Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Tracking the water fingerprints of Cocos Island: a stable isotope analysis of precipitation, surface water, and groundwater
HTML
PDF

Keywords

Cocos Island
Eastern Tropical Pacific ocean
Intertropical Convergence Zone
stable isotope composition
HYSPLIT trajectories.
Isla del Coco
Océano Pacífico Oriental
Zona de Convergencia Intertropical
isótopos estables
trayectorias HYSPLIT.

How to Cite

Corrales, J. L., Sánchez-Murillo, R., Esquivel-Hernández, G., Herrera, E., & Boll, J. (2016). Tracking the water fingerprints of Cocos Island: a stable isotope analysis of precipitation, surface water, and groundwater. Revista De Biología Tropical, 64(S1), 105–120. https://doi.org/10.15517/rbt.v64i1.23420

Abstract

The use of stable isotopes of water, both δ2H and δ18O has provided novel insights in hydrological studies, ecological applications, understanding climate variability, and reconstructing paleoclimate. However, information on the stable isotope composition of water in tropical marine island environments is normally scarce within the Central America Isthmus. Here, we present the first isotopic characterization of precipitation, surface water, and groundwater at Cocos Island, Costa Rica within the eastern tropical Pacific Ocean region. Our results show that the Cocos Island MWL can be described as: δ2H=8.39·δ18O+13.3; r2=0.98 (n=29). Dry season rainfall events ranged from -4.9 ‰ δ18O up to -2.4 ‰ δ18O with a mean d-excess of 13.2 ‰. By the beginning of May, the Intertropical Convergence Zone reaches Costa Rica resulting in a notable depletion in isotope ratios (up to -10.4 ‰ δ18O and -76.2 ‰ δ2H). During the wet season, δ18O composition averaged -6.1 ‰ δ18O and -38.5 ‰ δ2H with a mean d-excess of 9.9 ‰. HYSPLIT air mass back trajectories indicate a strong influence on the origin of precipitation of two main moisture transport mechanisms, the northeasterly (January-May) and southwesterly (May-November) trade winds. Small seasonal variations were observed in the isotopic composition of surface water throughout the year with mean values ranging from -3.9 ‰ δ18O (dry season, n=19) up to -4.8 ‰ δ18O (wet season, n=13). Groundwater samples exhibited a similar trend with more depleted composition during the wet season (-5.2 ‰ δ18O and -29.8 ‰ δ2H). Overall, the marine isotopic composition measured in meteoric water at Cocos Island serves to better delineate the isotopic contribution of Pacific moisture towards the Central America Isthmus. It also provides a valuable isotopic reference to discriminate from orographic distillation and Caribbean enriched rainfall inputs in continental studies.

 
https://doi.org/10.15517/rbt.v64i1.23420
HTML
PDF

References

Acuña-González, J., García-Céspedes, J., Gómez-Ramírez, E., Vargas, J.A., & Cortés, J. (2008). Parámetros físico-químicos en aguas costeras de la Isla del Coco, Costa Rica (2001-2007). Revista de Biología Tropical, 56(Supplement 2), 49-56.

Aggarwal, P. K., Alduchov, O. A., Froehlich, K. O., Araguas-Araguas, L. J., Sturchio, N. C., & Kurita, N. (2012). Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophysical Research Letters, 39, L11705. doi:10.1029/2012GL051937.

Alfaro, E. J. (2008). Ciclo diario y anual de variables troposféricas y oceánicas en la Isla del Coco, Costa Rica. Revista de Biología Tropical, 56(Supplement 2), 19-29.

Alvarado, J. J., & Chiriboga, A. (2008). Distribución y abundancia de equinodermos en las aguas someras de la Isla del Coco, Costa Rica (Pacífico Oriental). Revista de Biológia Tropical, 56(Supplement 2), 99-111.

Amador, J. A., Alfaro, E. J., Lizano, O. G., & Magaña, V. O. (2006). Atmospheric forcing of the eastern Pacific: A review. Progress in Oceanography, 69, 101-142.

Araguás-Araguás, L., Froehlich, K., & Rozanski, K. (1998). Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research, 103, 28721-28742.

