Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Regional precipitation estimations in Central America using the Weather Research and Forecast model
PDF
HTML

Keywords

dynamical downscaling
regional models
reanalysis
cumulus parameterization schemes
Central America

How to Cite

Maldonado, T., Alfaro, E. J., Amador, J. A., & Rutgersson, A. (2018). Regional precipitation estimations in Central America using the Weather Research and Forecast model. Revista De Biología Tropical, 66(S1), S231–S254. https://doi.org/10.15517/rbt.v66i1.33303

Abstract

Abstract: Using the regional climate model WRF, and the NCEP-NCAR Reanalysis Project data as boundary and initial conditions, regional precipitation for Central America was estimated by means of the dynamical downscaling technique for two selected periods: January 2000 and September 2007. Four-nested domains, d01, d02, d03 and d04 with a grid-resolution of 90 km, 30 km, 10 km, and 3.3 km respectively, were configured over this region. The runs were reinitialized every 5 days with 6 h of spin-up time for adjustment of the model. A total of eight experiments (four per month) were tested in order to study: a) two important Cumulus Parameterization Schemes (CPS): Kain-Fritsch (KF) and Grell-Devenyi (GD); and b) the physical interaction between nested domains (one- and two-way nesting), during each simulated month. The modeled precipitation was in agreement with observations for January 2000, and also captured the mean climate features of rainfall concerning magnitude, and spatial distribution, such as the particular precipitation contrast between the Pacific and the Caribbean coast. Outputs of the coarse domains (d01, d02, and d03) for September 2007 revealed differences between experiments within the domains when a visual comparison of the spatial distribution was made. However, for the inner grid (d04), all the experiments, showed a similar spatial distribution and magnitude estimation, mainly in those runs using one-way nesting configuration. The results for the month of September differed substantially with the observations, which could be related to associated deficiencies in the boundary condition that do not reproduce well the transition periods from warm to cold ENSO episodes for the selected periods of study. In all the experiments, the KF scheme calculated more precipitation than the GD scheme and it was associated to the ability of the GD scheme to reproduce spotty but intense rainfall, and apparently, this scheme was reluctant to activate, showing frequent events of low intensity rain. However, when rainfall did develop, it was very intense. Also, the time series did not replicate specific precipitation events. Thus, the 5-days integration period used in this study was not enough to reproduce short-period precipitation events. Finally, physical interaction issues between the nested domains were reflected in discontinuities in the precipitation field, which have been associated with mass field adjustment in the CPS. Rev. Biol. Trop. 66(Suppl. 1): S231-S254. Epub 2018 April 01.

 
https://doi.org/10.15517/rbt.v66i1.33303
PDF
HTML

References

Alfaro, E. J. (2000). Eventos cálidos y fríos en el Atlántico Tropical Norte. Atmósfera, 13(2), 109-119. Retrieved from http://www.kerwa.ucr.ac.cr/handle/10669/15224

Alfaro, E. J. (2002). Some Characteristics of the Annual Precipitation Cycle in Central America and their Relationships with its Surrounding Tropical Oceans. Tópicos Meteorológicos y Oceanográficos, 9, 1–13.

Alfaro, E. J. (2007). Uso del análisis de correlación canónica para la predicción de la precipitación pluvial en Centroamérica. Ingeniería y Competitividad, 9(2), 33-48. Retrieved from http://bibliotecadigital.univalle.edu.co/xmlui/handle/10893/1622

Alfaro, E. J., Quesada, A., Solano-Chaves, F. J., Alfaro-Martínez, E. J., Quesada-Román, A., & Solano-Chaves, F. J. (2010). Análisis del Impacto en Costa Rica de los Ciclones Tropicales Ocurridos en el Mar Caribe desde 1968 al 2007. Diálogos Revista Electrónica, 11(2), 22-38. Retrieved from http://revistas.ucr.ac.cr/index.php/dialogos/article/view/578

