Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

The diversity of ant communities (Hymenoptera: Formicidae) and their connections with other arthropods from three temperate forests of Central Mexico
PT 64-2 JUN 2016

Supplementary Files

Sin título


species richness
landscape ecology
ecological function
causal analysis.
riqueza de especies
ecología del paisaje
funciones ecológicas
análisis causal.

How to Cite

Guzmán-Mendoza, R., Castaño Meneses, G., & Nuñez-Palenius, H. G. (2016). The diversity of ant communities (Hymenoptera: Formicidae) and their connections with other arthropods from three temperate forests of Central Mexico. Revista De Biología Tropical, 64(2), 571–585.


Ants have been considered useful for bioindication because of their ecological characteristics. Nonetheless, among the characteristics of a bioindicator group, there must be a consistent and replicable response to disturbance. In this sense, divergent reactions have been found, even between taxons narrowly related. The objective of this work was to compare the diversity of the ant communities in three different temperate forests with different levels of disturbance, and to correlate their abundance and diversity of species, with that found in other arthropod communities of the same forests. The work was carried out in three municipalities in the North of the State of Mexico, where three types of different forests were identified by their degree of disturbance. These types include: 1) primary forest (PF), with typical species of a conserved forest; 2) mixed forest (MF), with species of a conserved forest and a reforestation effort; and 3) reforested forest (RF), with species used in reforestation efforts and indicative of disturbance. In each sample, an area of 2 500 m2 was selected. Each area had 16 pitfalls apiece and they were placed 10 m away from each other. Samples were collected twice; one from February through March 2009 (dry season) and another from August through September 2010 (rainy season), which produced a total of 192 traps. Obtained specimens were identified at the most taxonomically specific level. All data captured was transformed to √n + 0.5 and diversity index levels of Shannon and Simpson were calculated, as well as richness of species for ants, beetles, grasshoppers, true bugs, and spiders. The values of richness, diversity, and abundance were correlated with the Pearson coefficient, and to evaluate possible causal relationships between these, a path analysis was performed. Results suggested an important influence of the site over ant communities, and values of richness, abundance and diversity were correlated with the communities of spiders, beetles, grasshoppers and true bugs, but not for all the sites studied. Responses to environmental changes are not only on the numeric proportions of abundance, richness and diversity, but also in the indirect and casual ecological interactions. Finally, the data seems to indicate that the responses of the ants to the environmental changes are not necessarily reflected on other organisms’ communities, so the ants’ role as bioindicators can be limited.


Alonso, L. E., & Agosti, D. (2000). Biodiversity studies monitoring and ants: an overview. In D. Agosti, J. D. Majer, L. E. Alonso, & T. R. Schultz (Eds.), Ants standard methods for measuring and monitoring biodiversity (pp. 1-8). Washington, D.C., USA: Smithsonian Institution Press.

Andersen, A. N., Hoffmann, B. D., Muller, W. J., & Griffiths, A. D. (2002). Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology, 38, 8-17.

Andersen, A. N., & Majer, J. D. (2004). Ants show the way down under: invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment, 2, 291-298.

Andersen, A. N., Fisher, A., Hoffmann, B. D., Read, J. L., & Richards, R. (2004). Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecology, 29, 87-92.

Andrew, N., Rodgerson, L., & York, A. (2000). Frequent fuel- reduction burning: the role of logs and associated leaf litter in the conservation of ant biodiversity. Austral Ecology, 25, 99-107.

AntWeb. (2002). AntWeb. Retrieved from

Arnett, R. H., Downie, N. W., & Jaques, H. E. (1980). How to know the beetles (2nd ed.). USA: WCB-McGraw-Hill.

Bestelmeyer, B. T., Agosti, D., Alonso, L. E., Brandao, C. R. F., Brown, W. L., Delabie, J. H. C., & Silvestre, R. (2000). Field techniques for study of ground-dwelling ants: an overview, description and evaluation. In D. Agosti, J. D. Majer, L. E. Alonso, & T. R. Schultz (Eds.), Ants: standard methods for measuring and monitoring biodiversity (pp. 122-144). Washington, D.C., USA: Smithsonian Institution Press.

Bestelmeyer, B. T., & Wiens, J. A. (2001). Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecological Applications, 11, 1123-1140.

Bignell, D. E. (2009). Towards a universal sampling protocol for soil biotas in the humid tropics. Presquisa agropecuária Brasileira, 44, 825-834.

Bland, R. G., & Jaques, H. E. (1978). How to know the insects (3rd ed.). USA: WCB-McGraw-Hill.

Buchholz, S. (2010). Simulated climate change in dry habitats: do spiders respond to experimental small-scale drought? Journal of Arachnology, 38, 280-284.

Calderón de Rzedowski, G. & Rzedowski, J. (2004). Manual de malezas de la región de Salvatierra, Guanajuato. México: Instituto de Ecología A. C.