Araguás-Araguás, L., Froehlich, K., & Rozanski, K. (2000). Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes, 14, 230-244.

Berden, G., Peeters, R., & Meijer, G. (2000). Cavity ring-down spectroscopy: Experimental schemes and applications. International Review in Physical Chemistry, 19, 565-607.

Bernan, E. S. F., Levin, N. E., Landais, A., Li, S., & Owano, T. (2013). Measurement of δ18O, δ17O, and 17O- excess in water by Off-Axis Integrated Cavity Output Spectroscopy and Isotope Ratio Mass Spectrometry. Analytical Chemistry, 85,10392-10398.

Birkel, C., Soulsby, C., Tezlaff, D., Dunn, S., & Spezia, L. (2012). High-frequency storm event isotope sampling reveals time-variant transit time distributions and influence of diurnal cycles. Hydrological Processes, 26, 308-316.

Bowen, G. J., & Revenaugh, J. (2003). Interpolating the isotopic composition of modern precipitation. Water Resources Research, 39, 1299. doi:10.1029/2003WR002086.

Breedy, O., & Cortés, J. (2008). Octocorals (Coelenterata: Anthozoa: Octocorallia) of Isla del Coco, Costa Rica. Revista de Biología. Tropical, 56(Supplement 2), 71-77.

Cappa, C. D., Hendricks, M. B., DePaolo, D. J., & Cohen, R. C. (2003). Isotopic fractionation of water during evaporation. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D16).

Castillo, P., Batiza, R., Vanko, D., Malavassi, E, Barquero, J, & Fernández, E. (1988). Anomalously young volcanoes on old hot-spot traces: I. Geology and petrology of Cocos Island. Bulletin of the Geological Society of America, 100, 1400-1414.

Cobb, K. M., Adkins, J. F., Partin, J. W., & Clark, B. (2007). Regional-scale climate influences on temporal variation of rainwater and cave dripwater oxygen isotopes in northern Borneo. Earth and Planetary Science Letters, 263, 207-220.

Cortés, J. (2008). Historia de la investigación marina en la Isla del Coco, Costa Rica. Revista de Biología Tropical, 56(Supplement 2), 1-18.

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702-1703.

Draxler, R. R., & Rolph, G. D. (2014). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring, Maryland, USA. Retrieved from http://ready.arl.noaa.gov/HYSPLIT.php

Durán-Quesada, A. M., Gimeno, L., Amador, J. A., & Nieto, R. (2010). Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. Journal of Geophysical Research, 115, D05103. doi:10.1029/2009JD012455.

Fernández, C. (2008). Flora marina del Parque Nacional Isla del Coco, Costa Rica, Pacífico Oriental Tropical. Revista de Biología Tropical, 56(Supplement 2), 57-69.

Gupta, P., Noone, D., Galewsky, J., Sweeney, C., & Vaughn, B.H. (2009). Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Communications in Mass Spectrometry, 23, 2534-2542.

Guzman, H. M., & Cortés, J. 2006. Reef recovery 20 years after the 1982-1983 El Niño massive mortality. Marine Biology, 151, 401-411.

Ichiyanagi, K., & Yamanaka, M. D. (2005). Interannual variation of stable isotopes in precipitation at Bangkok in response to El Niño Southern Oscillation. Hydrological Processes, 19, 3413-3423.

Ishizaki, Y., Yoshimura, K., Kanae, S., Kimoto, M., Kurita, N., & Oki, T.(2012). Interannual variability of H218O in precipitation over the Asian monsoon region. Geophysical Research, 117, D16308. doi:10.1029/2011JD015890.

International Atomic Energy Agency (IAEA). (2014). IAEA/GNIP Precipitation Sampling Guide. Vienna, Austria.

Johnson, K. R., & Ingram, B. L. (2004). Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimatic reconstructions. Earth and Planetary Science Letters, 220, 365-377.

Lachniet, M. (2009a). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28(5-6), 412-432. doi:10.1016/j.quascirev.2008.10.021.

Lachniet, M. S. (2009b). Sea surface temperature control on the stable isotopic composition of rainfall in Panama. Geophysical Research Letters, 36, L03701. doi:10.1029/2008GL036625.

