Abstract
Introduction: Righting behaviour has been used as a health indicator in response to stressor variables. Using this parameter in aquaculture could help to reduce mortality and improve welfare in the sea urchin Arbacia dufresnii culture.
Objective: The purpose of this study was to determine the effect of sex, diameter, and three stressor factors on the righting behaviour of the sea urchin A. dufresnii.
Methods: A total of 300 animals were evaluated for complete righting behaviour (CRB) time, with 100 of them also recording half righting behaviour (HRB) time. Three stressors were applied to the animals: serial repetitions (three successive turnings), temperature (24-hour shock), and spawning induction with KCl injection. A stopwatch was used to record the time, and a precision calliper was used to measure the diameter.
Results: Righting time was discovered to be diameter dependent but sex independent. The upper temperature limit of 19 °C had a significant effect on righting behaviour compared to 16 °C and 13 °C with CRB times up to 150 seconds. Serial repetitions and spawning had no significant effect. However, based on the recorded times, it can be deduced that spawning had an effect on the health of the animals, with CRB times of up to 150 seconds compared to the control, with lower times.
Conclusions: Complete righting behaviour appears to be an optimal indicator for evaluating the health and condition of the sea urchin A. dufresnii, but more tests would be performed to confirm the effect of the control treatment on post-spawning stress.
References
Ancin, B. L., Epherra, L., & Rubilar, T. (2021). Efecto de la temperatura sobre la morfología y reproducción en el erizo de mar Arbacia dufresnii (Echinodermata: Echinoidea). Revista de Biología Tropical, 69(S1), S154–S170. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46346
Binyon, J. (1972). Physiology of Echinoderms. Pergamon Press.
Böttger, S. A., McClintock, J. B., & Klinger, T. S. (2001). Effects of inorganic and organic phosphates on feeding, feeding absorption, nutrient allocation, growth and righting responses of the sea urchin Lytechinus variegatus. Marine Biology, 138, 741–751. https://doi.org/10.1007/s002270000476
Broom, D. M. (1991). Animal welfare: concepts and measurement. Journal of Animal Science, 69(10), 4167–4175. https://doi.org/10.2527/1991.69104167x
Brothers, C. J., & McClintock, J. B. (2015). The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle’s lantern reflex of the sea urchin Lytechinus variegatus. Experimental Marine Biology and Ecology, 467, 33–38. https://doi.org/10.1016/j.jembe.2015.02.019
Challener, R. C., & McClintock, J. B. (2017). In situ measurements of righting behavior in the common sea urchin Lytechinus variegatus: the importance of body size, substrate type, and covering material. Aquatic Biology, 26, 33–40. https://doi.org/10.3354/ab00669
Crespi-Abril, A., & Rubilar, T. (2018). Ética e invertebrados: análisis de los casos de los cefalópodos y equinodermos. Revista Latinoamericana de Estudios Críticos Animales, 1, 210–233.
Crespi-Abril, A., & Rubilar, T. (2021). Moving forward in the ethical consideration of invertebrates in experimentation: Beyond the Three R’s Principle. Revista de Biología Tropical, 69(S1), S346–S357. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46366
Damián, J. P., & Ungerfeld, R. (2013). Indicadores de bienestar animal en especies productivas: una revisión crítica. Archivos Latinoamericanos de Producción Animal, 21(2), 103–113.
Dihel, W. J., McEdward, L., Proffitt, E., & Rosenberg, V. (1979). The response of Luidia clathrata (Echinodermata: Asteroidea) to hypoxia. Comparative Biochemistry Physiology, 62(3), 669–671. https://doi.org/10.1016/0300-9629(79)90122-1
Dufossé, A. (1847). Observations sur le developpement des oursins. Annales des Sciences Naturelles, 7, 44–52
Domenici, P., González-Calderón, D., & Ferrari, R. S. (2003). Locomotor performance in the sea urchin Paracentrotus lividus. Journal of the Marine Biological Association of the United Kingdom, 83(2), 285–292. https://doi.org/10.1017/S0025315403007094h.
Food and Agriculture Organization (2016). El estado mundial de la pesca y la acuicultura 2016 [Technical inform]. Organización de las Naciones Unidas para la Alimentación y Agricultura.