Amador, J. A. (2008). The Intra-Americas Sea Low-level Jet Overview and Future Research. Annals of the New York Academy of Sciences, 1146(1), 153-188. https://doi.org/10.1196/annals.1446.012

Amador, J. A., & Alfaro, E. J. (2009). Métodos de reducción de escala: aplicaciones al tiempo, clima, variabilidad climática y cambio climático. Revista Iberoamericana de Economía Ecológica, 11, 39-52. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=3190247

Amador, J. A., Alfaro, E. J., Lizano, O. G., & Magaña, V. O. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 101-142. https://doi.org/10.1016/j.pocean.2006.03.007

Amador, J. A., Rivera, E. R., Durán-Quesada, A. M., Mora, G., Sáenz, F., Calderón, B., & Mora, N. (2016). The easternmost tropical Pacific. Part I: A climate review. Revista de Biología Tropical, 64(1), S1-S22. https://doi.org/10.15517/rbt.v64i1.23407

Arakawa, A. (2004). The Cumulus Parameterization Problem: Past, Present, and Future. Journal of Climate, 17(13), 2493-2525. https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2

Bukovsky, M. S., & Karoly, D. J. (2009). Precipitation Simulations Using WRF as a Nested Regional Climate Model. Journal of Applied Meteorology and Climatology, 48(10), 2152-2159. https://doi.org/10.1175/2009JAMC2186.1

Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

Dudhia, J., Hong, S. Y., & Lim, K. S. (2008). A New Method for Representing Mixed-phase Particle Fall Speeds in Bulk Microphysics Parameterizations. Journal of the Meteorological Society of Japan. Ser. II, 86A, 33-44. Retrieved from https://www.jstage.jst.go.jp/article/jmsj/86A/0/86A_0_33/_pdf

Enfield, D.B. (1996). Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys. Res. Lett., 23, 3505–3508.

Enfield, D. B., & Alfaro, E. J. (1999). The Dependence of Caribbean Rainfall on the Interaction of the Tropical Atlantic and Pacific Oceans. Journal of Climate, 12(7), 2093-2103. https://doi.org/10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2

Enfield, D. B., Lee, S. K., & Wang, C. (2006). How are large western hemisphere warm pools formed? Progress in Oceanography, 70(2), 346-365. https://doi.org/10.1016/j.pocean.2005.07.006

Fiedler, P. C., & Lavín, M. F. (2006). Introduction: A review of eastern tropical Pacific oceanography. Progress in Oceanography, 69(2-4), 94-100. https://doi.org/10.1016/j.pocean.2006.03.006

Giannini, A., Kushnir, Y., & Cane, M. A. (2000). Interannual Variability of Caribbean Rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311, https://doi.org/10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2

Gochis, D. J., Shuttleworth, W. J., & Yang, Z. L. (2002). Sensitivity of the Modeled North American Monsoon Regional Climate to Convective Parameterization. Monthly Weather Review, 130(5), 1282-1298. https://doi.org/10.1175/1520-0493(2002)130<1282:SOTMNA>2.0.CO;2

Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-1-38-4. https://doi.org/10.1029/2002GL015311

Hastenrath, S. (1967). Rainfall distribution and regime in Central America. Arch. Meteor. Geophys. Biokl. Ser B, 15, 201-241.

Hernandez, J. L., Srikishen, J., Erickson III, D. J., Oglesby, R., Irwin, D., Erickson, D. J., … Irwin, D. (2006). A regional climate study of Central America using the MM5 modeling system: results and comparison to observations. International Journal of Climatology, 26(15), 2161-2179. https://doi.org/10.1002/joc.1361

Hidalgo, H. G., Durán-Quesada, A. M., Amador, J. A., & Alfaro, E. J. (2015). The Caribbean Low-Level Jet, the Inter-Tropical Convergence Zone and Precipitation Patterns in the Intra-Americas Sea: A Proposed Dynamical Mechanism. Geografiska Annaler: Series A, Physical Geography, 97(1), 41-59. https://doi.org/10.1111/geoa.12085

Hong, S. Y., & Pan, H. L. (1996). Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124(10), 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2

Instituto Meteorológico Nacional. (2004). Boletín Meteorológico Mensual - Enero 2000. San José, Costa Rica: Instituto Meteorológico Nacional.

