Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Anti-candidal effect of endophytic fungi isolated from Calotropis gigantea


endophytic fungi
Candida albicans
scanning electron microscope
endophytic fungi
Candida albicans
scanning electron microscope

How to Cite

Nath, A., & Joshi, S. (2017). Anti-candidal effect of endophytic fungi isolated from Calotropis gigantea. Revista De Biología Tropical, 65(4), 1437–1447.


Candida albicans is a most common cause of fungal infections in animals and birds. Understanding the increasing resistance of C. albicans to various antifungal therapeutic agents is important to discover new anti-candidal alternatives. The present study investigated the anti-candidalpotential of five endophytic fungi extracts, isolated from the tropical ethnoveterinary plant, Calotropis gigantea. We firstly evaluated the in vitro antifungal activities of endophytic fungi extracts by the well diffusion method. Secondly, the cells of C. albicans were treated with the potent extract to observe significant ultrastructural changes. To further investigate the in vivo antifungal activity of the extract, some laboratory experiments with mice were undertaken, and posteriourly, the different organs were studied under the electron microscope for any deformities. Phomopsis asparagi showed the best anti-candidal activity with a minimum inhibitory concentration (MIC) of 46.9 µg/mL. The fungal test pathogen (C. albicans) exhibited various cell deformities when treated with the extract of P. asparagi. Histopathological studies of the vital organs of mice treated with the potent fungal extract did not show any significant pathological conditions when viewed under scanning electron microscope. Thus, P. asparagi can be a potential candidate for anti-candidal agents against C. albicans. Future studies will focus on the isolation of the bioactive components of the extract.


Bacon, C. W., & White, J. F. (2000). Microbial endophytes. New York: M. Dekker.

Bridge, P. D., & Arora, D. K. (1998). Interpretation of PCR methods for species definition. In P. D. Bridge, D. K. Arora, C. A. Reddy, & R. P. Elander (Eds.), Applications of PCR in mycology (pp. 63-84). Wallingford: CAB International.

Deshmukh, S. K., Mishra, P. D., Kulkarni-Almeida, V. S. A., Sahoo, M. R., Periyasamy, G., & Goswami, H. (2009). Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chemistry and Biodiversity, 6, 784-789.

Dhankhar, S., Kumar, S., Dhankhar, S., & Yadav, J. P. (2012). Antioxidant activity of fungal endophytes isolated from Salvadora oleoidesdecne. International Journal of Pharmaceutical Science,4, 0975-1491.

Du, F. Y., Li, X. M., Li, C. S., Shang, Z., & Wang, B. G. (2012). Cristatumins A-D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorganic and Medical Chemistry Letters, 22, 4650-4653.

Ecobichon, D. J. (1992). The basis of toxicity testing (3rd ed.). Boca Raton: CRC Press.

Faria, P. S. A., Senábio, J. A., Soares, M. A., Silva, F. G., Cunha, A. P. A., & Souchie, E. L. (2016).Assessment of functional traits in the assemblage of endophytic fungi of Anacardium othonianum Rizzini. Pakistan Journal of Botany, 48, 1241-1252.

Gong, L. J., & Guo, S. X. (2009). Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. African Journal of Biotechnology, 8, 731-736.

Govindappa, M., Sadananda, T. S., Channabasava, Ramachandra, Y. L., Chandrappa, C. P., Padmalatha, R. S., & Prasad, S. K. (2015). In vitro and in vivo antidiabetic activity of lectin (N-acetyl-galactosamine, 64 kDa) isolated from endophytic fungi, Alternaria species from Viscum album on alloxan induced diabetic rats. Integrative Obesity and Diabetes,1, 11-19.

Huang, G. J., Chen, H. J., Chang, Y. S., Sheu, M. J., & Lin, Y. H. (2007). Recombinant sporamin and its synthesized peptides with antioxidant activities in vitro. Botanical Studies, 48, 133-140.

Khan, M. A. U., Ashfaq, M. K., Zuberi, H. S., Zuberi, H. S., Mahmood, M. S., & Gilani, A. H. (2003). The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. Phytotherapy Research, 17, 183-186.

Konrath, E. L., Ortega, M. G., Bordignon, S. L., Apel, M. A., Henriques, A. T., & Cabrera, J. L. (2012). Alkaloid profiling and anticholinesterase activity of South American Lycopodiaceae species. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 218-222.

Kuwamura, M., Ide, M., Yamate, J., Shiraishi, Y., & Kotani, T. (2006). Systemic candidiasis in a dog, developing spondylitis. The Journal of Veterinary Medical Science, 68, 1117-1119.

