, E. D. L., Shivega,
W. G., Schmaltz, L. C., McGlynn, R. D., Johnson, P.
G., Keller, R. J. A., & Vink, S. N. (2020). Taxonomic
shifts in arbuscular mycorrhizal fungal communi-
ties with shade and soil nitrogen across conventio-
nally managed and organic coffee agroecosystems.
Mycorrhiza, 30(4), 513–527. https://doi.org/10.1007/
s00572-020-00967-7
Álvarez-Lopeztello, J., Robles, C., Hernández-Cuevas, L. V.,
Del Castillo, R. F., Tejocote-Pérez, M., & Rivera-Bece-
rril, F. (2023). Checklist of the arbuscular mycorrhizal
fungi of Oaxaca, an important hotspot of biodiver-
sity in Mexico. Botanical Sciences, 101(3), 699–712.
https://doi.org/10.17129/botsci.3238
Blanco, F., & Salas, E. (1997). Micorrizas en la agricultura:
contexto mundial e investigación realizada en Costa
Rica. Agronomía costarricense, 21(1), 55–67.
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64710, mayo 2025 (Publicado May. 15, 2025)
Błaszkowski, J. (2012). Glomeromycota: W. Szafer Insti-
tute of Botany. (vol. 23, 303 p.) Polish Academy of
Sciences.
Błaszkowski, J., Chwat, G., Góralska, A., Ryszka, P. y
Kovács, GM (2015). Two new genera, Dominikia
and Kamienskia, and D. disticha sp. nov. in Glo-
meromycota. Nueva Hedwigia, 100(1-2), 225–238.
https://doi.org/10.1127/nova_hedwigia/2017/0419
Błaszkowski, J., Kozłowska, A., Crossay, T., Symanczik,
S. y Al-Yahyaei, M. N. (2017). A new family, Per-
vetustaceae with a new genus, Pervetustus, and P.
simplex sp. nov. (Paraglomerales), and a new genus,
Innospora with I. majewskii comb. nov. (Paraglo-
meraceae) in the Glomeromycotina. Nova Hedwi-
gia. 105(3–4), 397–410. https://doi.org/10.1127/
nova_hedwigia/2017/0419
Błaszkowski, J., Kozłowska, A., Niezgoda, P., Goto, B. T., &
Dalpé, Y. (2018). A new genus, Oehlia with Oehlia
diaphana comb. nov. and an emended description of
Rhizoglomus vesiculiferum comb. nov. in the Glome-
romycotina. Nova Hedwigia, 107(3–4), 501–518.
Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary his-
tory of mycorrhizal symbioses and global host plant
diversity. New Phytologist, 220(4), 1108–1115. https://
doi.org/10.1111/nph.14976
Carrillo-Saucedo, S. M., Puente-Rivera, J., Montes-Recinas,
S., & Cruz-Ortega, R. (2022). Las micorrizas como
una herramienta para la restauración ecológica. Acta
Botánica Mexicana, 129. https://doi.org/10.21829/
abm129.2022.1932
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and
extrapolation: standardizing samples by completeness
rather than size. Ecology, 93(12), 2533–2547. https://
doi.org/10.1890/11-1952.1
Chao, A., & Lee, S. (1992). Estimating the Number of Clas-
ses via Sample Coverage. Journal Of The American
Statistical Association, 87(417), 210–217. https://doi.
org/10.1080/01621459.1992.10475194
Corazón-Guivin, M. A., Cerna-Mendoza, A., Guerre-
ro-Abad, J. C., Vallejos-Tapullima, A., Carballar-
Hernández, S., da Silva, G. A., y Oehl, F. (2019).
Funneliglomus, gen. nov., y Funneliglomus sanmarti-
nensis, un nuevo hongo micorrízico arbuscular de la
región amazónica del Perú. Sydowia.
Fischer, C. R., Janos, D. P., Perry, D. A., Linderman, R. G., &
Sollins, P. (1994). Mycorrhiza Inoculum Potentials in
Tropical Secondary Succession. Biotropica, 26(4), 369.
https://doi.org/10.2307/2389230
Goto, B. T., Jobin, K., & Laboratorio de Biología de Mico-
rrizas. https://biologiademicorrhizas.wixsite.com/
glomeromycota.
Hernández, W., & Salas, E. (2009). La inoculación
con Glomus fasciculatum en el crecimiento de
cuatro especies forestales y campo. Agronomía Cos-
tarricense, 33(1), 17–30. https://doaj.org/article/
e32cb5f9d414403fba0d87f537034481
Holdridge, L. (1979). Ecología Basada en Zonas de Vida. 1
reimpresión. San José. Costa Rica: Instituto Interameri-
cano de Cooperación Para La Agricultura.
