Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Altitudinal abundance of Dendroctonus frontalis (Coleoptera: Curculionidae) in relation to climatic variables in Hidalgo, Mexico
PDF
HTML

Keywords

climate change
aridity index
bark beetle
conifer forest
variability
aridity level
Cambio climático
ìndice de aridez
descortezador
bosque de coníferas
variabilidad

How to Cite

Soto-Correa, J. C., Avilés-Carrillo, I., Girón-Gutiérrez, D., & Cambrón-Sandoval, V. H. (2019). Altitudinal abundance of Dendroctonus frontalis (Coleoptera: Curculionidae) in relation to climatic variables in Hidalgo, Mexico. Revista De Biología Tropical, 67(3), 370–379. https://doi.org/10.15517/rbt.v67i3.34436

Abstract

The bark beetles Dendroctonus frontalis (Coleoptera: Scolytidae) are a group of coleoptera closely linked to forest masses, and one of the most harmful pests in Mexico, causing the forest cover to be considerably reduced. Additionally factors such as climate change, favor the increase in populations of bark beetles of the genus Dendroctonus. Taking as a hypothesis that altitude and environmental variables affect the behavior in the abundance of D. frontalis, the objective was to estimate the temporary-spatial variation of D. frontalis populations in pine forests at different altitudes. The study was conducted in the community of Durango, Zimapán, Hidalgo, Mexico. An experimental design of paired plots with two treatments was used, pheromone and control. Seven traps were placed with both treatments in a range of 1 568 to 2 117 m.a.s.l. to determine the altitudinal abundance of D. frontalis. The sampling was realized from January to December 2015. A positive relationship was observed between the abundance of D. frontalis and the altitudinal gradient. About the abundance of D. frontalis and the temperature, a moderate but not significant relationship was observed in the same way for the average annual precipitation. The relation with the maximum average temperature and the spring summer precipitation balance were statistically significant. There was a positive trend on the abundance of D. frontalis according to the annual aridity index, which is why it is expected that the increase of temperatures the stress in the vegetation of the forests will be greater, favoring the increase of bark beetles populations.

https://doi.org/10.15517/rbt.v67i3.34436
PDF
HTML

References

Allen, D., & Breshears, D. (2007). Climate-induced forest dieback as an emergent global phenomenon. Transactions American Geophysical Union, 88, 504-505.

Allen, D., Macalady, A., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 4, 660-684.

Bale, S., Masters, G., Hodkinson, I., Awmark, C., Bezemer, T., Brown, V., & Whittaker, J. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16.

Bentz, B., Duncan, J., & Powell, J. (2016). Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate. Forestry, 89, 271-283.

Bentz, B., & Jönsson, A. (2015). Modeling bark beetle responses to climate change. En F. Vega & R. Hofstetter (Eds.), Bark Beetles (pp. 533-553). EE.UU: Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-417156-5.00013-7

Berg, E., Henry, J., Fastie, C., Volder, A., & De Matsuoka, S. (2006). Sprouce beetle outbreakson the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance régimen. Forest Ecology and Management, 227, 219-239.

Chapman, T., Veblen, T., & Schoennagel, T. (2012). Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology, 93, 2175-2185.

Chen, H., Jackson, P., Ott, P., & Spittlehouse, D. (2015). A spatiotemporal pattern analysis of potential mountain pine beetle emergence in British Columbia, Canada. Forest Ecology and Management, 339, 11-19.

Cibrian, T., Mendez, J. T., Campos-Bolaños, R., Harry, O., & Flores-Lara, J. (1995). Insectos forestales de México. Mexico: Universidad Autónoma de Chapingo.

Creeden, E., Hicke, J., & Buotte, P. (2014). Climate, weather, and recent mountain pine beetle outbreaks in the western United States. Forest Ecology and Management, 312, 239-251.

Crookston, N. (2010). Research on forest climate change: Potential effects of global warming on forests and plant climate relationships in western north America and Mexico. Recuperado de http://charcoal.cnre.vt.edu/climate

De Lucía, E., Casteel, C., Nabity, P., & O’Neill, B. (2008). Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proceedings National Academy of Sciences, 105, 1781-1782.

