de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Cellulolytic and lipolytic fungi isolated from soil and leaf litter samples from the Cerrado (Brazilian Savanna)

Mayara de Melo, Ana Carolina V. Araujo, Marianne A. N. Chogi, Iolanda C. S. Duarte



The Brazilian savanna, known as the Cerrado, is a biome with a high degree of endemism, with the potential to house many microorganisms suitable for biotechnological exploitation, especially fungi. The Cerrado soil, which is usually acidic, is a favorable environment for the growth of fungi capable of degrading lignocellulosic materials. The aim of the present study was to isolate cellulolytic filamentous fungi native to the Cerrado. Samples of soil and leaf litter were collected in three points of Cerrado State Park, located in the South of Brazil, during the rainy season in September 2014. Samples were stored in sterile plastic bags, transported at room temperature and kept at 4 ºC for three days. Filamentous fungi were isolated by successive inoculations in PDA (maintained at 30 ºC). Cellulase activity was tested in CMC (carboxymethyl cellulose) medium and lipase activity was assessed in medium containing phenol red and tween 20 (incubated at 37 °C), and in medium supplemented with Rhodamine B (kept at 30 °C). We isolated a total of 28 strains, 25 produced cellulase, detected with lugol in strains grown in CMC medium (carboxymethylcellulose). The isolates were identified morphologically (color, form of growth) and by sequencing of the 18S rRNA region, with both techniques producing congruent results. One strain of Colletotrichum boninense and one strain of Trichoderma sp., both isolated from soil samples, presented the highest cellulolytic activity. All strains exhibited lipolytic activity, with enzyme production and activity influenced by temperature. The present study revealed new strains of known filamentous fungi that can be applied in biomass degradation. These strains are suitable for optimization of culture conditions, which could lead to the economic feasibility of the process. 


cellulose, lipase, filamentous fungi, lignocellulosic materials, Brazilian savanna.


Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728.

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion Management, 52, 858-875.

Baldrian P., Voříšková J., Dobiášová P., Merhautová V., Lisá, L., & Valášková, V. (2011). Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil, 338, 111-125.

Barbosa, R. N., Bezerra, J. D. P., Costa, P. M. O., Lima-Júnior, N. C., Galvão, I. R. G. A. S., Santos-Júnior, A. A., Fernandes, M. J., Souza-Motta, C. M., & Oliveira, N. T. (2016). Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation. Revista de Biología Tropical, 64(1), 45-53.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. (2013).GenBank. Nucleic Acids Research, 41(Database issue), D36-42.

Bentubo, H. D. L., & Gompertz, O. F. (2014). Effects of temperature and incubation time on the in vitro expression of proteases, phospholipases, lipases and DNases by different species of Trichosporon. Springer Plus, 3, 377.

Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355-383.

Blackwell, M. (2011). The Fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany, 98, 426-438.

Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Métodos de análise química e física de solos do Instituto Agronômico de Campinas (Boletim técnico, 106). Ed. Campinas: IAC, 46-49.

Castro, A. P., Quirino, B. F., Papas, G. Jr., Kurokawa, A. S., Leonardecz, E., & Krüger, R. H. (2008). Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Archives of Microbiology, 190, 129-139.

Castro, A. P., Silva, M. R. S. S., Quirino, B. F., Bustamante, M. M. C., & Krüger, R. H. (2016). Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils. PLoSONE, 11(2), e0148785.

Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World Journal Microbiology Biotechnology, 22, 881-885.

Damaso, M. C. T., Terzi, S. C., Farias, A. X., Oliveira, A. C. P., Fraga, M. E., & Couri, S. (2012). Selection of Cellulolytic Fungi Isolated from Diverse Substrates. Brazilian Archives of Biology and Technology, 55, 513-520.

Frankland, J. C. (1998). Fungal succession - unravelling the unpredictable. Mycology Research, 102, 1-15.

Hankin, L. & Anagnostakis, S. L. (1975). The use of solid media for the detection of enzyme production by fungi. Mycologia, 6, 7597-607.

Hasan, F., Shah, A. A., & Hameed, A. (2006) Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235-251.

Hodásová, L., Jablonský, M., Škulcová, A., & Ház, A. (2015) Lignin, potential products and their market value. Wood Research, 60(6), 73-986.

Karlsson, S., Holmbom, B., Spetz, P., Mustranta, A., & Buchert, J. (2001). Reactivity of Trametes laccases with fatty and resin acids. Applied Microbiology and Biotechnology, 55, 317- 320.

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57, 503-507.

Kathiresan, K. (2001) Polythene and Plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51(3), 629- 634.

Klemm D., Heublein B., Fink H., & Bohn A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewante Chemie International Edition English, 44(22), 358-93.

Korkama-Rajala, T., Mueller, M. M., & Pennanen, T. (2008). Decomposition and fungi of needle litter from slow and fast-growing Norway spruce (Piceaabies) clones. Microbial Ecology, 56, 76-89.

