Abstract
Relative growth rate in Magnolia pugana (Magnoliaceae) seedlings from two populations at different light levels and soil fertility. The study of ecophysiology of endangered species is key to the success of conservation and ecological restoration programs. The objective of this work was to know the effect of light, soil fertility and seed origin on the growth of Magnolia pugana seedlings. The relative growth rate (RGR) and its components (Net Assimilation Rate: NAR and Leaf Area Ratio: LAR), as well as the root-shoot ratio (R/S) were estimated. Seedlings were obtained from seeds collected in two localities in Zapopan, Jalisco, Mexico, the first is a wild population in San Nicolás (SN) and the second is a plantation located in the gardens of the Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA). The experiment was conducted under greenhouse conditions. In September 2015, 96 seedlings of approximately three months old were subjected to the following treatments in a factorial experiment (2x2x2): light level (high = 1 120 μmol m-2 s-1 and low = 136.3 μmol m-2 s-1), seedling origin (SN and CUCBA) and soil fertility (high fertility = SN soil, low fertility = CUCBA soil) with 12 replicates for each combination of factors and levels. Growth was estimated in two harvests: the first harvest after 30 days of starting the experiment and the second at 60 days. Light and soil fertility levels, as well as seedling origin influenced growth through physiological and morphological adjustments. In general, Magnolia pugana showed higher RGR and NAR in high light, while LAR decreased. Soil fertility and seedling origin did not affect RGR or its components. However, these were affected by the light level, seedlings from SN grew more in high light. Stem height varied due to soil fertility and seedling origin, in low fertility soil (CUCBA) the seedlings of SN were 35 % higher than those of CUCBA. Low fertility soil under high light caused greater investment in seedling root biomass. The physiological component (NAR) was the major determinant of intraspecific variation in RGR. SN seedlings showed greater phenotypic plasticity due to coming from a wild population, which possibly has higher genetic variation than the cultivated population from CUCBA. The results suggest that Magnolia pugana is a species capable of adapting to diverse environments due to its phenotypic plasticity in response to different light and soil fertility levels. Rev. Biol. Trop. 66(2): 622-633. Epub 2018 June 01.
References
Acevedo-Rosas, R., Hernández-Galaviz, M., & Cházaro-Basáñez, M. (2008). Especies de plantas vasculares descritas de las barrancas aledañas a la ciudad de Guadalajara y de Río Blanco, Jalisco, México. Polibotánica, 26, 1-38.
Alameda, D., & Villar, R. (2009). Moderate soil compaction: implications on growth and architecture in seedlings of 17 woody plant species. Soil and Tillage Research, 103, 325-331.
Azcon-Bieto, J., & Talon, M. (2008). Fundamentos de fisiología vegetal. Madrid, España: McGraw Hill Interamericana.
Bazzaz, F. A., & Wayne, P. M. (1994). Coping with environmental heterogeneity: the physiological ecology of tree seedling regeneration across the gap-understory continuum. In M. M. Caldwell & R. W. Pearcy (Eds.), Exploitation of environmental heterogeneity by plants: ecophysiological processes above and belowground (pp. 349-390). New York: Academic Press.
Bewley, J. D., & Black, M. (1994). Seeds. Physiology of development and germination. Nueva York, USA: Plenum Press.
Canham, C. D., Berkowitz, A. R., Kelly, V. R., Lovett, G. M., Ollinger, S. V., & Schnurr, J. (1996). Biomass allocation and multiple resource limitation in tree seedlings. Canadian Journal of Forest Research, 26(9), 1521-1530.
Cardillo, E., & Bernal, C. J. (2006). Morphological response and growth of cork oak (Quercus suber L.) seedlings at different shade levels. Forest Ecology and Management, 222, 296-301.
Carranza, A. S. (2014). Diversidad y diferenciación genética de Magnolia pugana y Magnolia pacifica, especies endémicas del occidente de México (Tesis de pregrado). Universidad de Guadalajara, Guadalajara, Jalisco, México.
Cicuzza, D., Newton, A. C., & Oldfield, S. (2007). Red List of Magnoliaceae. Cambridge, UK: Fauna & Flora International.