Janos, D. P. (1975). Vesicular-arbuscular Mycorrhizal Fungi
and Plant Growth in A Costa Rican Lowland Rainfo-
rest. [Ph.D. Thesis. Ecology.] University of Michigan.
https://dx.doi.org/10.7302/19489
Jeffries, P., & Barea, J. M. (2012). Arbuscular Mycorrhiza:
A Key Component of Sustainable Plant–Soil Ecosys-
tems. Fungal associations, 51–75.
Jobim, K., & Goto, B. (2016). Diversity of arbuscular myco-
rrhizal fungi (Glomeromycota) in maritime sand
dunes of Brazilian northeast. Studies In Fungi, 1(1),
43–55. https://doi.org/10.5943/sif/1/1/4
Johnson, N. C., & Wedin, D. A. (1997). Soil carbon,
nutrients, and mycorrhizae during conversion of dry
tropical forest to grassland. Ecological Applications,
7(1), 171–182.
Lobo, R. G., Azofeifa, P. L., & Quirós, L. H. (2021). La
biodiversidad de Costa Rica en dos siglos de vida
independiente, y una mirada hacia el tricentenario.
Revista del Archivo Nacional, 85, e529-e529.
Lovelock, C. E., & Ewel, J. J. (2005). Links between tree
species, symbiotic fungal diversity and ecosys-
tem functioning in simplified tropical ecosystems.
New Phytologist, 167(1), 219–228. https://doi.
org/10.1111/j.1469-8137.2005.01402.x
Lovelock, C. E., Andersen, K., & Morton, J. B. (2003).
Arbuscular mycorrhizal communities in tropical
forests are affected by host tree species and envi-
ronment. Oecologia, 135(2), 268–279. https://doi.
org/10.1007/s00442-002-1166-3
Lovelock, C. E., Wright, S. F., Clark, D. A., & Ruess, R. W.
(2004). Soil stocks of glomalin produced by arbus-
cular mycorrhizal fungi across a tropical rain forest
landscape. Journal Of Ecology, 92(2), 278–287. https://
doi.org/10.1111/j.0022-0477.2004.00855.x
Marinho, F., da Silva, I. R., Oehl, F., & Maia, L. C. (2018).
Checklist of arbuscular mycorrhizal fungi in tropical
forests. Sydowia, 70, 107–127.
Morton, J. B., & Benny, G. L. (1990). Revised classification
of arbuscular mycorrhizal fungi (Zygomycetes): a
new order, Glomales, two new suborders, Glomineae
and Gigasporineae, and two new families, Acaulos-
poraceae and Gigasporaceae, with an emendation of
Glomaceae. Mycotaxon, 37, 471–491.
Oehl, F., de Souza, F. A., & Sieverding, E. (2008). Revi-
sion of Scutellospora and description of five new
genera and three new families in the arbuscular
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73 (S1): e64710, mayo 2025 (Publicado May. 15, 2025)
mycorrhiza-forming Glomeromycetes. Mycotaxon,
106(1), 311–360. https://europepmc.org/article/AGR/
IND44164548
Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., & Da
Silva, G. A. (2011). Advances in Glomeromycota taxo-
nomy and classification. IMA Fungus, 2(2), 191–199.
https://doi.org/10.5598/imafungus.2011.02.02.10
Picone, C. (2000). Diversity and Abundance of Arbuscu-
lar–Mycorrhizal Fungus Spores in Tropical Forest
and Pasture1. Biotropica, 32(4a), 734–750. https://doi.
org/10.1111/j.1744-7429.2000.tb00522.x
Polo-Marcial, M. H., Lara-Pérez, L. A., Goto, B. T., Mar-
garito-Vista, X., & Andrade-Torres, A. (2021). Glo-
meromycota in Mexico, a country with very high
richness. Sydowia, 74, 33–63.
Polo-Marcial, M. H., Solís-Ramos, L. Y., Murillo-Cruz,
R., Ávila-Arias, C., & Andrade-Torres, A. (2023).
Mycorrhizal and endophytic richness and coloniza-
tion in Cedrela odorata L., in agroforestry systems
and secondary forest from southeastern Costa Rica.
Agroforestry Systems, 97(4), 647–658. https://doi.
org/10.1007/s10457-023-00816-4
Rillig, M. C., & Steinberg, P. D. (2002). Glomalin production
by an arbuscular mycorrhizal fungus: a mechanism
of habitat modification? Soil Biology And Bioche-
mistry, 34(9), 1371–1374. https://doi.org/10.1016/
s0038-0717(02)00060-3
Salas, E., & Blanco, F. (2000). Selección de plantas hospede-
ras y efecto del fósforo para la producción de inóculo
de hongos formadores de micorrizas arbusculares por
el método de cultivos en macetas. Agronomía costarri-
cense, 24(1), 19–28.
Schüβler, A., Schwarzott, D., & Walker, C. (2001). A new
fungal phylum, the Glomeromycota: phylogeny and
evolution. Mycological Research, 105(12), 1413–1421.
https://doi.org/10.1017/s0953756201005196
Sharrock, R. A., Sinclair, F. L., Gliddon, C., Rao, I. M.,
Barrios, E., Mustonen, P. J., Smithson, P., Jones, D. L.,
& Godbold, D. L. (2004). A global assessment using
PCR techniques of mycorrhizal fungal populations
colonising Tithonia diversifolia. Mycorrhiza, 14(2),
103–109. https://doi.org/10.1007/s00572-003-0243-8
Shepherd, M., Nguyen, L., Jones, M. E., Nichols, J. D.,
& Carpenter, F. L. (2006). A method for assessing
arbuscular mycorrhizal fungi group distribution in
tree roots by intergenic transcribed sequence varia-
tion. Plant And Soil, 290(1–2), 259–268. https://doi.
org/10.1007/s11104-006-9157-5
Sieverding, E., Chaverri, A., & Rojas, I. (1988). Acaulospora
splendida, a new species in the Endogonaceae from
Costa Rica. Mycotaxon, 33, 251–256. https://www.
cabdirect.org/abstracts/19912350033.html
Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis.
Academic press.
Solís-Ramos, L. Y., Andrade-Torres, A., Polo-Marcial, M.
H., Romero-Ceciliano, M., López, C. C., Ávila-Arias,
C., & Rojas-Jiménez, K. (2023). Arbuscular Mycorrhi-
zal Fungi Colonization of Jatropha curcas Roots and
Its Impact on Growth and Survival under Greenhou-
se-Induced Hydric Stress. Agriculture, 13(12), 2197.
https://doi.org/10.3390/agriculture13122197
Stürmer, S. L., & Kemmelmeier, K. (2021). The Glome-
romycota in the Neotropics. Frontiers in microbiology,
11. https://doi.org/10.3389/fmicb.2020.553679
Symanczik, S., Al-Yahyaei, M. N., Kozłowska, A., Ryszka, P.,
& Błaszkowski, J. (2018). A new genus, Desertispora,
and a new species, Diversispora sabulosa, in the family
Diversisporaceae (order Diversisporales, subphylum
Glomeromycotina). Mycological Progress, 17(4), 437–
449. https://doi.org/10.1007/s11557-017-1369-y
Van Der Heijden, M. G. A., & Horton, T. R. (2009).
Socialism in soil? The importance of mycorrhizal
fungal networks for facilitation in natural ecosystems.
Journal Of Ecology, 97(6), 1139–1150. https://doi.
org/10.1111/j.1365-2745.2009.01570.x
Van Der Heijden, M. G. A., Martin, F. M., Selosse, M., &
Sanders, I. R. (2015). Mycorrhizal ecology and evolu-
tion: the past, the present, and the future. New Phyto-
logist, 205(4), 1406–1423. https://doi.org/10.1111/
nph.13288
Vargas, R. (1990). Micorrizas vesiculo-arbusculares aisladas
del bosque nuboso, Monteverde, Costa Rica. Agrono-
mía Costarricense, 14(1), 85–88.
Vega-Herrera, S. S., Stürmer, S. L., & Damiani, C. R.
(2023). Glomeromycota in Peru: An overview and
future approaches. Sydowia, 75, 87–101. https://doi.
org/10.12905/0380.sydowia75-2022-0087
Wang, B., & Qiu, Y. (2006). Phylogenetic distribution
and evolution of mycorrhizas in land plants. Myco-
rrhiza, 16(5), 299–363. https://doi.org/10.1007/
s00572-005-0033-6
Wijayawardene, N., Hyde, K., Dai, D., Sánchez-García,
M., Goto, B., Saxena, R., Erdoğdu, M., Selçuk, F.,
Rajeshkumar, K., Aptroot, A., Błaszkowski, J., Boon-
yuen, N., Da Silva, G., De Souza, F., Dong, W., Ertz,
D., Haelewaters, D., Jones, E., Karunarathna, S., …
Thines, M. (2022). Outline of Fungi and fungus-like
taxa – 2021. Mycosphere, 13(1), 53–453. https://doi.
org/10.5943/mycosphere/13/1/2