Instituto Meteorológico Nacional. (2007). Boletín Meteorológico Mensual - Septiembre 2007. San José, Costa Rica: Instituto Meteorológico Nacional.

Janowiak, J. E., Gruber, A., Kondragunta, C. R., Livezey, R. E., & Huffman, G. J. (1998). A Comparison of the NCEP-NCAR Reanalysis Precipitation and the GPCP Rain Gauge-Satellite Combined Dataset with Observational Error Considerations. Journal of Climate, 11(11), 2960-2979. https://doi.org/10.1175/1520-0442(1998)011<2960:ACOTNN>2.0.CO;2

Kain, J. S., & Fritsch, J. M. (1990). A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784-2802.

Kain, J. S., & Fritsch, J. M. (1992) The role of the convective ”trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49, 93-106.

Kain, J. S. (2004). The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., … Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-471.

Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., … Fiorino, M. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247-267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

Lawrimore, J. H., Menne, M. J., Gleason, K. L., Easterling, D. R., Heim, R. R., Halpert, M. S., … Alexander, L. (2001). Climate Assessment for 2000. Bulletin of the American Meteorological Society, 82(6), 1304-1304. https://doi.org/10.1175/1520-0477(2001)082<1304:CAF>2.3.CO;2

Lee, S. K., Enfield, D. B., & Wang, C. (2007). What Drives the Seasonal Onset and Decay of the Western Hemisphere Warm Pool? Journal of Climate, 20(10), 2133-2146. https://doi.org/10.1175/JCLI4113.1

Levinson, D. H., & Lawrimore, J. H. (2008). State of the Climate in 2007. Bulletin of the American Meteorological Society, 89(7), S1-S179. https://doi.org/10.1175/BAMS-89-7-StateoftheClimate

Louis, J. F., (1979). A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187-202.

Magaña, V., Amador, J. A., & Medina, S. (1999). The midsummer drought over Mexico and Central America. Journal of Climate, 12(6), 1577-1588. https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2

Maldonado, T., & Alfaro, E. J. (2010). Propuesta metodológica para la predicción climática estacional de eventos extremos y días con precipitación. Estudio de caso: Sur de América Central. InterSedes, 11(21), 182-214. Retrieved from http://www.intersedes.ucr.ac.cr/ojs/index.php/intersedes/article/view/269

Maldonado, T., & Alfaro, E. J. (2011). Predicción estacional para ASO de eventos extremos y días con precipitación sobre las vertientes Pacífico y Caribe de América Central, utilizando análisis de correlación canónica. InterSedes, 12(24), 78-108. Retrieved from http://www.intersedes.ucr.ac.cr/ojs/index.php/intersedes/article/view/301

Maldonado, T., Alfaro, E. J., Fallas-López, B., & Alvarado, L. (2013). Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using Canonical Correlation Analysis. Advances in Geosciences, 33, 41-52. https://doi.org/10.5194/adgeo-33-41-2013

Maldonado, T., Alfaro, E. J., Maldonado-Mora, T. J., & Alfaro-Martínez, E. J. (2010). Comparación de las salidas del modelo MM5v3 con datos observados en la Isla del Coco, Costa Rica. Revista Tecnología en Marcha, 23(4), 3-28. Retrieved from http://revistas.tec.ac.cr/index.php/tec_marcha/article/view/47

Mapes, B. E., Warner, T. T., Xu, M., & Negri, A. J. (2003). Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review, 131(5), 799-812. https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2

