Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
The role of nocturnal and diurnal pollinators in the commercial production of Dragon Fruit crops in Costa Rica
PDF
HTML
EPUB

Keywords

ahaya, reproductive biology, reproductive system, fruit production, hawk moth pollination, bee pollination, Selenicereus costaricensis.
Pitahaya, biología reproductiva, sistema reproductivo, producción de frutos, esfíngidos, abejas, Selenicereus costaricensis.

How to Cite

Villegas-Murillo, J., & Fernández Otárola, M. (2025). The role of nocturnal and diurnal pollinators in the commercial production of Dragon Fruit crops in Costa Rica. Revista De Biología Tropical, 73(S2), e64685. https://doi.org/10.15517/rev.biol.trop.v73iS2.64685

Abstract

Introduction: Dragon fruit (or pitahaya) cultivation is of growing interest in Central America. Several species of the genus Selenicereus (Cactaceae) are cultivated around the world, with S. costaricensis being the only species native to this region. The pollination syndrome of the species partially matches chiropterophily and phalaenophily, but floral visitors and their effect on commercial fruit production is not well known.

Objective: To analyze the reproductive system, the floral visitors and their effect on fruit size in plantations of S. costaricensis in Costa Rica.

Methods: We recorded the anthesis period, stigmatic receptivity, anther dehiscence and nectar production. We conducted pollination experiments (manual self- and cross-pollination) and evaluated the effect of nocturnal and diurnal natural pollination on fruit production and traits related to fruit size and weight. Flower visitors were filmed, identified, quantified, and their behavior was documented.

Results: Plants were self-compatible. All pollination treatments produced viable fruits, but there were differences in fruit weight and size. Natural pollination, nocturnal and diurnal combined, produced the biggest fruits, while self-pollination the smallest. The fruits generated by either nocturnal or diurnal pollinators were of good commercial size. Hawk moths and bees were the main pollinators; no visits by bats were detected. The flowers produced no measurable nectar volume. Mass visitation by bees in periods of 15–20 minutes at dawn was sufficient to produce large fruits.

Conclusions: Diurnal and nocturnal pollinators are equally effective producing highly profitable fruits. The management of Apis mellifera and native solitary bee species is recommended to increase production efficiency in these plantations. Manduca rustica hawk moths seem the natural pollinators of S. costaricensis, and bats played no role in the production of fruits.

https://doi.org/10.15517/rev.biol.trop..v73iS2.64685
PDF
HTML
EPUB

References

Abrahamczyk, S., Lozada-Gobilard, S., Ackermann, M., Fischer, E., Krieger, V., Redling, A., & Weigend, M. (2017). A question of data quality–testing pollination syndromes in Balsaminaceae. PloS One, 12(10), e0186125. https://doi.org/10.1371/journal.pone.0186125

Basualdo, M., Cavigliasso, P., De Avila Jr, S. R., Aldea-Sánchez, P., Correa-Benítez, A., Harms, J.M, Ramos, A.K., Rojas-Bravo, V., & Salvarrey, S. (2022). Current status and economic value of insect-pollinated dependent crops in Latin America. Ecological Economics, 196, 107395. https://doi.org/10.1016/j.ecolecon.2022.107395

Bertin, R. I., & Newman, C. M., (1993). Dichogamy in angiosperms. The Botanical Review, 59, 112–152. https://doi.org/10.1007/BF02856676

Borges, R. C., Brito, R. M., Imperatriz-Fonseca, V. L., & Giannini, T. C. (2020). The value of crop production and pollination services in the eastern amazon. Neotropical Entomology, 49, 545–556. https://doi.org/10.1007/s13744-020-00791-w.

Centurión-Yah, A., Solís-Pereira, S., Saucedo-Veloz, C., Báez-Sañudo, R., & Sauri-Duch, E. (2008). Cambios físicos, químicos y sensoriales en frutos de pitahaya (Hylocereus undatus) durante su desarrollo. Revista Fitotecnia Mexicana, 31(1), 1–5.