Lachniet, M. S., & Patterson, W. P. (2009). Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth and Planetary Science Letters, 284, 435-446.

Lachniet, M., Paterson, W. P., Burns, S., Asmerom, Y., & Polyak, V. (2007). Caribbean and Pacific moisture sources on the Isthmus of Panama revealed from stalagmite and surface water δ18O gradients. Geophysical Research Letters, 34, L01708. doi:10.1029/2006GL028469.

McGlynn, B., McDonnel, J. J., & Brammer, D. D. (2002). A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand. Journal Hydrology, 257, 1-26.

Moerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., & Tuen, A. A. (2013). Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth and Planetary Science Letters, 369-370, 108-119.

Montoya, M. (2008). Aves marinas de la Isla del Coco, Costa Rica, y su conservación. Revista de Biología Tropical, 56(Supplement 2), 133-149.

Munksgaard, N. C., Wurster, C. M., Bass, A., & Bird, M. I. (2012). Extreme short-term stable isotope variability revealed by continuous rainwater analysis. Hydrological Processes, 26, 3630-3634.

National Oceanic and Atmospheric Administration (NOAA) (2014). El Niño/Southern Oscillation (ENSO) Diagnostic Discussion. Washington, DC: US Government. Retrieved from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.html

Panarello, H. O., & Dapeña, C. (2009). Large scale meteorological phenomena, ENSO and ITCZ, define the Paraná River isotope composition. Journal of Hydrology, 365. 105-112.

Risi, C., Noone, D., Frankenberg, C. & Worden, J. (2013). Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 49, 4136-4156.

Rozanski, K., Sonntag, C., & Münnich, K. O. (1982). Factors controlling isotopic composition of European precipitation. Tellus, 34, 142-150.

Rojas, W., & Alvarado, G. E. (2012). Geología y contexto geotectónico de la Isla del Coco y la zona marítima frente al Pacífico central de Costa Rica. Rev. Biol. Trop, 60(Supplement 3), 15-32.

Sánchez-Murillo, R., Esquivel-Hernández, G., Welsh, K., Brooks, E. S., Boll, J., Alfaro-Solís, R., & Valdés-González, J. (2013). Spatial and temporal variation of stable isotopes in precipitation across Costa Rica: an analysis of historic GNIP records. Open Journal of Modern Hydrology, 3(4). doi:10.4236/ojmh.2013.34027.

Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., & Boll, J. (2015). Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA. Stable Isotopes in Environmental and Health Studies, 51, 231-254.

Soderberg, K., Good, S. P., O’Connor, M., Wang, L., Ryan, K., & Caylor, K. K. (2013). Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya. Ecosphere, 4(3), 33. doi: 10.1890/ES12-00160.1.

Speed, M., Tezlaff, D., Soulsby, C., Hrachowitz, M., & Waldron, S. (2010). Isotopic and geochemical tracers reveal similarities in transit times in contrasting mesoscale catchments. Hydrological Processes, 24, 1211-1224.

Sturm, C., Zhang, Q., & Noone, D. (2010). An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Climate of the Past, 6, 115-129.

Tezlaff, D., & Soulsby, C. (2008). Towards simple approaches for mean residence time estimation in ungauged basins using tracers and soil distributions. Journal of Hydrology, 363, 60-74.

Vuille, M., & Wermer, M. (2005). Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results. Climate Dynamics, 25, 401-413.

Vuille, M., Bradley, R. S., & Keimig, F. (2000). Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research, 105, 12447-12460.

Vuille, M., Bradley, R. S., Healy, R., Werner, M., Hardy, D. R., Thompson, L. G., & Keimig, F. (2003). Modeling δ18O in precipitation over the tropical Americas 2: Simulation of the stable isotope signal in Andean ice cores. Journal of Geophysical Research, 108, NO. D6, 4175. doi:10.1029/2001JD002039.

Wassenaar, L. I., Athanasopoulos, P., & Hendry, M. J. (2011). Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. Journal of Hydrology, 411, 37-48.

Wen, X. F., Sun, X. M., Zhang, S. C., Yu, G. R., Sargent, S. D., & Lee, X. (2008). Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 349, 489-500.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical

Downloads

Download data is not yet available.