Mapes, B. E., Warner, T. T., Xu, M., & Gochis, D. J. (2004). Comparison of Cumulus Parameterizations and Entrainment Using Domain-Mean Wind Divergence in a Regional Model. Journal of the Atmospheric Sciences, 61(11), 1284-1295. https://doi.org/10.1175/1520-0469(2004)061<1284:COCPAE>2.0.CO;2

Mass, C. F., Ovens, D., Westrick, K., & Colle, B. A. (2002). Does Increasing Horizontal Resolution Produce More Skillful Forecasts? Bulletin of the American Meteorological Society, 83(3), 407-430. https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2

Molinari, J., & Dudek, M. (1992). Parameterization of Convective Precipitation in Mesoscale Numerical Models: A Critical Review. Monthly Weather Review, 120(2), 326-344. https://doi.org/10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2

Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116, 2417-2424.

Oglesby, R., Rowe, C., Grunwaldt, A., Ferreira, I., Ruiz, F., Campbell, J., … Perez, J. (2016). A High-Resolution Modeling Strategy to Assess Impacts of Climate Change for Mesoamerica and the Caribbean. American Journal of Climate Change, 5(2), 202-228. https://doi.org/10.4236/ajcc.2016.52019

Pan, H. L., & Wu, W. S. (1994). Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. Oregon, USA: American Meteorological Society.

Peña, M., & Douglas, M. W. (2002). Characteristics of Wet and Dry Spells over the Pacific Side of Central America during the Rainy Season. Mon. Wea. Rev., 130, 3054–3073, https://doi.org/10.1175/1520-0493(2002)130<3054:COWADS>2.0.CO;2

Pierce, D. W., Barnett, T. P., Santer, B. D., & Gleckler, P. J. (2009). Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences, 106(21), 8441-8446. https://doi.org/10.1073/pnas.0900094106

Pleim, J. E., & Xiu, A. (1995). Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models. Journal of Applied Meteorology, 34(1), 16-32. https://doi.org/10.1175/1520-0450-34.1.16

Poveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675-1678. https://doi.org/10.1029/1999GL006091

Qian, J. H., Seth, A., & Zebiak, S. (2003). Reinitialized versus Continuous Simulations for Regional Climate Downscaling. Monthly Weather Review, 131(11), 2857-2874. https://doi.org/10.1175/1520-0493(2003)131<2857:RVCSFR>2.0.CO;2

Quesada-Montano, B. (2011). Historical Daily Precipitation Patterns for Central America Generated Using Constructed Analogues from Satellite and Ground-Based Observations. Uppsala, Sweden: Uppsala, University.

Quirós-Badilla, E., & Hidalgo-León, H. G. (2016). Variabilidad y conexiones climáticas de la zona de convergencia intertropical del Pacífico este. Topicos Meteorologicos y Oceanograficos, 15(1), 21-36.

Rivera, E. R., & Amador, J. A. (2009). Predicción estacional del clima en Centroamérica mediante la reducción de escala dinámica. Parte II: aplicación del modelo MM5V3. Revista de Matemática: Teoría y Aplicaciones, 16(1), 76-104. Retrieved from http://revista.emate.ucr.ac.cr/index.php/revista/article/view/198/

Schultz, D. M., Bracken, W. E., & Bosart, L. F. (1998). Planetary- and Synoptic-Scale Signatures Associated with Central American Cold Surges. Monthly Weather Review, 126(1), 5-27. https://doi.org/10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2

Schultz, D. M., Bracken, W. E., Bosart, L. F., Hakim, G. J., Bedrick, M. A., Dickinson, M. J., & Tyle, K. R. (1997). The 1993 Superstorm Cold Surge: Frontal Structure, Gap Flow, and Tropical Impact. Monthly Weather Review, 125(1), 5-39. https://doi.org/10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., … Power, J. G. (2008). A Description of the Advanced Research WRF Version 3. Colorado, USA: Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research.