Giese, A. C., & Farmanfarmaian, A. (1963). Resistance of the purple sea urchin to osmotic stress. The Biological Bulletin, 124(2), 182–192. https://doi.org/10.2307/1539494
Hagen, N. T. (2020). Is the righting response a useful indicator of functional well-being in the green sea urchin, Strongylocentrotus droehachiensis?. In B. David, A. Guille, & J. P. Feral (Eds.), Echinoderms Through Time (pp. 693–698). CRC Press. https://doi.org/10.1201/9781003077831
Hamilton, W. F. (1922). Coördination in the Starfish. III. The Righting Reaction as a Phase of Locomotion (Righting and Locomotion). Journal of Comparative Psychology, 2(2), 81–94. https://psycnet.apa.org/doi/10.1037/h0070051
Himmelman, J. H., Guderley, H., Vignault, G., Drouin, G., & Wells, P. G. (1984). Response of the sea urchin, Strongylocentrotus droebachiensis, to reduced salinities: importance of size, acclimation, and interpopulation differences Canadian Journal of Zoology, 62(6), 1015–1021. https://doi.org/10.1139/z84-144
Kleitman, N. (1941). The effect of temperature on the righting of echinoderms. The Biological Bulletin, 80(3), 292–298. https://doi.org/10.2307/1537716
Lawrence, J. (1975). The effect of temperature-salinity combinations on the functional well-being of adults. Journal of Experimental Marine Biology and Ecology, 18(3), 271–275. https://doi.org/10.1016/0022-0981(75)90111-2
Lawrence, J. M., & Cowell, B. C. (1996). The righting response as an indication of stress in Stichaster striatus (Echinodermata, Asteroidea). Marine Freshwater Behaviour and Physiology, 27(4), 239–248. https://doi.org/10.1080/10236249609378969
Nishizaki, M. T., & Ackerman, J. D. (2007). Juvenile–adult associations in sea urchins (Strongylocentrotus franciscanus and S. droebachiensis): protection from predation and hydrodynamics in S. franciscanus. Marine Biology, 151, 135–145. https://doi.org/10.1007/s00227-006-0462-6
Percy, J. A. (1973). Thermal adaptation in the boreo-arctic echinoid Strongylocentrotus droebachiensis (O. F. Müller, 1776). II. Seasonal acclimatization and urchin activity. Physiology and Zoology, 46(2), 129–138. https://doi.org/10.1086/physzool.46.2.30155593
Romanes, G. J., & Ewart, J. C. (1881). XIX. The Croonian lecture-Observations on the locomotor system of echinodermata. Philosophical Transactions of the Royal Society B: Biological Sciences, 172, 829–885. https://doi.org/10.1098/rstl.1881.0019
Rosales-Schultz, D. (2016). Evaluación de la temperatura crítica (TcMax) y presión osmótica en Tetrapygus niger en individuos de diversa talla [Unpublished Bachelor´s thesis]. Universidad de Valparaíso.
Sherman, E. (2015). Can sea urchins beat the heat? Sea urchins, thermal tolerance and climate change. PeerJ, 3, e1006. https://doi.org/10.7717/peerj.1006
Shi, D., Ding, J., Zhang, L., Zhan, L., Sun, J., Chang, Y., & Zhao, C. (2018). Effects of UV-B radiation on fitness related behaviors of the sea urchin Strongylocentrotus intermedius. Journal of Oceanology and Limnology, 36, 1681–1687. https://doi.org/10.1007/s00343-018-7211-9
Sonnenholzner, J., Montaño-Moctezuma, G., & Searcy-Bernal, R. (2010). Effect of three tagging methods on the growth and survival of the purple sea urchin Strongylocentrotus purpuratus. Pan-American Journal of Aquatic Sciences, 5(3), 414–420.
Strathmann, R. (1987). Echinoderm larval ecology viewed from the egg. In M. Jangoux, & J. M. Lawrence (Eds.), Echinoderm Studies, (Vol. 2, pp. 55–136). A. A. Balkema Publishers.
Sun, J., Chi, X., Yang, M., Ding, J., Shi, D., Yu, Y., Shi, D., Yu, Y., Chang, Y., & Zhao, C. (2019). Light intensity regulates phototaxis, foraging and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ, 7, e8001. https://doi.org/10.7717/peerj.8001
Tilbury, D. (2007). Monitoring and evaluation during the UN decade of education for sustainable development. Journal of Education for Sustainable Development, 1(2), 239–254. https://doi.org/10.1177/097340820700100214
Taylor, J. R., Lovera, C., Whaling, P. J., Buck, K. R., Pane, E. F., & Barry, J. P. (2014). Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis. Biogeosciences, 11(5), 1413–1423. https://doi.org/10.5194/bg-11-1413-2014
Zhang, L., Zhang, L., Shi, D., Wei, J., Chang, Y., & Zhao, C. (2017). Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ, 5, e3122.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (Vol. 574). Springer.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.