Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Methanolic extract of Rhinella schneideri (cururú toad) poison crude cause ultrastructural changes in nerve terminals of mouse phrenic nerve-diaphragm preparations
PDF
HTML

Supplementary Files

Cover letter

Keywords

ACh receptors
neuromuscular junction
neurotransmitter release
presynaptic action
synaptic vesicles.
Receptores ACh
unión neuromuscular
liberación de neurotransmisores
acción presináptica
vesículas sinápticas.

How to Cite

Rostelato-Ferreira, S., Rocha, T., Dal Belo, C. A., Rodrigues-Simioni, L., Ownby, C. L., & Cruz-Hofling, M. A. (2018). Methanolic extract of Rhinella schneideri (cururú toad) poison crude cause ultrastructural changes in nerve terminals of mouse phrenic nerve-diaphragm preparations. Revista De Biología Tropical, 66(3), 1290–1297. https://doi.org/10.15517/rbt.v66i3.30362

Abstract

Rhinella schneideri (or Bufo paracnemis), popularly known in Brazil as cururu toad, is also found in other countries in South America. The cardiovascular effects of this poison are largely known and recently was shown that it is capable to affect the neuromuscular junction on avian and mice isolated preparation. In this work, we used transmission electron microscopy to investigate the ultrastructure of the motor nerve terminal and postsynaptic junctional folds of phrenic nerve-hemidiaphragm preparations incubated for either 5 or 60 min with the methanolic extract of R. schneideri (50 µg/mL). In addition, the status of the acetylcholine receptors (AChR) was examined by TRITC-α-bungarotoxin immunofluorescence location at the endplate membrane. The results show that 5 min of incubation with the gland secretion extract significantly decreased (32 %) the number of synaptic vesicles into the motor nerve terminal, but did not decrease the electron density on the top of the junctional folds where nicotinic receptors are concentrated; however, 60 min of incubation led to significant nerve terminal reloading in synaptic vesicles whereas the AChR immunoreactivity was not as marked as in control and after 5 min incubation. Muscle fibers were well-preserved but intramuscular motor axons were not.  The findings corroborated pharmacological data since the decrease in the number of synaptic vesicles (5 min) followed by recovery (60 min) is in accordance with the transient increase of MEPPs frequency meaning increased neurotransmitter release. These data support the predominant presynaptic mode of action of the R. schneideri, but do not exclude the possibility of a secondary postsynaptic action depending on the time the preparation is exposed to poison.

https://doi.org/10.15517/rbt.v66i3.30362
PDF
HTML

References

Anjolette, F. A., Leite, F. P., Bordon, K. C., Azzolini, A. E, Pereira, J. C., Pereira-Crott, L. S., & Arantes, E. C. (2015). Biological characterization of compounds from Rhinella scheneideri poison that act on the complement system. Journal of Venomous Animals and Toxins, 13, 21-25. doi: 10.1186/s40409-015-0024-9

Aquino, L., Reicle, S., Guarino, C., Scott, N., Lavilla, E., & Langone, J. (2004). Rhinella schneideri. The IUCN Red List of Threatened species 2004: e.T54755A11200129. Retrieved from http://www.iucnredlist.org/details/54755/0

Balezina, O. P., & Lapteva, V. I. (2007). Digoxin facilitates neuromuscular transmission in mouse diaphragm. Bulletin of Experimental Biology and Medicine, 144, 487-490.

Brazil, V., & Vellard, J. A. (1926). Contribuição aos estudos de batrachios. Memórias do Instituto Oswaldo Cruz, 3, 7-70.

Brownlee, A. A., Johnson, P., & Mills, I. H. (1990). Actions of bufalin and cinobufalin, two bufadienolides respectively more active and less active than ouabain, on ouabain binding and 86Rb uptake by human erythrocytes. Clinical Science, 78, 169-174.

Bülbring, E. (1946). Observations on the isolated phrenic-nerve diaphragm preparation of the rat. British Journal of Pharmacology, 1, 38-61.

Chen, K. K., & Kovarikova, A. (1967). Pharmacology and toxicology of toad venom. Journal of Pharmacology and Experimental Therapeutics, 56, 1535-1541.

Clarke, B. T. (1997). The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological Reviews of the Cambridge Philosophical Society, 72, 365-79.

Cruz-Höfling, M. A., & Rodrigues-Simioni, L. (1998). In vitro studies of the ultrastructural changes induced by guanidine in the nerves, muscle fibers and neuromuscular junction of the mouse diaphragm. General Pharmacology, 30, 705-711.