Kouker, G., & Jaeger, K. E. (1987). Specific and sensitive plate assay for bacterial lipases. Applied Environmental Microbiology, 53, 211-213.

Lange, L., Bech, L., Busk, P. K., Grell, M. N., Huang, Y., Lange, M., Linde, T., (…), & Tong, X. (2012). The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus, 3, 87-92.

Larrondo, L. F., Salas, L., Melo, F., Vicuña, R., & Cullen, D. (2003) A Novel Extracellular Multicopper Oxidase from Phanerochaete chrysosporium with Ferroxidase Activity. Applied Environmental Microbiology, 69, 6257-6263.

Linsingen, L., Sonehara, J. S., Uhlmann, A., & Cervi, A. (2006) Composição florística do Parque Estadual do Cerrado de Jaguariaíva, Paraná, Brasil. Acta Biológica Paranaense, 35,197-232.

Lopes, M. B., Soden, A., Martens, A., Henschke, P. A., & Landridge, P. (1998). Differentiation and species identification of yeasts using PCR. International Journal of Systematic Bacteriology, 48, 79-286.

Maccheroni Jr., W., Araújo, W. L, & Azevedo, J. L. (2004) Ambient pH-regulated enzyme secretion endophytic and pathogenic isolate of the fungal genus Colletotrichum. Scentia Agricola, 61, 298-302.

Maia, L. C., Carvalho Jr, A. A., Cavalcanti, L. H., Gugliotta, A. M., Drechsler-Santos, E. R., Santiago, A. L. M. A., Cáceres, M. E., (...) & da Silva, V. F. (2015). Diversity of Brazilian Fungi. Rodriguésia, 66, 1033-1045.

Mandeel, Q. A., Al-Laith, A. A., & Mohamed, S. A. (2005) Cultivation of oyster muhsrooms (Pleurotus sp.) on various lignocellulosic wastes. World Journal Microbiology Biotechnology, 21, 601-607.

Martínez A. T., Speranza M., Ruiz-Dueñas F. J., Ferreira P., Camarero S., Guillén F., Martínez, M. J., Gutiérrez, A., & del Río, J. C. (2005). Biodegradation of lignocellulosics: microbial, chemical and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195-204.

Naz, S., & Jadhav, S. K. (2015). Studies of the estimation of lipase production capability of some fungal species and their application in oil spillage degradation. International Journal of Science and Research (IJSR), 4, 2154-2159.

Nogueira-Melo, G. S., Santos, P. J. P., & Gibertoni, T. B. (2014). The community structure of macroscopic basidiomycetes (Fungi) in Brazilian mangroves influenced by temporal and spatial variations. Revista de Biología Tropical, 62(4), 1587-1595.

Oliveira, J. M. P. F., & Graaff, L. H. (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Applied Microbiology Biotechnology, 89, 225-237.

Oliveira-Filho, A. T., & Ratter, J. A. (2002).Vegetation physiognomies and woody flora of the Cerrado biome. In P. S. Oliveira & R. J. Marquis (Eds.), The Cerrados of Brazil (pp. 91-120). New York: Columbia University Press.

Parkinson D., Gray T. R. G., & Williams, S. T. (1971). Methods for studying the ecology of soil microorganisms. Oxford: Blackwell Scientific Publications.

Porras-Alfaro, A., Herrera, J., Natvig, D. O., Lipinski, K., & Sinsabaugh, R. L. (2011). Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia, 103(1), 10-21.

Pozdnyakova, N. N. (2012). Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons. Biotechnology Research International, 2012, 243.

Silva, G. A., Bernardi, T. L., Schaker, P. D. C., Menegotto, M., & Valente, P. (2012) Rapid Yeast DNA Extraction by Boiling and Freeze-Thawing without using chemical reagents and DNA Purification. Brazilian Archives of Biology and Technology, 55(2), 319-327.

Singh, R., Gupta, N., Goswami, V. K., & Gupta, R. (2006). A simple activity staining protocol for lipases and esterases. Applied Microbiology and Biotechnology, 70, 679-682.

Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Genetics, 9, 433-443.

Trancoso, R., Sano, E. E., & Meneses, P. R. (2015). The spectral changes of deforestation in the Brazilian tropical savanna. Environmental Monitoring and Assessment, 187, 41-45.

Valencia, E. Y., & Chambergo, F. S. (2013). Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genetics Biology, 60, 9-18.

Vieira, M. L. A., Johann, S., Hughes, F. M., Rosa, C. A., & Rosa, L. H. (2014). The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharistrimera (Asteraceae) from the Brazilian savanna. Canadian Journal of Microbiology, 60, 847-856.

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme Research, doi: 10.1155/2014/163242

Vorísková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME Journal, 7, 477-486.

Zhang, X. F., Zhao, L., Xu S. J. Jr., Liu, Y. Z., Liu, H. Y., & Cheng G. D. (2012) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 114, 1054-65.


  • There are currently no refbacks.

© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: