
13
Revista de BiologÃa Tropical, ISSN: 2215-2075, Vol. 73 (S2): e64854, mayo 2025 (Publicado May. 15, 2025)
Phenological Research. Springer Science. https://doi.
org/10.1007/978-90-481-3335-2_5
Newstrom, L. E., Frankie, G. W., & Baker, H. G. (1994).
A new classification for plant phenology based on
flowering patterns in lowland tropical forest trees
at La Selva, Costa Rica. Biotropica, 26(2), 141–159.
https://doi.org/10.2307/2388804
Numata, S., Yamaguchi, K., Shimizu, M., Sakurai, G., Mori-
moto, A., Alias, N., Azman, N. Z. N., Hosaka, T., &
Satake, A. (2022).Impacts of climate change on repro-
ductive phenology in tropical rainforests of Southeast
Asia. Communications Biology, 5, 311. https://doi.
org/10.1038/s42003-022-03245-8
Ollerton, J., & Lack, A. (1998). Relationships between flowe-
ring phenology, plant size and reproductive success in
shape Lotus corniculatus (Fabaceae). Plant Ecology,
139, 35–47. https://doi.org/10.1023/A:1009798320049
Ong, L., McConkey, K. R., & Campos-Arceiz, A. (2021). The
ability to disperse large seeds, rather than body mass
alone, defines the importance of animals in a hyper-
diverse seed dispersal network. Journal of Ecology, 110,
313–326. https://doi.org/10.1111/1365-2745.13809
Opler, P. A., Frankie, G. W., & Baker, H. G. (1980). Com-
parative phenological studies of treelet and shrub
species in tropical wet and dry forests in the lowlands
of Costa Rica. Journal of Ecology, 68, 167–188. https://
doi.org/10.2307/2259250
Pires, J. P. A., Marino, N. A. C., Silva, A. G., Rodrigues, J.
F. P., Freitas, L. (2018). Tree community phenodyna-
mics and its relationship with climatic conditions in a
lowland tropical rainforest. Forests, 9(3), 114. https://
doi.org/10.3390/f9030114
R Core Team. (2024). R: language and environment for
statistical computing. R foundation for statistical com-
puting, Vienna, Austria. https://www.R-project.org/
RamÃrez, N. (2006). Pollination in the Venezuelan Central
Plain: Relationships between flowering phenology,
pollination modes, and pollinating agents. Ameri-
can Journal of Botany, 93(7), 997–1006. https://doi.
org/10.3732/ajb.93.7.997
Rathcke, B., & Lacey, E. P. (1985). Phenological patterns of
terrestrial plants. Annual Review of Ecology and Syste-
matics, 16, 179–214. https://doi.org/10.1146/annurev.
es.16.110185.001143
Rincón, M., Roubik, D. W., Finegan, B., Delgado, D., &
Zamora, N. (1999). Understory bees and floral resou-
rces in logged and silviculturally treated Costa Rican
rainforest plots. Journal of the Kansas Entomological
Society, 72(4), 379–393.
RodrÃguez-Herrera, B., RodrÃguez, M. E., Fernández-
Otárola, M. (2018). Ecological networks between
tent-roosting bats (Phyllostomidae: Stenodermatinae)
and the plants used in a Neotropical rainforest. Acta
Chiropterologica, 20(1), 139–145. https://doi.org/10.3
161/15081109ACC2018.20.1.010
Sánchez, J. (2010). Gentianaceae. In B. E. Hammel, M. H.
Grayum, C. Herrera & N. Zamora (Eds.), Manual de
plantas de Costa Rica Vol. V. Monographs in Systema-
tic Botany from the Missouri Botanical Garden, 119,
821–840.
Sakai, S. (2001). Phenological diversity in tropical forests.
Population Ecology, 43, 77–86. https://doi.org/10.1007/
PL00012018
Sakai, S., Momose, K., Yumoto, T., Nagamitsu, T., Nagama-
su, H., Karim, A., Nakashizuka, T., & Inoue, T. (2005).
Plant Reproductive Phenology and General Flowe-
ring in a Mixed Dipterocarp Forest. In D. W. Roubik,
S. Sakai, A. A. Hamid Karim (Eds.), Pollination ecolo-
gy and the rain forest. Ecological studies (analysis and
synthesis) (Vol.174). Springer.
Sebastián-González, E. (2017). Drivers of species’ role
in avian seed-dispersal mutualistic networks. Jour-
nal of Animal Ecology, 86, 878–887. https://doi.
org/10.1111/1365-2656.12686
Struwe, L., & Albert, V. (2004). A Monograph of Neo-
tropical Potalia Aublet (Gentianaceae: Pota-
lieae). Systematic Botany, 29, 670–701. https://doi.
org/10.1600/0363644041744428
Susko, D. J. & Lovett-Doust, L. (2000). Plant-size and fruit-
position effects on reproductive allocation in Alliaria
petiolata (Brassicaceae). Canadian Journal of Botany,
78(11), 1398–1407. https://doi.org/10.1139/b00-110
Tang, J., Korner, C., Muraoka, H., Piao, S., Shen, M., Thac-
keray, S. J., & Yang, X. (2016). Emerging opportunities
and challenges in phenology: a review. Ecosphere,
7(8), e01436. https://doi.org/10.1002/ecs2.1436
Ting, S., Hartley S., & Burns, K. C. (2008). Glo-
bal patterns in fruiting seasons. Global Ecolo-
gy and Biogeography, 17, 648–657. https://doi.
org/10.1111/j.1466-8238.2008.00408.x
Tracey, A. J., & Aarssen, L. W. (2011). Competition and
body size in plants: the between-species tradeoff for
maximum potential versus minimum reproductive
threshold size. Journal of Plant Ecology, 4(3), 115–122.
https://doi.org/10.1093/jpe/rtr008
Van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The
phenology of tropical forests: Adaptive significance
and consequences for primary consumers. Annual
Review of Ecology and Systematics, 24, 353–377.
https://doi.org/10.1146/annurev.es.24.110193.002033
Villalobos-Chaves, D., Vargas Murillo, J., Rojas-Valerio,
E., Keeley, B. W., & RodrÃguez-Herrera, B. (2016).
Understory bat roosts, availability and occupation
patterns in a Neotropical rainforest of Costa Rica.
Revista de BiologÃa Tropical, 64(3), 1333–1343. https://
doi.org/10.15517/rbt.v64i3.21093