Fonseca-González, J., de los Santos-Posadas, H., Rodríguez-Ortega, A., & Rodríguez-Laguna, R. (2014). Efecto del daño por fuego y descortezador sobre la mortalidad de Pinus patula Schl. et Cham en Hidalgo, México. Agrociencia, 48, 103-113.

Gaylord, M., Kolb, T., Wallin, K., & Wagner, M. (2006). Seasonality and lure preference of bark beetles (Curculionidae: Scolytinae) and associates in a northern Arizona ponderosa pine forest. Enviromental Entomology, 35, 37-47.

Hovenden, M., Newton, P., & Wills, K. (2014). Seasonal not annual rainfall determines grassland biomass responses to carbon dioxide. Nature, 511, 583-586.

Hutchinson, M. F., & Xu, T. (2013). Anusplin (version 4.4). Australia: The Australian National University.

IPPCC. (2000). Summary for Policymakers IPCC SPECIAL REPORT EMISSIONS SCENARIOS Summary for Policymakers Emissions Scenarios. Recuperado de https://ipcc.ch/pdf/special-reports/spm/sres-en.pdf

McDowell, N., Pockman, W., Allen, C., Breshears, D., Cobb, N., Kolb, T., & Yepez, E. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? Tansley Review. New Phytologist, 178, 719-739.

Régnière, J., Powell, J., Bentz, B., & Nealis, V. (2012). Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. Insect of Physiology, 58, 634-647. https://doi.org/10.1016/j.jinsphys.2012.01.010

Salinas-Moreno, Y., Vargas-Mendoza, C., Zuñiga, G., Victor, J., Ager, A., & Hayes, J. (2009). Atlas de distribución geográfica de los descortezadores del género. México: Comision Nacional Forestal.

Sambaraju, K., Carroll, A., Zhu, J., Stahl, K., Moore, R., & Aukema, B. (2012). Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada. Ecography, 35, 211-223.

Sánchez-González, A. (2008). Una visión actual de la diversidad y distribución actual de los pinos de México. Madera y Bosques, 14, 107-120.

SAS institute. (2004). SAS (version 9.1). North Carolina, USA: SAS

Six, D. L., & Bracewell, R. (2014). Chapter 8. Dendroctonus. En F. E. Vega & R. W. Hoffstetter (Eds.), Biology and ecology of native and invasive species (pp. 305-350). MT, EE.UU: Academic Press.

Sullivan, B. T., Niño, A., Moreno, B., Brownie, C., Macías-Samano, J., Clarke, S. R., & Zúñiga, G. (2012). Biochemical evidence that Dendroctonus frontalis consists of two sibling species in Belize and Chiapas, Mexico. Entomological Society of America, 105, 817-831.

Sutherts, W., Baker, R., Coakley, S., Harrington, R., Kriticos, D., & Scherm, H. (2007). Pest under global change-meeting your future landlords? En J. G. Canadell, D. E. Pataki, & L. F. Pitelka (Eds.), Terrestrial Ecosystems in a Changing World (pp. 210-226). Berlin, Germany: Springer-Verlag.

Tran, J., Ylioja, T., Billings, R., Regniere, J., & Ayres, M. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications, 17(3), 882-899.

Williams, K., McMillin, J., DeGomez, T., Clancy, K., & Miller, A. (2008). Influence of Elevation on Bark Beetle (Coleoptera: Curculionidae Scolytinae) Community Stucture and Flight Periodicity in Ponderosa Pine Forest of Arizona. Enviromental Entomology, 37, 94-109.

Wood, S. (1982). he bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 6, 1-1356.

Zúñiga, G., Cisneros, R., Salinas-Moreno, Y., Hayes, J. L., & Rinehart, J. (2006). Genetic Structure of Dendroctonus mexicanus (Coleoptera: Curculionidae: Scolytinae) in the Trans-Mexican Volcanic Belt. Annals of the Entomological Society of America, 99, 945-958.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Jose Carmen Soto-Correa, Irma Avilés-Carrillo, Dioseline Girón-Gutiérrez, Victor Hugo Cambrón-Sandoval

Downloads

Download data is not yet available.