Srinivasan, J., & Smith, G. L. (1996). Meridional Migration of Tropical Convergence Zones. Journal of Applied Meteorology, 35(8), 1189-1202. https://doi.org/10.1175/1520-0450(1996)035<1189:MMOTCZ>2.0.CO;2

Stensrud, D. J., Gall, R. L., Mullen, S. L., & Howard, K. W. (1995). Model Climatology of the Mexican Monsoon. Journal of Climate, 8(7), 1775-1794. https://doi.org/10.1175/1520-0442(1995)008<1775:MCOTMM>2.0.CO;2

Taylor, M. A. M. A., & Alfaro, E. J. (2005). Central America and the Caribbean, Climate of. In J. E. Oliver (Ed.). Encyclopedia of World Climatology (pp. 183-189). Netherlands: Springer. Retrieved from http://dx.doi.org/10.1007/1-4020-3266-8_37

Trenberth, K. E. (2010). Climate System Modeling. New York, USA: Cambridge University Press. Retrieved from http://books.google.se/books?id=EDClFW7JWrQC

Wang, C. (2007). Variability of the Caribbean Low-Level Jet and its relations to climate. Clim Dyn, 29, 411. https://doi.org/10.1007/s00382-007-0243-z

Wang, C., & Enfield, D. B. (2001). The Tropical Western Hemisphere Warm Pool. Geophysical Research Letters, 28(8), 1635-1638. https://doi.org/10.1029/2000GL011763

Wang, C., & Enfield, D. B. (2003). A Further Study of the Tropical Western Hemisphere Warm Pool. Journal of Climate, 16(10), 1476-1493. https://doi.org/10.1175/1520-0442(2003)016<1476:AFSOTT>2.0.CO;2

Wang, C., Lee, S.-K., & Enfield, D. B. (2008). Climate Response to Anomalously Large and Small Atlantic Warm Pools during the Summer. Journal of Climate, 21(11), 2437-2450. https://doi.org/10.1175/2007JCLI2029.1

Wang, W., & Seaman, N. L. (1997). A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model. Monthly Weather Review, 125(2), 252-278. https://doi.org/10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2

Warner, T. T. (2010). Numerical Weather and Climate Prediction. New York, USA: Cambridge University Press. https://doi.org/10.1017/CBO9780511763243

Warner, T. T., & Hsu, H.-M. (2000). Nested-Model Simulation of Moist Convection: The Impact of Coarse-Grid Parameterized Convection on Fine-Grid Resolved Convection. Monthly Weather Review, 128(7), 2211-2231. https://doi.org/10.1175/1520-0493(2000)128<2211:NMSOMC>2.0.CO;2

Washington, W. M., & Parkinson, C. L. (2005). An Introduction To Three-Dimensional Climate Modeling. University Science Books, 372 pp.

Waylen, P. R., Caviedes, C. N., & Quesada, M. E. (1996). Interannual Variability of Monthly Precipitation in Costa Rica. J. Climate, 9, 2606–2613, https://doi.org/10.1175/1520-0442(1996)009<2606:IVOMPI>2.0.CO;2

Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences, Volume 100, Third Edition (3 edition). Boston, USA: Academic Press. Retrieved from http://www.amazon.com/Statistical-Atmospheric-Sciences-International-Geophysics/dp/0123850223/ref=sr_1_1?ie=UTF8&qid=1439990822&sr=8-1&keywords=wilks+statistical+methods

Xiu, A., & Pleim, J. E. (2001). Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. Journal of Applied Meteorology, 40(2), 192-209. https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2

Zárate-Hernández, E. (2013). Climatología de masas invernales de aire frío que alcanzan Centroamérica y el Caribe y su relación con algunos índices Árticos. Tópicos Meteorológicos y Oceanográficos, 12(1), 35-55.

Zárate-Hernández, E. (2014). Influencia de las masas invernales de aire frío sobre el Chorro de Bajo Nivel del Caribe y sus ramas. Tópicos Meteorológicos y Oceanográficos, 13(2), 19-40.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.