Abstract

Most studies on seed dispersal in time have focused on seed dormancy and the physiological triggers for germination. However, seed dispersed by animals with low metabolic and moving rates, and long gutpassage times such as terrestrial turtles, could be considered another type of dispersal in time. This study tests the hypothesis that seeds dispersed in time may lower predation rates. We predicted that seeds deposited below parent trees after fruiting fall has finished is advantageous to minimize seed predators and should show higher survival rates. Four Amazonian plant species, Dicranostyles ampla, Oenocarpus bataua, Guatteria atabapensis and Ocotea floribunda, were tested for seed survival probabilities in two periods: during fruiting and 10-21 days after fruiting. Experiments were carried out in two biological stations located in the Colombian Amazon (Caparú and Zafire Biological Stations). Seed predation was high and mainly caused by non-vertebrates. Out of the four plant species tested, only Guatteria atabapensis supported the time escape hypothesis. For this species, seed predation by vertebrates after the fruiting period increased (from 4.1% to 9.2%) while seed predation by nonvertebrates decreased (from 54.0% to 40.2%). in contrast, seed predation by vertebrates and by non-vertebrates after the fruiting period in D. ampla increased (from 7.9% to 22.8% and from 40.4% to 50.6%, respectively), suggesting predator satiation. Results suggest that for some species dispersal in time could be advantageous to avoid some type of seed predators. Escape in time could be an additional dimension in which seeds may reach adequate sites for recruitment. Thus, future studies should be address to better understand the survival advantages given by an endozoochory time-dispersal process.