Lyngwi, L. A., Koijam, K., Sharma, D., & Joshi, S. R. (2013). Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Revista de Biología Tropical, 61, 467-490.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2012). Biodiversity hotspot for conservation priorities. Nature, 403, 853-858.

Naglot, A., Goswami, S., Rahman, I., Shrimali, D. D., Yadav, K. K., Gupta, V. K., Rabha, A. J., Gogoi, H. K., & Veer, V. (2015). Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. The Plant Pathology Journal, 31(3), 278-289.

Nascente, P. da S., Meinerz, A. R. M., de Faria, R. O., Schuch, L. F. D., Meireles, M. C. A., & de Mello, J. R. B. (2009). CLSI broth microdilution method for testing susceptibility of Malassezia pachydermatis to thiabendazole. Brazilian Journal of Microbiology, 40, 222-226.

Nath, A., Chattopadhyay, A., & Joshi, S. R. (2015). Biological activity of endophytic fungi of Rauwolfia serpentina Benth: An ethnomedicinal plant used in folk medicines in Northeast India. Proceedings of National Academy Sciences, India, Biological Sciences, 85, 233-240.

Nath, A., Raghunatha, P., & Joshi, S. R. (2012). Diversity and biological activities of endophytic fungi of Emblica officinalis, an ethnomedicinal plant of India. Mycobiology, 40, 18-30.

Nath, A., & Joshi, S. R. (2013). Bioactivity assessment of endophytic fungi associated with the ethnomedicinal plant Potentilla fulgens. World Journal of Pharmaceutical Research, 2, 2596-2607.

Nath, A., & Joshi, S. R. (2016). Endophytic fungi from tropical ethnoveterinary plants and their antibacterial efficacy against Pasteurella multocida Capsular Type A strain. Revista de Biología Tropical, 64, 733-745.

Owais, M., Sharad, K. S., Shehbaz, A., & Saleemuddin, M. (2005). Antibacterial efficacy of Withania somnifera (Ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine, 12, 229-235.

Peláez, F., Cabello, A., Platas, G., Díez, M. T., González, del Val, A., Basilio, A., ..., & Kurtz, M. B. (2000). The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Systemic and Applied Microbiology, 23, 333-43.

Pannu, J., McCarthy, A., Martin, A., & Sutcliffe, J. (2009). NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrobial Agents and Chemotherapy, 53, 3273-3279.

Petrini, O. (1986). Taxonomy of endophytic fungi of aerial plant tissues. In N. J. Fokkenna, & J. Van Den Heuvel (Eds.), Microbiologyof the Phylosphere (pp. 175-187). Cambridge: Cambridge University Press.

Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., …, & Wiesner, C. (2014) Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. Plos One, 9, doi:10.1371/journal.pone.0097929

Sasidharan, S., Zuraini, Z., Latha, L. Y., & Suryani, S. (2008). Fungicidal effect and oral acute toxicity of Psophocarpus tetragonolobus root extract. Pharmaceutical Biology, 46, 261-265.

Srivastava, S., Singh, A. P., & Rawat, A. K. S. (2015). Comparative botanical and phytochemical evaluation of Calotropis procera Linn. and Calotropis gigantea Linn. Root. Journal of Applied Pharmaceutical Science, 5, 041-047.

Spampinato, C. & Leonardi, D. (2013). Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. BioMed Research International, 204-237.

Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Review, 67, 491-502.

Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257-268.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology Evolution, 28, 2732-2739.

Tan, D., Fu, L., Han, B., Sun, X., Zheng, P., & Zhang, J. (2015). Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of Banana Fusarium Wilt. Plos One, 10, doi:10.1371/journal.pone.0131974

Tanaka, M., Fukushima, T., Tsujiro, Y., & Fujimori, T. (1997). Nigrosporins A and B, new phytotoxic and antibacterial metabolites produced by a fungus Nigrospora oryzae. Bioscience Biotechnology and Biochemistry, 61, 1848-1852.

Verma, V. C., Kharmar, R. N., & Strobel, G. A. (2009). Chemical and functional diversity of natural products from plant associated endophytic fungi. Natural Product Communication, 4, 1511-1532.

Vijayarathna, S., Zakaria, Z., Chen, Y., Latha, L. Y., Kanwar, J. R., & Sasidharan, S. (2012). The antimicrobial efficacy of Elaeis guineensis: characterization, in vitro and in vivo studies. Molecules, 17, 4860-4877.



Download data is not yet available.