Chang, F., Yen, C., Chen, Y., & Chang, L. (1997). Flowering and fruit growth of pitaya (Hylocereus undatus Britt. and Rose). Taichung District Agricultural Improvement Station, Annual Report, 38, 293–299.

Charkesworth, B. & Charkesworth, D. (1999). The genetic basis of inbreeding depression. Genetics Research, 74(3), 329–340. https://doi.org/10.1017/S0016672399004152

Chautá-Mellizo, A., Campbell, S. A., Bonilla, M. A., Thaler, J. S., & Poveda, K. (2012). Effects of natural and artificial pollination on fruit and offspring quality. Basic and Applied Ecology, 13(6), 524–532.

Corona, C. (2018). Biología reproductiva de Hylocereus ocamponis e H. purpusii (Cactaceae) [Tesis para obtener el grado de Maestro en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas]. Universidad de Guadalajara.

Dobat, K., & Peikert-Holle, T. (1985). Blüten und fledermäuse: bestäubung durch fledermäuse und flughunde (chiropterophilie). Waldemar Kramer.

Fenster, C., Armbruster, W., Wilson, P., Dudash, M. & Thomson, J. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics, 35, 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347

Flores-Martínez, A., Manzanero, G., Golubov, J. & Mandujano, M. (2013). Biología floral de Mammillaria huitzilopochtli, una especie rara que habita acantilados. Botanical Sciences, 91(3), 349–356.

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., ... Klein A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339, 1608–1611. https://doi.org/10.1126/science.1230200

Giannini, T. C., Cordeiro, G. D., Freitas, B. M, Saraiva, A. M., & Imperatriz-Fonseca, V. L. (2015). The dependence of crops for pollinators and the economic value of pollination in Brazil. Journal of Economic Entomology, 108(3), 849–857. https://doi.org/10.1093/jee/tov093

Haber, W. A. (1983). Hylocereus costaricensis (pitahaya silvestre), wild pitahaya. In D.H. Janzen (Ed.), Costa Rican Natural History (pp. 252–253). University of Chicago Press.

Hammel, B. E. (2020). Cactaceae. In B. E. Hammel, M. H. Grayum, C. Herrera & N. Zamora (Eds.), Manual de Plantas de Costa Rica, Vol. IV, Parte 2: Dicotiledóneas (Balanophoraceae―Clethraceae) (pp.251–293). Missouri Botanical Garden Press.

Hanson, P., Otárola, M. F., Lobo, J., Frankie, G., Coville, R., Aguilar-Monge, I., Acuña Cordero, M., Herrera-González, E. (2021). Abejas de Costa Rica. Editorial UCR.

Hoehn, P., Tscharntke, T., Tylianakis, J., & Steffan-Dewenter, I. (2008). Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences, 275(1648), 2283–2291. https://doi.org/10.1098/rspb.2008.0405

Holdridge, L. R. (1967). Life Zone Ecology. Tropical Science Center.

Johnson S. D., & Steiner K. E. (2000). Generalization versus specialization in plant pollination systems. Trends in Ecology & Evolution, 15(4), 140–143. https://doi.org/10.1016/S0169-5347(99)01811-X

Kearns, C. A., Inouye, D. W., & Waser, N. M. (1998). Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics, 29(1), 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83

Kevan, P. G., & Phillips, T. P. (2001). The economic impacts of pollinator declines: an approach to assessing the consequences. Conservation Ecology, 5(1), 8. http://www.consecol.org/vol5/iss1/art8/

Klein, A. M., Steffan‐Dewenter, I., & Tscharntke, T. (2003). Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). American Journal of Botany, 90(1), 153–157. https://doi.org/10.3732/ajb.90.1.153

Klein, A. M., Vaissiere, B. E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721