Cunha-Filho, G. A., Resck, I. S., Cavalcanti, B. C., Pessoa, C. O., Moraes, M. O., Ferreira, J. R., ... Dos Santos, M. L. (2010). Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella scneideri parotoid gland secretion. Toxicon, 3, 339-348. doi: 10.1016/j.toxicon.2010.03.021

Ferreira, P. M., Lima, D. J., Debiasi, B. W., Soares, B. M., Machado Kda, C., Noronha Jda C., & Vieira, G. M. Jr. (2013). Antiproliferative activity of Rhinella marina and Rhaebo guttatus venom extracts from Southern Amazon. Toxicon, 72, 43-51. doi: 10.1016/j.toxicon.2013.06.009

Gao, H., Zehl, M., Leitner, A., Wu, X., Wang, Z., & Kopp, B. (2010). Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. Journal of Ethnopharmacology, 131, 368-376. doi: 10.1016/j.jep.2010.07.017

Haimann, C., Torri-Tarelli, F., Fesce, R., & Cascarelli, B. (1985). Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles. The Journal of Cell Biology, 101, 1953-1965.

Lundh, H., Schiller, H. H., & Elmqvist, D. D. (1977). Correlation between single fibre EMG jitter and endplate potentials studied in mild experimental botulinum poisoning. Acta Neurologica Scandinavica, 56, 141-152.

Monti, R., & Cardello, L. (1994). Bioquímica do veneno de anfíbios. In B. Barraviera (Ed.) Venenos animais: uma visão integrada (pp. 225-232). EPUC: Rio de Janeiro, Brazil.

Rocha, T., Leonardo, M. B., De Souza, B. M., Palma, M. S., & Da Cruz-Höfling, M. A. (2008). Mastoparan effects in skeletal muscle damage: An ultrastructural view until now concealed. Microscopy Research and Technique, 71(3), 220-229.

Rocha, T., Souza, B. M., Palma, M.S., da Cruz-Höfling, M. A., & Harris, J. B. (2009). The neurotoxicological effects of mastoparan Polybia-MPII at the murine neuromuscular junction: an ultrastructural and immunocytochemical study. Histochemistry and Cell Biology, 132, 395-404. doi: 10.1007/s00418-009-0607-z

Rodrigues-Simioni, L., Silva-Carvalho, I., Heluany, N.F., Leite, G. B, Prado-Franceschi, J., Cruz-Höfling, M. A., ... Corrado, A. P. (1997). Novel effects of guanidine on the neuromuscular junction. General Pharmacology, 28, 599-605.

Rostelato-Ferreira, S., Dal Belo, C. A., Cruz-Höfling, M. A., Hyslop, S., & Rodrigues-Simioni, L. (2011). Presynaptic effect of a methanolic extract of toad (Rhinella schneideri) poison in avian neuromuscular preparation. Journal of Venom Research, 2, 32-36.

Rostelato-Ferreira, S., Dal Belo, C. A., Leite, G. B., Hyslop, S., & Rodrigues-Simioni, L. (2014). Presynaptic neuromuscular action of a methanolic extract from the venom of Rhinella schneideri toad. Journal of Venomous Animals and Toxins including Tropical Diseases, 20, 30. doi: 10.1186/1678-9199-20-30

Sakate, M., & Oliveira, P. C. L. (2000). Toad envenoming in dogs: effects and treatment. Journal of Venomous Animals and Toxins, 6, 52-62.

Schmeda-Hirschmann, G., Quispe, C., Theoduloz, C., de Sousa, P. T. Jr., & Parizotto, C. (2014). Antiproliferative activity and new argininyl bufadienolide esters from the “cururú” toad Rhinella (Bufo) schneideri. Journal of Ethnopharmacology, 155, 1076-1085. doi: 10.1016/j.jep.2014.06.025

Schmeda-Hirschmann, G., Quispe, C., Arana, G.V., Theoduloz, C., Urra, F. A., Cárdenas, C. (2016). Antiproliferative activity and chemical composition of the venom from the Amazonian toad Rhinella marina (Anura: Bufonidae). Toxicon, 121, 119-129. doi: 10.1016/j.toxicon.2016.09.004

Werner, F. (1894). Herpetologische Nova. Zoologischer Anzeiger, 17, 410-415.

Zelnik, R. (1965). A natureza química do veneno de sapo. Ciencia E Cultura, 17, 10-14.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.