Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Effects of seedlac on soil bacterial diversity: An indication of environmental safety
PDF
HTML
EPUB

Keywords

seedlac; shellac; microbiome; lac insect; soil bacteria; lac resin
goma laca; microbioma; insecto laca; bacterias del suelo; resina de laca

How to Cite

Kandasamy, T., F Ansari, M., Ekbal, S., & K Sharma, K. (2025). Effects of seedlac on soil bacterial diversity: An indication of environmental safety. Revista De Biología Tropical, 73(1), e60353. https://doi.org/10.15517/rev.biol.trop.v73i1.60353

Abstract

Introduction: Lac resin, the only natural resin of animal origin, is exclusively produced by the lac insect (Kerria spp.). It is non-toxic and considered biodegradable. However, the bacteria involved in biodegradation have not been explored. Moreover, the fate of the soil bacteria during biodegradation has not been studied so far. Objective: To explore the fate of soil bacteria due to the burial of seedlac in soil to ascertain whether seedlac is environmentally safe, and to explore the possibilities of identifying any bacterial flora involved in lac biodegradation. Methods: The study began in 2016 by burying seedlac samples (semi-refined lac resin product) in the field soil and pot soil under replicated conditions. The seedlac samples were drawn from the soil in 2019, and the soil adhering to the seedlac samples was used in further experiments. The bacterial diversity of these soils was documented by sequencing the V3-V4 region of 16S rRNA through the Illumina NGS platform. Results: No significant variations were obtained in the soil bacterial diversity between samples except for the marginal increase in the count of Actinobacteria, Myxococcales, Gemmatales, Gemmataceae, the WD2101-soil group in seedlac buried pot soil, and Proteobacteria and Acidobacteria in field soil. Most of these bacterial groups are known to degrade complex organic polymers. Conclusions: Since there are no changes in the soil bacterial diversity due to seedlac burial, it may be concluded that seedlac does not affect the soil microflora and is safe for the soil environment.

https://doi.org/10.15517/rev.biol.trop..v73i1.60353
PDF
HTML
EPUB

References

Aanderud, Z. T., Saurey, S., Ball, B. A., Wall, D. H., Barrett, J. E., Muscarella, M. E., Griffin, N. A., Virginia, R. A., Barberán, A., & Adams, B. J. (2018). Stoichiometric shifts in soil C: N: P promote bacterial taxa dominance, maintain biodiversity, and deconstruct community assemblages. Frontiers in Microbiology, 9, 1401. https://doi.org/10.3389/fmicb.2018.01401

Agarwal, S. C., Srivastava, B. C., & Majee, R. N. (1988). Improved method of isolating aleuritic acid for maximizing its recovery from lac. Research and Industry, 33, 243–248.

Anandan, R., Dharmadurai, D., & Manogaran, G. P. (2016). An introduction to Actinobacteria. In D. Dharumadurai, & J. Yi (Eds.), Actinobacteria-basics and biotechnological applications (pp. 3–37). Intech Open.

Anees, K. (2016). Biosynthesis of aleuritic acid in Indian lac insect, Kerria lacca and its in vitro production [Unpublished Doctoral Thesis]. Indian Institute of Technology, Delhi.

Anonymous. (1986). Final report on the safety assessment of shellac. Journal of the American College of Toxicology, 5(5), 309–327. https://doi.org/10.3109/10915818609141914

Butbunchu, N., & Pathom-Aree, W. (2019). Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Frontiers in Microbiology, 10, 2834. https://doi.org/10.3389/fmicb.2019.02834

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Gonzales-Peña, A., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303

Dedysh, S. N. (2020). Gemmatales. In W. B. Whitman (Ed.), Bergey’s manual of systematics of archaea and bacteria (pp. VL193). Wiley. https://doi.org/10.1002/9781118960608.obm00177

Dedysh, S. N., & Ivanova, A. A. (2018). Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiology Ecology, 95(2), fiy227.

Handelsman, J. (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669–685. https://doi.org/10.1128/mmbr.68.4.669-685.2004

Industry Research. (2025, February 14). Global shellac market size, share and industry analysis by regions, countries, types, and applications, forecast to 2028. https://www.industryresearch.biz/global-shellac-market-23706917

Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., & Stackebrandt, E. (2006). Introduction to the Proteobacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 3–37). Springer.

Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Frontiers in Microbiology, 7, 744. https://doi.org/10.3389/fmicb.2016.00744

Meyer-Cifuentes, I. E., Werner, J., Jehmlich, N., Will, S. E., Neumann-Schaal, M., & Öztürk, B. (2020). Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium. Nature Communications, 11(1), 5790. https://doi.org/10.1038/s41467-020-19583-2

Seipke, R. F., Kaltenpoth, M., & Hutchings, M. I. (2012). Streptomyces symbionts: An emerging and widespread theme? FEMS Microbiology Reviews, 36(4), 862–876. http://dx.doi.org/10.1111/j.1574-6976.2011.00313.x

Sharma, K. K., Chowdhury, A. R., & Srivastava, S. (2020). Chemistry and applications of lac and its by-product. In D. Kumar, & M. Shahid (Eds.), Natural materials and products from insects: Chemistry and applications (pp. 21–37). Springer International Publishing.

Sharma, S. K., Shukla, S. K., & Vaid, D. N. (1983). Shellac-structure, characteristics and modification. Defence Science Journal, 33, 261–271. https://doi.org/10.14429/DSJ.33.6181

Siddiqui, S. A. (2004). Lac-The versatile natural resin. Natural Product Radiance, 3(5), 332–337.

Srivastava, S., & Thombare, N. (2017). Safety assessment of shellac as food additive through long term toxicity study. Trends in Biosciences, 10(2), 733–740.

Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., & Nishijima, M. (2014). Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing, PLoS ONE, 9(8), e105592. https://doi.org/10.1371/journal.pone.0105592

Zhang, X., Chen, Q., & Han, X. (2013). Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS ONE, 8(12), e84210. https://doi.org/10.1371/journal.pone.0084210

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista de Biología Tropical

Downloads

Download data is not yet available.