Lautenbach, S., Seppelt, R., Liebscher, J., & Dormann, C. F. (2012). Spatial and temporal trends of global pollination benefit. PLoS ONE, 7(4): e35954. https://doi.org/10.1371/journal.pone.0035954

Le Bellec, F., Vaillant, F., & Imbert, E. (2006). Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits, 61(4), 237–250. https://doi.org/10.1051/fruits:2006021

Marques, V., Moreira, R., Ramos, J., Araújo, N., & Silva, F. (2011). Fenologia reprodutiva de pitaia vermelha no município de Lavras, MG. Ciência Rural, 41, 984–987. https://doi.org/10.1590/S0103-84782011005000071

Milfont, M., Rocha, E., Lima, A., & Freitas, B. (2013). Higher soybean production using honeybee and wild pollinators, a sustainable alternative to pesticides and autopollination. Environmental Chemistry Letters, 11, 335–341. https://doi.org/10.1007/s10311-013-0412-8

Mizrahi, Y., Nerd, A., & Sitrit, Y. (2002). New fruits for arid climates. In J. Janick & A. Whipkey (Eds.), Trends in New Crops and New Uses. (pp. 378–384). ASHS Press.

Molina-Freaner, F., Rojas-Martínez, A., Fleming, T., & Valiente-Banuet, A. (2004). Pollination biology of the columnar cactus Pachycereus pecten-aboriginum in north- western México. Journal of Arid Environments, 56(1), 117–127. https://doi.org/10.1016/S0140-1963(02)00323-3

Muchhala, N., Caiza, A., Vizuete, J. C., & Thomson, J. D. (2009). A generalized pollination system in the tropics: bats, birds and Aphelandra acanthus. Annals of Botany, 103(9), 1481–1487. https://doi.org/10.1093/aob/mcn260

Muñiz, J., Bomfim, I., Corrêa, M., & Freitas, B. (2019). Floral biology, pollination requirements and behavior of floral visitors in two species of pitaya. Revista Ciência Agronômica, 50, 640–649. https://doi.org/10.5935/1806-6690.20190076

Muñiz, J., Bomfim, I., Corrêa, M., & Freitas, B. (2020). Complementary bee pollination maximizes yield and fruit quality in two species of self-pollinating pitaya. Revista Ciência Agronômica, 51(4), e20207106. https://doi.org/10.5935/1806-6690.20200072

Nabhan, G. P., & Buchmann, S. L. (1997). Services provided by pollinators. In G. C. Daily (Ed.), Nature's Services: Societal Dependence on Natural Ecosystems. (pp. 133–150). Island Press.

Ollerton, J., Alarcón, R., Waser, N. M., Price, M. V, Watts, S., Cranmer, L., Hingston, A., Peter, C. I., & Rotenberry, J. (2009). A global test of the pollination syndrome hypothesis. Annals of Botany, 103, 1471–1480. https://doi.org/10.1093/aob/mcp031

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals?. Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

Porto, R. G., Almeida, R. F., Cruz-Neto, O., Tabarelli, M., Viana, B. F., Peres, C. A., & Lopes, A. V. (2020). Pollination ecosystem services: a comprehensive review of economic values, research funding and policy actions. Food Security, 12, 1425–1442. https://doi.org/10.1007/s12571-020-01043-w

Pushpakumara, D., Gunasena, H., & Karyawasam, M. (2005). Flowering and fruiting phenology, pollination vectors and breeding system of dragon fruit (Hylocereus spp.). Sri Lankan Journal of Agricultural Science, 42, 81–91.

Queiroz, J. A., Quirino, Z. G. M., Lopes, A. V., & Machado, I. C. (2016). Vertebrate mixed pollination system in Encholirium spectabile: a bromeliad pollinated by bats, opossum, and hummingbirds in a tropical dry forest. Journal of Arid Environments, 125, 21–30. https://doi.org/10.1016/j.jaridenv.2015.09.015

Queiroz, J. A., Quirino, Z. G. M, & Machado, I. C. (2015). Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators. AoB Plants, 7, plv127. https://doi.org/10.1093/aobpla/plv127

R Core Team. (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing.

Ricketts, T. H., Daily, G. C., Ehrlich, P. R., & Michener, C. D. (2004). Economic value of tropical forest to coffee production. Proceedings of the National Academy of Sciences, 101(34), 12579–12582. https://doi.org/10.1073/pnas.0405147101

Rizzardo, R., Milfont, M., Silva, E., & Freitas, B. (2012). Apis mellifera pollination improves agronomic productivity of anemophilous castor bean (Ricinus communis). Anais da Academia Brasileira de Ciências, 84(4), 1137–1145. https://doi.org/10.1590/S0001-37652012005000057

Rosa, A., Blochtein, B., & Lima, D. (2011). Honey bee contribution to canola pollination in Southern Brazil. Scientia Agricola, 68, 255–259. https://doi.org/10.1590/S0103-90162011000200018

Rosas-Guerrero, V., Aguilar, R., Martén-Rodríguez, S., Ashworth, L., Lopezaraiza-Mikel, M., Bastida, J. M., & Quesada, M. (2014). A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecology Letters, 17, 388–400. https://doi.org/10.1111/ele.12224

Taber, S. K., & Olmstead, J. W. (2016). Impact of cross-and self-pollination on fruit set, fruit size, seed number, and harvest timing among 13 southern highbush blueberry cultivars. HortTechnology, 26(2), 213–219. https://doi.org/10.21273/HORTTECH.26.2.213

Valiente-Banuet, A., Gally, R., Arizmendi, M., & Casas, A. (2007). Pollination biology of the hemiepiphytic cactus Hylocereus undatus in the Tehuacán Valley, Mexico. Journal of Arid Environments, 68(1), 1–8. https://doi.org/10.1016/j.jaridenv.2006.04.001

Valverde‐Espinoza, J. M., Chacón‐Madrigal, E., Alvarado‐Rodríguez, O., & Dellinger, A. S. (2021). The predictive power of pollination syndromes: passerine pollination in heterantherous Meriania macrophylla (Benth.) Triana (Melastomataceae). Ecology and Evolution, 11(20), 13668–13677. https://doi.org/10.1002/ece3.8140

Villalobos, R., & Retana, J. (2000). Costa Rica: Instituto Meteorologico Nacional. In J.W. Jones (Coordinator), Comparative assessment of agricultural uses of ENSO-based climate forecasts in Argentina, Costa Rica and Mexico, final report (pp. 49–95). Inter-American Institute for Global Change Research.

Vogel, S. (1968). Chiropterophilie in der neotropischen flora: neue mitteilungen I. Flora oder Allgemeine botanische Zeitung. Abt. B, Morphologie und Geobotanik 157(4), 562–602. https://doi.org/10.1016/S0367-1801(17)30097-2

Waser, N. M., Chittka, L, Price, M. V., Williams, N. M., & Ollerton, J. (1996). Generalization in pollination systems, and why it matters. Ecology, 77(4), 1043–1060. https://doi.org/10.2307/2265575

Waser, N. M., & Williams, C. F. (2001). Inbreeding and Outbreeding, In C.W. Fox, D.A. Roff, & D.J. Fairbairn (Eds.), Evolutionary Ecology: Concepts and Case Studies (pp. 84–96). Oxford Academic. https://doi.org/10.1093/oso/9780195131543.003.0011

Weiss, J., Nerd, A., & Mizrahi, Y. (1994). Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience, 29(12), 1487–1492. https://doi.org/10.21273/HORTSCI.29.12.1487

Xu, K., & Servedio, M. (2021). The evolution of flower longevity in unpredictable pollination environments. Journal of Evolutionary Biology, 34(11), 1781–1792. https://doi.org/10.1111/jeb.13936

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.