Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Total richness of vascular plant species in an Andean forest of the Central Cordillera, Colombia
Volumen 66 Número Regular Marzo 2018
PDF (Español (España))
HTML (Español (España))
XML (Español (España))
PDF (Español (España))
XML (Español (España))
PDF (Español (España))

Keywords

Floristic diversity
total count
growth habits
non-woody species
measuring ranges.
Diversidad florística
conteo total
hábitos de crecimiento
especies no leñosas
rangos de medición.

How to Cite

David-Higuita, H., & Alvarez-Dávila, E. (2018). Total richness of vascular plant species in an Andean forest of the Central Cordillera, Colombia. Revista De Biología Tropical, 66(1), 227–236. https://doi.org/10.15517/rbt.v66i1.27548

Abstract

Studies of plant diversity in tropical forests are usually restricted to trees or other groups of woody plants above a certain stem diameter. However, surveys that include all forms of live plants with no restrictions on their sizes, clearly indicate that non-woody plants are equally important. In this study, we reported the total species richness of vascular plants species (TSR) in one hectare plot in an Andean forest in Northwestern Colombia (6º 12' 48” N & 75º 29' 32” W). We evaluated the relative contribution of the different growth habits and the effect of the plant size, to TSR. We measured all individuals with diameter (D) ≥ 5 cm in the hectare and all the vascular plants of all sizes, including epiphytes, in a subsample of 0.25 ha. A total of 14 545 individuals distributed in 318 species, 72 families (considering Pteridophyta as one group) and 171 genera were registered. Most of the species showed a (D) < 10 cm (99.7%) and < 2.5 cm (94.4 %). The no-arboreal species (ground herbs, epiphytes and vines) represented 54.3 % of the total species reported in the plot, indicating that they are important in the structure, composition and species richness of this montane forest. Our results coincide with similar studies in other tropical forests. We concluded that to get a more detailed knowledge of the floristic diversity of a site, it is advisable to: 1) amplify the size range of the plants generally considered in the floristic inventories and 2) to include non-woody species. This information is crucial for making better decisions in local and global conservation efforts.

https://doi.org/10.15517/rbt.v66i1.27548
PDF (Español (España))
HTML (Español (España))
XML (Español (España))
PDF (Español (España))
XML (Español (España))
PDF (Español (España))

References

Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H., & Nielsen, I. (1998). Species count of vascular plants in one hectare of humid lowland forest in Amazonian Ecuador. In J. A. Comiskey & F. Dallmeier (Eds.), Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (pp. 585-594). Paris, France: The Parthenon Pub. Group.

Benavides, A. M., Vasco, A., Duque, A. J., & Duivenvoorden, J. F. (2011). Association of vascular epiphytes with landscape units and phorophytes in humid lowland forests of Colombian Amazonia. Journal of Tropical Ecology, 27, 223-237. http://doi.org/10.1017/S0266467410000726

Bordenave, B. G., Granville, J. De, & Hoffman, M. (1998). Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. In J. A. Comiskey & F. Dallmeier, (Eds.), Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (pp. 411-425). Paris, France: The Parthenon Pub. Group.

Chao, A., Colwell, R. K., Lin, C. W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125-1133.

Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://doi.org/10.1613/jair.301

Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C. X., Chazdon, R. L., & Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3-21. http://doi.org/10.1093/jpe/rtr044

David-Higuita, H., & Álvarez-Dávila, E. (2015). Representatividad a escala regional de un inventario florístico detallado de una hectárea en los andes tropicales. Colombia Forestal, 18(2), 207-224. http://doi.org/10.14483/udistrital.jour.colomb.for.2015.2.a03

Duivenvoorden, J. F. (1994). Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodiversity and Conservation, 3, 685-715. http://doi.org/10.1007/BF00126860

Galeano, G., Suárez, S., & Balslev, H. (1998). Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodiversity & Conservation, 7, 1563-1575. http://doi.org/10.1023/A:1008802624275

Gentry, A. H. (1995). Patterns of diversity and floristic composition in Neotropical montane forests. In Churchill, S. P., Balslev, H., Forero, E., & Luteyn, J. L. (Eds.). Proceedings of a symposium, New York Botanical Garden Biodiversity and Conservation of Neotropical Montane Forests (pp. 103-126). New York Botanical Garden.

Gentry, A. H., & Dodson, C. (1987). Contribution of nontrees to species richness of a tropical rain forest. Biotropica, 19(2), 149-156. http://doi.org/10.2307/2388737

Hammel, B. (1990) The distribution of diversity among families, genera, and habit types in the La Selva Flora. In A. H.Gentry (Ed.), Four neotropical rainforests (pp. 75-84). New Haven and London: Yale University Press.

Holdridge, L. R., & Grenke, W. C. (1971). Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study.

Holdridge, L. R., Grenke, W., Hatheway, W. H., Liang, T., Tosi, J. A. (1971). Forest Environments in Tropical Life Zones: A Pilot Study. Oxford: Pergamon Press.

Ibisch, P. L. (1996). Neotropische Epiphytendiversitat: das Beispiel Bolivien. Archiv naturwissenschaftlicher Dissertationen, 1, 1-357.

Jarvis, A., & Mulligan, M. (2011). The climate of cloud forests. Hydrological Processes, 25(3), 327-343.

Jentsch, A., & Beierkuhnlein, C. (2003). Global Climate Change and Local Disturbance Regimes as Interacting Drivers for Shifting Altitudinal Vegetation Patterns. Erdkunde, 216-231.

Kelly, D., Tanner, E., Lughadha, E., & Kapos, V. (1994). Floristics and biogeography of a rain forest in the Venezuelan Andes. Journal of Biogeography, 21(4), 421-440.

Kuper, W., Kreft, H., Nieder, J., Koster, N., & Barthlott, W. (2004). Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography, 31, 1477-1487.

Linares-Palomino, R., Cardona, V., Hennig, E. I., Hensen, I., Hoffmann, D., Lendzion, J., … Kessler, M. (2009). Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecology, 2001(1), 87-99. http://doi.org/10.1007/978-90-481-2795-5_8.

Londoño, A. C., & Álvarez, E. (1997). Composición florística de dos bosques (tierra firme y varzea) en la región de Araracuara, Amazonia colombiana. Caldasia, 19(3), 431-463.

Mora, C., Tittensor, D., Adl, S., Simpson, A., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biol, 9(8), e1001127. http://dx.doi.org/10.1371/journal.pbio.1001127

O'Brien, E. M., Field, R., & Whittaker, R. J. (2000). Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos, 588-600.

Oldeman, R. A. A. (1990). Forests: elements of silvology. Berlin: Springer-Verlag.

Perry, D. R., (1978). A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155-157.

Phillips, O. L., & Miller, J. . S. (2003). Global patterns of plant diversity. In H. Alwyn (Ed.), Gentry’s Forest Transect Data Set. USA: Economic Botany.

Phillips, O. L., Vásquez-Martínez, R., Núñez-Vargas, P., Monteagudo, A. L., Chuspe-Zans, M., Galiano-Sánchez, W., … Rose, S. (2003). Efficient plot-based floristic assessment of tropical forests. Journal of Tropical Ecology, 19(6), 629-645. http://doi.org/10.1017/S0266467403006035

Prance, G. T., Beentje, H., Dransfield, J., & Johns, R. (2000). The tropical flora remains undercollected. Annals of the Missouri Botanical Garden, 87, 67-71.

Qian, H., & Song, J. (2013). Latitudinal gradients of associations between beta and gamma diversity of trees in forest communities in the New World. Journal of Plant Ecology, 6(1), 12-18.

Scheiner, S. M. (2003). Six types of species‐area curves. Global ecology and biogeography, 12(6), 441-447. http://doi.org/10.1093/jpe/rts040

ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., … Ree, R. H. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156), 1243092. http://doi.org/10.1126/science.1243092

Whitmore, T. C., Peralta, R., & Brown, K. (1985). Total species count in a Costa Rican tropical rain forest. Journal of Tropical Ecology, 1(4), 375-378. http://doi.org/10.1017/S0266467400000481

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.