Evans, G. C. (1972). The quantitative analysis of plant growth. California, USA: Blackwell Scientific Publications.
Fenner, M., & Kitajima, K. (1999). Seed and seedling ecology. In F. I. Pugnaire & F. Valladares (Eds.), Handbook of functional plant ecology (pp. 589-622). New York: Marcel Dekker.
García-Ramírez, Y., Freire-Seijo, M., Tejeda, M., & Reyes, M. (2007). Germinación in vitro de semillas de Dendrocalamus strictus (Rosb.) Nees. Biotecnología Vegetal, 7(1), 41-44.
Glimn-Lacy, J., & Kaufman, P. B. (2006). Botany illustrated: introduction to plants, major groups, flowering plant families. New York, USA: Springer Science.
Herrera, J., Alizaga, R., Guevara, E., & Jiménez, V. (2006). Germinación y crecimiento de la planta. Fisiología de la producción de los cultivos tropicales. San José, Costa Rica: Universidad de Costa Rica.
Hoffmann, W. A., & Poorter, H. (2002). Avoiding bias in calculations of relative growth rate. Annals of Botany, 80, 37-42.
Huante, P., Rincon, E., & Acosta, I. (1995). Nutrient availability and growth rate of 34 woody species from a tropical deciduous forest in Mexico. Functional Ecology, 9(6), 849-858.
Ibarra, C. D., Ruiz, C. J., González, E. R., & Flores, J. G. (2007). Distribución espacial del contenido de materia orgánica de los suelos de Zapopan, Jalisco. Terra Latinoamericana, 25(2), 187-194.
Jacobo-Pereira, C., Romo-Campos, R., & Flores, J. (2016). Germinación de semillas de Magnolia pugana (Magnoliaceae), especie endémica y en peligro de extinción del occidente de México. Botanical Science, 94(3), 1-10.
Jandel Scientific. (1993). Sigma Scan/Image. Measurement Software for Windows. Jandel Scientific, San Rafael.
Kitajima, K. (1994). Relative importance of photosynthetic traits and allocation patternsas correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419-428.
Lambers, H., Chapin, III F. S., & Pons, T. L. (1998). Plant physiological ecology. NewYork, USA: Springer Verlag.
Miquelajauregui, Y., & Valverde, T. (2010). Survival and early growth of two congeneric cacti that differ in their level of rarity. Journal of Arid Environments, 74, 1624-1631.
Pearcy, R. W., Valladares, F., Wright, S. J., & de Paulis, E. L. (2004). A functional analysis of the crown architecture of tropical forest Psychotria species: do species vary in light capture efficiency and consequently in carbon gain and growth? Oecologia, 139(2), 163-177.
Poorter, L. (2001). Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Functional Ecology, 15(1), 113-123.
Poorter, L., & Arets, E. J. M. M. (2003). Light environmental and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecology, 166, 295-306.
Poorter, H., & Garnier, E. (1999). Ecological significance of inherent variation in relative growth rate and its components. In F. I. Pugnaire & F. Valladares (Eds.), Handbook of functional plant ecology (pp. 81-120). New York: Marcel Dekker.
Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27(6), 595-607.
Pompa, J., & Bongers, F. (1988). The effect of canopy gaps on growth and morphology of seedlings rain species. Oecologia, 75, 625-632.
Restrepo, M. L. G., & Cardona, E. P. (2011). Resultados preliminares del crecimiento temprano en vivero y en parcelas de conservación de varias especies de Magnolias propagadas sexual y asexualmente. En M. L. G. Restrepo (Ed.), Avances en la estrategia para la conservación de las especies de la familia Magnoliaceae en jurisdicción de CORANTIOQUIA (Boletín Técnico Biodiversidad No. 6, pp. 81-94). Medellín: Corantioquia.