Cammaers, R. (2001). Behavioural interactions between the ant Lasius flavus (Formicidae) and the myrmecophilous beetle Claviger testaceus (Pselaphidae). Interactions with the reproductives and the brood. Relations of the beetle with insect cadavers and congeners found inside the nest. Belgian Journal of Entomology, 3, 213-265.

Castro-Delgado, S., Vergara-Cobian, C., & Arellano-Ugarte, C. (2008). Distribución de la riqueza, composición taxonómica y grupos funcionales de hormigas del suelo a lo largo de un gradiente altitudinal en el refugio de vida silvestre Laquipampa, Lambayeque-Perú. Ecología Aplicada, 7, 89-103.

Chen, X., Adams, B., Bergeron, C., Sabo, A., & Hooper-Bùi, L. (2014). Ant community structure and response to disturbances on coastal dunes of Gulf of Mexico. Journal of Insect Conservation, 19, 1-13.

Chanatásig-Vaca, C. I., Huerta L. E., Rojas, F. P., Ponce-Mendoza, A., Mendoza, V., J., Morón, R. A., … Dzib-Castillo, B. B. (2011). Efecto del uso de suelo en las hormigas (Formicidae: Hymenoptera) de tikinmul, Campeche, México. Acta Zoológica Mexicana (n.s.), 27(2), 441-461.

Cornejo-Tenorio, G., Casas, A., Farfán, B., Villaseñor, J. L., & Ibarra-Manríquez, G. (2003). Flora y vegetación de las zonas núcleo de la Reserva de la Biosfera Mariposa Monarca, México. Boletín de la Sociedad Botánica de México, 73, 43-62.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C.W. (2011). InfoStat versión 2011. Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba.

Didham, R. K., Hammond, P. M., Lawton, J. H., Eggleton P., & Stork, N. E. (1998). Beetle species responses to tropical forest fragmentation. Ecological Monographs, 68(3), 295-323.

Fontana, P., Buzzetti, F. M., & Mariño-Pérez, R. (2008). Chapulines, langostas, grillos y esperanzas de México. Guía fotográfica. Italia: WBA Handboks 1.

Espinoza-García, F., & Sarukhan, J. (1997). Manual de malezas del valle de México. México: UNAM- Fondo de Cultura Económica.

Gange, A. C. (2005). Sampling insects from roots. In S. R. Leather (Ed.), Insect sampling in forest ecosystems (pp. 16-36). United Kingdom: Blackwell Plublishing, Oxford.

García, E. (1996). Diversidad climático vegetal en México. In J. L. Llorente-Bousquets, A. N. García, & E. González (Eds.), Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento (pp.15-25). México: CONABIO-UNAM.

Gigante, C. L., Biesmeijer, J. C., Benadi, G., Freünd, J., Stang, M., Bartomeus, I., … Kunin, W. E. (2014). The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 17, 1389-1399.

Greenland, S. (2000). Causal analysis in the health sciences. Journal of the American Statistical Association, 95, 286-289.

Guzmán-Mendoza, R. & Zavala-Hurtado, J. A. (2005). Productividad y diversidad, una relación rota entre hormigas (Hymenoptera: Formicidae) y el valle semiárido de Zapotitlán Salinas, Puebla. Entomología Mexicana, 4, 229-233.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontología Electrónica, 4, 9p. Retrieved from

Hodkinson, I. D., & Jackson, J. K. (2005). Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management, 35, 649-666.

Jennings, D. E., Krupa, J. J., Raffel, T. R., & Rohr, J. R. (2010). Evidence for competition between carnivorous plants and spiders. Proceedings of Royal Society B, 277, 3001-3008.

Kaspari, M. (2003). Introducción a la ecología de las hormigas. In F. Fernández (Ed.), Introducción a las Hormigas de la región Neotropical (pp. 97-112). Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Kaston, B. J. (1972). How to know the spiders (3rd ed.). USA: WCB-McGraw-Hill.

Kristine, T. N. (2014). Tallgrass prairie ants: their species composition, ecological roles, and response to management. Journal of Insect Conservation, 18, 509-521.

Lassau, S. A., Hochuli, D. F., Cassis, G., & Reid, C. A. M. (2005). Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Diversity and Distributions, 11, 73-82.

Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers, G. F., Eggleton, P., Hammond, P. M., ... Watt, A. D. (1998). Biodiversity inventories, indicador taxa and effects of habitat modification in tropical forest. Nature, 391,72-76.

List, R., Muñozcano Quintanar, M. J., & De la Peña, J. L. (2009). Áreas naturales protegidas. In G. Ceballos, R. List, G. Garduño, R. López-Cano, M. J. Muñozcano Quintanar, E. Collado, & J. E. San Román (Eds.), La diversidad biológica del Estado de México (pp. 339-350). Estado de México, México: Colección Mayor, Gobierno del Estado de México.

