Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Bifidobacteria as indicators of fecal pollution in tropical waters.
PDF
HTML

Keywords

water pollution
biomarkers
feces
denaturing gradient gel electrophoresis
Bifidobacterium
polymerase chain reaction
Contaminación del agua
biomarcadores
heces
electroforesis en gel de gradiente desnaturalizante
Bifidobacterium
reacción en cadena de la polimerasa

How to Cite

Sarmiento-Rubiano, L. A., García, Y., Suarez-Marenco, M., Hoyos Solana, V. I., & Becerra, J. E. (2019). Bifidobacteria as indicators of fecal pollution in tropical waters. Revista De Biología Tropical, 67(3), 562–571. https://doi.org/10.15517/rbt.v67i3.33843

Abstract

Human fecal pollution in water constitute a serious risk to the public health, nevertheless the indicator microorganisms commonly used to detect the levels of fecal pollution does not identify the specific source. The detection of certain Bifidobacterium species as B. adolescentis and B. dentium have been proposed as an effective marker of human fecal contamination, but this has not yet been demonstrated in tropical environmental conditions. The aim of the present work was to determine the Bifidobacteria profile in one sample of water from the Mesolandia Swamp in the Colombian Caribbean and feces samples of 260 human and 94 domestic animals from a human settlement around the swamp. DNA from all the samples was amplified by PCR using specific specie primers based on the 16S rRNA gene sequence and separated by DGGE (Denaturing Gradient Gel Electrophoresis). DGGE bands were excised, reamplified, sequenced, and compared to GenBank database. Bifidobacterial DGGE profiles showed that eight species of Bifidobacterium that were found in the water sample, were also present in the human and animal feces. Bifidobacterium adolescentis and B. dentium described as potential human fecal pollution indicators were found in domestic animals. In this study under the environmental and experimental conditions evaluated was not possible to find a Bifidobacterium species as specific marker of human fecal contamination in tropical areas. However, the applied method in this study could be useful to detect fecal pollution in tropical waters allowing a nearest approximation to the origin of the fecal pollution compared with cultural traditional methods, since it was possible to find identical DNA sequences in the water and in the fecal samples.

https://doi.org/10.15517/rbt.v67i3.33843
PDF
HTML

References

Al-Gheethi, A., Ismail, N., Efaq, A. N., Bala, J. D., & Al-Amery, R. (2015). Solar disinfection and lime stabilization processes for reduction of pathogenic bacteria in sewage effluents and biosolids for agricultural purposes in Yemen. Journal of Water Reuse and Desalination, 5(3), 419-429. DOI: 10.2166/wrd.2015.074

Ballesté, E., Bonjoch, X., Belanche, L. A., & Blanch, A. R. (2010). Molecular indicators used in the development of predictive models for microbial source tracking. Applied and Environmental Microbiology, 76(6),1789-1795. DOI: 10.1128/AEM.02350-09

Bonjoch, X., Balleste, E., & Blanch, A. R. (2004). Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Applied and Environmental Microbiology, 70(5), 3171-3175. DOI: 10.1128/AEM.70.5.3171-3175.2004

Burkhardt, W., Calci, K. R., Watkins, W. D., Rippey, S. R., & Chirtel, S. J. (2000). Inactivation of indicator microorganisms in estuarine waters. Water Research, 34, 2207-2214.

Cabralab, A. C., StarkcHedda, J. S., Kolmb, K., & Martins, C. (2018). An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries. Environmental Pollution, 235, 739-749. DOI: 10.1016/j.envpol.2017.12.109

Casanovas-Massana, A., Gómez-Doñate, M., Sánchez, D., & Belanche-Muñoz, L. (2015). Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods. Journal of Environmental Management, 151(15), 317-325.

Corporación Autónoma Regional de Atlántico. (2011). Caracterización fisicoquímica de los vertimientos de aguas residuales hacia los cuerpos de agua del Departamento del Atlántico y monitoreo de la calidad y estado actual de las fuentes hídricas del departamento año 2011. Recuperado de http://www.crautonoma.gov.co/documentos/pomcas/Recurso Hidrico/INFORME FINAL.pdf

Flint, H., Duncan, S., & Louis, P. (2017). The impact of nutrition on intestinal bacterial communities. Current Opinion in Microbiology, 38, 59-65. DOI: 10.1016/j.mib.2017.04.005

Garcés-Ordóñez, O., Vivas-Aguas, L. J., Martínez, M., Córdoba, T., Contreras, A., & Obando, P. (2016). Diagnóstico y evaluación de la calidad de las aguas marinas y costeras del Caribe y Pacífico colombianos. Serie de Publicaciones Periódicas del Invemar No. 4. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia (REDCAM). (Informe técnico 2015). Santa Marta, Colombia: INVEMAR, MADS y CAR costeras.

Gavini, F., Delcenserie, V., & Kopeinig, K. (2006). Bifidobacterium species isolated from animal feces and from beef and pork meat. Journal of Food Protection, 69(4), 871-877.

Gómez-Doñate, M., Ballesté, E., Muniesa, M., & Blanch, A. R. (2012). New molecular quantitative PCR assay for detection of host-specific Bifidobacteriaceae suitable for microbial source tracking. Applied Environmental Microbiology, 78(16), 5788-5795.

Hellmér, M., Stranddorf, K., Seidel, M., Aarestrup, F. M., & Schultz, A. C. (2017). Viral indicators for fecal contamination-a one-year viral metagenomic study of treatment efficiency in danish waste water treatment plants. Danish Microbiological Society Annual Congress 2017. American Society for Microbiology, Copenhagen.

Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM. (2003). Guía para monitorieo de vertimientos, aguas superficiales y subterráneas. Recuperado de http://corponor.gov.co/corponor/sigescor2010/TRAMITESYSERVICIOS/Guia_monitoreo_IDEAM.pdf

Instituto Nacional de Salud (INS). (2011). Manual de instrucciones para la toma, preservación y transporte de muestras de agua de consumo humano para análisis de laboratorio. Recuperado de http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=11214&shelfbrowse_itemnumber=11791

Korpela, K. (2018). Diet, microbiota, and metabolic health: Trade-Off between saccharolytic and proteolytic fermentation. Annual Review of Food Science and Technology, 9(1), 65-84.

Levengood, J. M., Hörman, A., Hänninen, M. L., & O’Brien, K. (2018). Water Security in a Changing World. J. A. Herrmann & Y. J. Johnson‐Walker (Eds.), Beyond One Health: From Recognition to Results (pp. 91-115). DOI: 10.1002/9781119194521.ch4

Mayer, R. E., Reischer, G. H., Ixenmaier, S. K., Derx, J., Blaschke, A. P., & Ebdon, J. E. (2018). Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents. Environmental Science & Technology, 52(9), 5076-5084. DOI: 10.1021/acs.est.7b04438

Organización Mundial de la Salud, Fondo de las Naciones Unidas para la Infancia (UNICEF). (2017). Progresos en materia de agua potable, saneamiento e higiene: informe de actualización de y linea de base de los ODS. Recuperado de http://www.who.int/water_sanitation_health/publications/2014/jmp-report/es/

Presidencia de la República de Colombia. (1984). Decreto 1594 de 1984. por el cual se reglamenta parcialmente el uso del agua y residuos líquidos. Actualizado en el Decreto Nacional 3930 de 2010. Recuperado de: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=18617

Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2017). Standard Methods for the Examination of Water and Wastewater (23rd Edition). Washington, D.C., USA: American Public Health Association. American Water Works Association, Water Environment Federation.

Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O., & Ribolzi, O. (2015). A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions. Frontiers in Microbiology, 17(6), 308. DOI: 10.3389/fmicb.2015.00308

Sabbioni, A., Ferrario, C., Milani, C., Mancabelli, L., Riccardi, E., Di Ianni, … Ossiprandi, M. C. (2016). Modulation of the Bifidobacterial Communities of the Dog Microbiota by Zeolite. Frontiers in Microbiology, 7, 1491. DOI: 10.3389/fmicb.2016.01491

Subbarao, V. R., Chester, Z., & Cooley, S. B. (2015). Male-specific coliphages for source tracking fecal contamination in surface waters and prevalence of Shiga-toxigenic Escherichia coli in a major produce production region of the Central Coast of California. Environmental Science: Processes & Impacts, 17, 1249-1256. DOI: 10.1039/c4em00537f

Satokari, R. M., Vaughan, E. E., Akkermans, A. D., Saarela, M., & De Vos, W. M. (2001). Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 67(2), 504-513.

Turroni, F., Milani, C., Douwe Van Sinderen, C., & Ventura, M. (2018). Bifidobacteria: Ecology and Coevolution With the Host. The Bifidobacteria and Related Organisms, Biology, Taxonomy, Applications. Academic Press, 213-220. DOI: 10.1016/B978-0-12-805060-6.00012-0

Waso, T. M., Ndlovu, P. H., Dobrowsky, S., & Khan, W. (2016). Presence of microbial and chemical source tracking markers in roof-harvested rainwater and catchment systems for the detection of fecal contamination. Environmental Science and Pollution Research, 23(17),16987-17001.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Luz Adriana Sarmiento Rubiano, Yina Paol García Toscano, Marianella María Suarez Marenco, Vanesa Inés Hoyos Solana, Jimmy Everth Becerra Enríquez

Downloads

Download data is not yet available.