Rivers, M. C., Martínez-Salas, E., & Samain, M. S. (2016). The IUCN Red List of Magnoliaceae. DOI: 10.2305/IUCN.UK.2014-1.RLTS.T194806A2363344.en
Romo-Campos, R., Flores-Flores, J. L., Flores, J., & Álvarez-Fuentes, G. (2013). Factores abióticos involucrados en la facilitación entre leñosas y suculentas en el Altiplano Mexicano. Botanical Sciences, 91(3), 319-333.
Ruiz, C. J. A., Flores, L. H. E., Regalado, R. J. R., & Ramírez, O. G. (2012). Estadísticas climáticas normales del Estado de Jalisco (Libro Técnico Núm. 2). Tepatitlán de Morelos, México: INIFAP-CIRPAC-Campo Experimental Centro Altos de Jalisco.
Saldaña, A. A., Zuloaga, A. M., & Jardel, P. E. (2001). Germinación de Acer skutchii Rehder y Magnolia iltisiana Vázquez en la Reserva de la Biosfera Sierra de Manantlán, Jalisco, México. Foresta Veracruzana, 3(2), 1-8.
Saldaña-Acosta, A., Meave, J. A., & Sánchez-Velásquez, L. R. (2009). Seedling biomass allocation and vital rates of cloud forest tree species: responses to light in shade house conditions. Forest Ecology and Management, 258, 1650-1659.
SAS Institute Inc. 2002. SAS/STAT software, version 9. SAS Institute, Inc., Cary.
SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). (2000). Programa de manejo área de protección de flora y fauna La Primavera, México. D. F., México: Secretaría de Medio Ambiente y Recursos Naturales, Comisión Nacional de Áreas Naturales Protegidas.
Sharrock, S. (2012). Estrategia mundial para la conservación de las especies vegetales: una guía para la GSPC, metas, objetivos y datos. Richmond, U.K: Botanic Gardens Conservation International.
Shipley, B. (2002). Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology, 16, 682-689.
Shu, X., Yang, X., & Yang, Z. (2012). Variation in seed and seedling traits among fifteen Chinese provenances of Magnolia officinalis. Notulae Botanicae Horti Agrobotanici, 40(2), 274-283.
SPP (Secretaría de Planeación y Presupuesto). (1981). Síntesis geográfica del Estado de Jalisco. D.F., México: Coordinación General de los Servicios Nacionales de Estadística, Geografía e Informática, Secretaría de Planeación y Presupuesto.
Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(9), 537-542.
Tilman, D. (1985). The resource-ratio hypothesis of plant succession. The American Naturalist, 125(6), 827-852.
Valladares, F., Aranda, I., & Sánchez-Gómez, D. (2008). La luz como factor ecológico y evolutivo para las plantas y su interacción con el agua. En F. Valladares (Ed.), Ecología del bosque mediterráneo en un mundo cambiante (pp. 335-369). Madrid: Ministerio de Medio Ambiente, EGRAF, S. A.
Vázquez-García, J. A. (1994). Magnolia (Magnoliaceae) in México and Central America: a synopsis. Brittonia, 46(1), 1-23.
Vázquez-García, J. A., Carbajal, S., & Hernández, L. L. (2002). Magnolia pugana (Magnoliaceae): una nueva combinación en el complejo Magnolia pacifica. Novon, 12(1), 137-141.
Vázquez-García, J. A., Neill, D. A., Pérez-C., A. J., Arroyo, F., Núñez-V., M. P., Serna, M., … & Sánchez, G. A. (2014). Magnoliaceae en el Neotrópico: riqueza, endemismo y estado de conservación. XI Congreso Latinoamericano de Botánica. San Salvador Bahía, Brasil.
Veneklaas, E. J., & Poorter L. (1998). Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In H. Lambers, H. Poorter, & M. M. I. Van Vuuren (Eds.), Inherent variation in plant growth. Physiological mechanisms and ecological consequences (pp. 337-361). Leiden: Backhuys Publishers.
Villar, R., Ruiz-Robleto, J., Quero, J. L., Poorter, H., Valladares, F., & Marañón, T. (2004). Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. En F. Valladares (Ed.), Ecología del bosque mediterráneo en un mundo cambiante (pp. 191-227). Madrid: Ministerio de Medio Ambiente.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical