Abstract
Introduction: Tree vegetation of forests that develops in karst environments dominated by calcium carbonate faces the restriction of water and nutrients, which negatively affects its development. Objective: Analyze the composition, diversity, and structure of tree vegetation that develops in calcium outcrops (yesales) and their edaphic conditions compared to those present in the adjacent secondary vegetation (VS). Methods: Plots of 1 000 m² were used, 14 in yesales and 3 in VS. For soil sampling, we obtained a sample composed of each plot, and estimate pH, electrical conductivity (EC-salinity), % of calcium carbonates (CaCO3), organic matter (OM), phosphorus (P) and nitrogen content (N). The difference in species composition was estimated by similarity analysis (ANOSIM). We used rarefaction and extrapolation methods to standardize sample, and estimate diversity by Hill numbers (q = 0, q = 1 and q = 2). Linear regression was used to determine the relative influence of edaphic characteristics in diversity, average diameter, and height. Results: Soils in yesales presented low concentrations of OM, P, and N, with high values of EC-salinity and high percentages of CaCO3. In yesales, 6 443 individuals were recorded in 54 species and in the secondary vegetation 594 individuals and 62 species, the species composition being significantly different between both conditions. Diversity, average values of height, and diameter were significantly lower in yesales regarding the secondary vegetation, these differences were significantly related to edaphic conditions. Conclusions: Tree vegetation in yesales has a composition like the sub-evergreen forests of Calakmul. Small sizes in the arboreal individuals are related to the high percentage of CaCO3 and the high EC values, which partly condition the low availability of OM, N and P affecting the growth of the trees. This study supports the idea that precarious edaphic conditions have a negative influence on the diversity and horizontal and vertical structure of tree vegetation.
References
Aguilar-Duarte, Y., Maya-Martínez, A., Esparza-Olguín, L., Hernández-García, G., Canales-Cruz, R. & Chiquini-Heredia, W. (2019). Actualización cartográfica forestal en una zona kárstica del sureste mexicano. En O. Fraustro Martínez (Ed.), Conocimientos y saberes sobre el karst de México (pp. 95–115). Acts With Science.
Aryal, D., de Jong, B., Ochoa-Gaona, S., Mendoza-Vega, J., & Esparza-Olguín, L. (2015). Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forest of SE Mexico. Nutrient Cycling in Agroecosystems, 103(1), 45–60. https://doi.org/10.1007/s10705-015-9719-0
Báez-Vargas, A. M., Esparza-Olguín, L., Martínez-Romero, E., Ochoa-Gaona, S., Ramírez-Marcial, N., & González-Valdivia, N. A. (2017). Efecto del manejo sobre la diversidad de árboles en vegetación secundaria en la Reserva de la Biosfera de Calakmul, Campeche, México. Revista de Biología Tropical, 65(1), 41–53. https://doi.org/10.15517/rbt.v65i1.20806
Balvanera, P. (2012). Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas, 21(1-2), 136–147.
Barlow, J., Franꞔa, F., Gadner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C., Wilson, S., Young, P. J., & Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559, 517–526. https://doi.org/10.1038/s41586-018-0301-1
Bautista, F., & Palacio-Aponte, G. (2011). Parte III. Regionalización edáfica del territorio de México. Capítulo 24. Península de Yucatán. En P. Krasilnikov, F. J. Jiménez, T. Reyna, & N. E. García (Eds.), Geografía de suelos de México (pp. 355–406). Universidad Nacional Autónoma de México.
Bautista, F., Palacio-Aponte, G., Quintana, P., & Zinck, J. A. (2011). Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135(3-4), 308–321. https://doi.org/10.1016/j.geomorph.2011.02.014
Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 326–349. https://doi.org/10.2307/1942268
Carnevali, G., Tapia-Muñoz, J. L., Duno de Stefano, R., & Ramírez, I. M. (2010). Flora ilustrada de la Península de Yucatán: Listado Florístico. Centro de Investigación Científica de Yucatán.
Clark, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Chang, J., Zhu, J., Xu, L., Su, H., Gao, Y., Cai, X., Peng, T., Wen, X., Zhang, J., & He, N. (2018). Rational land-use types in the karst regions of China: Insights from soil organic matter composition and stability. Catena, 160, 345–353. https://doi.org/10.1016/j.catena.2017.09.029
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1
Chiquini-Heredia, W., Esparza-Olguín, L., Peña-Ramírez, Y., Maya-Martínez, A., & Martínez-Romero, E. (2017). Estructura y diversidad en selva inundable al centro y sur de Calakmul. Ecosistemas y Recursos Agropecuarios, 4(12), 511–524. https://doi.org/10.19136/era.a4n12.859
Díaz-Gallegos, J. R., Castillo-Acosta, O., & García-Gil, G. (2002). Distribución espacial y estructura arbórea de la selva baja subperennifolia en un ejido de la Reserva de la Biosfera de Calakmul, Campeche, México. Universidad y Ciencia, 18(35), 11–28.
Du, Y., Pan, G., Li, L., Hu, Z., & Wang, X. (2011). Leaf N/P ratio and nutrient reuse between dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems, southwestern China. Environmental Earth Sciences, 64, 299–309. https://doi.org/10.1007/s12665-010-0847-1
Ellis, E. A., Hernández-Gómez, I. U., & Romero-Montero, J. A. (2017) Los procesos y causas del cambio en la cobertura forestal de la Península de Yucatán, México. Ecosistemas, 26(1), 101–111. https://doi.org/10.7818/ECOS.2017.26-1.16
Esparza-Olguín, L., & Martínez-Romero, E. (2018). Diversidad y carbono almacenado en el área forestal permanente de Álvaro Obregón, Calakmul, Campeche. Revista Mexicana de Ciencias Forestales, 9(45), 152–186. https://doi.org/10.29298/rmcf.v9i45.141
Esparza-Olguín, L., Vargas-Contreras, J. A., Martínez-Romero, E., & Escalona-Segura, G. (2019). Diversidad y biomasa de la selva circundante al Volcán de los Murciélagos, en Campeche, México. Ecosistemas y Recursos Agropecuarios, 6(16), 79–90. https://doi.org/10.19136/era.a6n16.1986
Estrada-Medina, H., Jiménez-Osorio, J. J., Álvarez-Rivera, O., & Barrientos-Medina, R. C. (2019). El karst de Yucatán: origen, morfología y biología. Acta Universitaria Multidisciplinary Scientific Journal, 29, 1–18.
Fenton, O., Mellander, P. E., Daly, K., Wall, D. P., Jahangir, M. M. R., Jordan, P., & Richards, K. G. (2017). Integrated assessment of agricultural nutrient pressures and legacies in karst landscape. Agriculture, Ecosystems and Environment, 239, 246–256. https://doi.org/10.1016/j.agee.2017.01.014
García, J., Mizrahi, A., & Bautista, F. (2005). Manejo campesino de las selvas bajas y selección de especies arbóreas para barbechos mejorados en Hocabá, Yucatán. En F. Bautista & G. Palacio (Eds.), Caracterización y Manejo de los Suelos de la Península de Yucatán: Implicaciones Agropecuarias, Forestales y Ambientales (pp. 195–208). Universidad Autónoma de Campeche, Universidad Autónoma de Yucatán, Instituto Nacional de Ecología, México.
García-Gil, G., Palacio Prieto, J. L., & Ortíz Pérez, M. A. (2002). Reconocimiento geomorfológico e hidrográfico de la Reserva de la Biosfera de Calakmul, México. Investigaciones Geográficas, 48, 7–23.
García-Licona, J. B., Esparza-Olguín, L., & Martínez-Romero, E. (2014). Estructura y composición de la vegetación leñosa de selvas en diferentes estadios sucesionales en el ejido El Carmen II, Calakmul, México. Polibotánica, 38, 1–26.
Geekiyanage, N., Manage Goodale, U., Cao, K., & Kitajima, K. (2019). Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51, 626–640. https://doi.org/10.1111/btp.12696
Guo, Y., Wang, B., Mallik, A. U., Huang, F., Xiang, W., Ding, T., Wen, S., Lu, S., Li, D., He, Y., & Li, X. (2017). Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 10(3), 450–460. https://doi.org/10.1093/jpe/rtw057
Hammer, Ø, Harper, D. A. T., & Ryan, P. D. (s.f.). PAST 4.06b: Paleontological Statistics Software Package for Education and Data Analysis. http://nhm2.uio.no/norlex/past/download.html
Hu, L., Su, Y., He, X., Wu, J., Zheng, H., Li, Y., & Wang, A. (2012). Response of soil organic carbon mineralization in typical Karst soils following the addition of 14-C-labeled rice starw and CaCO3. Journal of the Science of Food and Agriculture, 92(5), 1112–1118. https://doi.org/10.1002/jsfa.4647
Ibarra-Manríquez, G., Villaseñor, J. L., & Durán-García, R. (1995). Riqueza de especies y endemismos del componente arbóreo de la Península de Yucatán, México. Boletín de la Sociedad Botánica de México, 57, 49–77. http://dx.doi.org/10.17129/botsci.1476
Jardel-Peláez, E. J. (2015). Guía para la caracterización y clasificación de hábitats forestales. Comisión Nacional Forestal, Programa de las Naciones Unidas para el Desarrollo. http://www.conafor.gob.mx:8080/documentos/docs/49/6661Gu%C3%ADa%20web%20para%20la%20caracterizaci%C3%B3n%20y%20clasificaci%C3%B3n%20final.pdf
Jiang, Y. J., Yuan, D. X., Zhang, S., Kuang, M. S., Wang, J. L., Xie, S. Y., & Li, L. L. (2006). Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watersehed, Yunnan. Environmental Geology, 50, 911–918. https://doi.org/10.1007/s00254-006-0262-9
Lawrence, D., Vester, H. F., Pérez-Salicrup, D., Eastman, J. R., Turner, B. L., Turner, B., & Geoghegan, J. (2004). Integrated Analysis of Ecosystem Interactions with Land-Use-Change: the Southern Yucatán Peninsular Region. En R. DeFries, G. Asner, & R. Houghton (Eds.), Ecosystem interactions with land use change (pp. 310-336). American Geophysical Union.
Liu, C., Liu, Y., Guo, K., Qiao, X., Zhao, H., Wang, S., Zhang, L., & Cai, X. (2018). Effects of nitrogen, phosporus and potassium addition on the productivity of karst grassland: Plant functional group and community perspectives. Ecological Engineering, 117, 84–95. https://doi.org/10.1016/j.ecoleng.2018.04.008
Lu, X., Toda, H., Ding, F., Fang, S., Yang, W., & Xu, H. (2014). Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology, 61, 49–57. https://doi.org/10.1016/j.ejsobi.2013.12.007
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing.
Martínez, E., & Galindo Leal, C. (2002). La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Boletín de la Sociedad Botánica de México, 71, 7–32. https://doi.org/10.17129/botsci.1660
Martínez, E., Sousa, M., & Ramos-Álvarez, C. H. (2001). Listados florísticos de México. XXVII. Región de Calakmul, Campeche. Instituto de Biología, Universidad Nacional Autónoma de México.
Ochoa-Gaona, S., Ruíz-González, H., Álvarez-Montejo, D., Chan-Coba, G., & de Jong, B. H. J. (2018). Árboles de Calakmul. El Colegio de la Frontera Sur.
Pan, F., Liang, Y, Zhang, W., Zhao, J., & Wang, K. (2016). Enhance Nitrogen availability in karst ecosystems by oxalic acid release in the rhizophere. Frontiers in Plant Science, 7, 1–9. https://doi.org/10.3389/fpls.2016.00687
Pan, F., Liang, Y., Wang, K., & Zhang, W. (2018). Responses of fine root functional traits to soil nutrient limitations in a Karst ecosystem of southwest China. Forest, 9(12), 743–759. https://doi.org/10.3390/f9120743
Pérez-García, E. A., Sevilha, A. C., Meave, J. A., & Scariot, A. (2009). Floristic differentiation in limestone outcrops of southern Mexico and central Brazil: a beta approach. Boletín de la Sociedad Botánica de México, 84, 45–58. https://doi.org/10.17129/botsci.2294
Pérez-Sarabia, J. E., Duno de Stefano, R., Carnevali Fernández-Concha, G., Ramírez-Morillo, I., Méndez-Jiménez, N., Zamora-Crescencio, P., Gutiérrez-Báez, C., & Cetzal-Ix, W. (2017). El conocimiento florístico de la Península de Yucatán, México. Polibotánica, 44, 39–49.
Secretaría de Medio Ambiente y Recursos Naturales (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación, México.
Umer, M. I., Rajab, S. M., & Ismail, H. K. (2020). Effect of CaCO3 form on soil inherent quality properties of calcareous soils. Materials Science Forum, 1002, 459–467. https://doi.org/10.4028/www.scientific.net/MSF.1002.459
Vester, H. F., Lawrence, D., Eastman, J. R., Turner, B. L., Calmé, S., Dickson, R., Pozo, C., & Sangermano, F. (2007). Land change in the southern Yucatán and Calakmul Biosphere Reserve: effects on habitat and biodiversity. Ecological Applications, 17(4), 989–1003. https://doi.org/10.1890/05-1106
Wang, K., Zhang, C., Chen, H., Yue, Y., Zhang, W., Zhang, M., & Fu, Z. (2019). Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology, 34(12), 2743–2763. https://doi.org/10.1007/s10980-019-00912-w
Wendt, T. (1993). Composition, floristics affinities, and origins of the canopy tree flora of the Mexican Atlantic slope rain forest. En T. P. R. Ramamoorthy, R. Bye, A. Lot, & J. Fa (Eds.), Biological Diverstiy of Mexico: Origins and Distribution (pp. 595–680). Nueva York: Oxford University Press.
World Flora Online. (2021). World Flora Online. http://www.worldfloraonline.org
Zamora-Crescencio, P., Domínguez-Carrasco, M. R., Villegas, P., Gutiérrez-Báez, C., Manzanero-Acevedo, L. A., Ortega-Hass, J. J., & Puch-Chávez, R. (2012). Composición florística y estructura de la vegetación secundaria en el norte del estado de Campeche, México. Boletín de la Sociedad Botánica de México, 89, 27–35. https://doi.org/10.17129/botsci.368
Zhang, P., Li, L., Pan, G., & Ren, J. (2006). Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China. Environmental Geology, 51, 609–619. https://doi.org/10.1007/s00254-006-0356-4
Zhang, X., Bai, X., & He, X. (2011). Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China. Carbonates Evaporites, 26, 149–153. https://doi.org/10.1007/s13146-011-0043-8
Zhu, H., He, X., Wang, K., Su, Y., & Wu, J. (2012). Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. European Journal of Soil Biology, 51, 1–7. https://doi.org/10.1016/j.ejsobi.2012.03.003
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Ligia Esparza-Olguín, Eduardo Martínez-Romero