Lessard, J. P., Dunn R. R., & Sanders, N. J. (2009). Temperature-mediated coexistence in temperate forest ant communities. Insectes Sociaux, 56, 149-156.

Longino, J. T., Coddington, J., & Colwell, R. K. (2002). The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83, 689-702.

Lubertazzi, D., & Tschinkel, W. R. (2003). Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flat woods. Journal of Insects Science, 21, 1-17.

Ludwing, J. A., & Reynolds, J. F. (1988). Statistical ecology: A primer on methods and computing. New Jersey, USA: Wiley and Sons, Hoboken.

Mackay, W. P., & Mackay, E. (2005). The ants of North America. Retrieved from antgenera.htm.

McAleece, N. (1997). Biodiversity Professional Beta, Version 2.0. Oban, Scotland, UK: The Natural History Museum and The Scottish Association For Marine Science.

Moya-Laraño, J., & Wise, D. H. (2007). Direct and indirect effects of ants on a forest-floor food web. Ecology, 88, 1454-1465.

Navarrete-Heredia, J. L., Newton, A. F., Thayer, M. K., Ashe, J. S., &. Chandler, D. S. (2002). Guía ilustrada para los géneros de Staphylinidae (Coleoptera) de México. México: Universidad de Guadalajara, CONABIO.

Newton, A. F. (1990). Myrmelibia, a new genus of myrmecophile from Australia, with a generic review of australian Osoriinae (Coleoptera: Staphylinidae). Invertebrate Taxonomy, 4, 81-94.

Pake, C. E., & Venable, L. (1996). Seed banks in desert annuals: implications for persistence and coexistence in variable environments. Ecology, 77, 1427-1435.

Rivera, L. & Armbrecht, I. (2005). Diversidad de tres gremios de hormigas en cafetales de sombra, de sol y bosques de Risaralda. Revista Colombiana de Entomología, 31, 89-96.

Saha, H. K, Sarkar A., & Haldar, P. (2011). Effects of anthropogenic disturbances on the diversity and composition of the acridid fauna of sites in the dry deciduous forest of west Bengal, India. Journal of Biodiversity and Ecological Sciences, 4, 313-320.

Sanders, N. J., Moss, J., & Wagner, D. (2003). Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography, 12, 93-102.

Sarmiento, C. E. (2003). Metodologías de captura y estudio de las hormigas. In F. Férnandez (Ed.), Introducción a las hormigas de la región Neotropical (pp. 201-210). Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Schuh, R. T., & Slater, J. A. (1995). True bugs of the world (Hemiptera: Heteroptera) classification and natural history. New York, USA: Cornell University Press.

SPSS INC. (2003). SPSS For Windows rel. 12.0. Chicago IL, USA.

Swift, M. J., & Bignell, D. E. (2001). Standard methods for the assessment of soil biodiversity and land-use practice. ASB-Lecture Note 6B. Bogor, Inonesia: International Centre for Research in Agroforestry, South East Asian Regional Research Program. Retrieved from

Togay, N., Togay, Y., Yildirim, B., & Dogan, Y. (2008). Relationships between yield and some yield components in Pea (Pisum sativum ssp. arvense L.) genotypes by using correlation and path analysis. African Journal of Biotechnology, 23, 4285-4287.

Vásquez-Bolaños, M. (2011). Lista de especies de hormigas (Hymenoptera: Formicidae) para México. Dugesiana, 18, 95-133.

Wang, C., Strazanac, J., & Butler, L. (2001). A comparison of pitfall traps with bait traps for studying leaf litter ant communities. Journal of Economic Entomology, 94, 761-765.

Watt, A. D., Stork, N. E., & Bolton, B. (2002). The diversity and abundance of ants in relation to forest disturbance and plantation establishment in southern Cameroon. Journal of Applied Ecology, 39, 18-30.

Whitmore, C., Slotow, R., Crouch, T. E., & Dippenaar-Schoeman, A. S. (2002). Diversity of spiders (Araneae) in a savanna reserve, northern province, South Africa. The Journal of Arachnology, 30, 344-356.

Woodcock, B. A. (2005). Pitfall trapping in ecological studies. In S. R. Leather (Ed.), Insect sampling in forest ecosystems (pp. 37-57). Oxford, United Kingdom: Blackwell Plublishing.

Wootton, J. T. (1994a). Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology, 75, 151-165.

Wootton, J. T. (1994b). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25, 443-466.

Work, T. T., Buddle, C. M., Korinus, L. M., & Spence, J. R. (2002). Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environmental Entomology, 31, 438-448.

Yamaguchi, T., & Hasegawa, M. (1996). An experiment on ant predation in soil using a new bait trap method. Ecological Research, 11, 11-16.

Yanoviak, S. P., & Kaspari, M. (2000). Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos, 89, 259-266.

Zar, J. H. (1999). Biostatistical analysis (4th ed.). New Jersey, USA: Prentice Hall.



Download data is not yet available.