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Abstract

In this work, we present a concise and educational study of gravitational
lensing by transparent matter distributions. We focus on the calculation of
image properties for several idealized mass profiles, including the uniform
transparent sphere, the isothermal gas sphere, the non singular isothermal
sphere, and the transparent King profile. Using numerical techniques and
the XFGLenses software, we compute and visualize the resulting lensed im-
ages, along with the associated critical curves and caustics. The results are
consistent with established theoretical predictions for transparent lenses, for
example, the occurrence of an odd number of images, and the reduction of
two images as the source crosses a caustic. The caustic geometries observed
include diamond-shaped, elliptical, and lemniscate-like structures. Among
the critical curves, ellipses were most commonly observed, while lemniscate-
like forms emerged specifically in the transparent non-singular isothermal
sphere case, in agreement with known behaviors in gravitational lensing by
smooth matter distributions.

Keywords: gravitational lensing; numerical simulations; general relativity.

Resumen

En esta contribucién, presentamos un estudio conciso y educativo de lentes
gravitacionales debido a distribuciones de masa transparentes. Nos enfo-
camos en los cédlculos de las propiedades de la imagen para perfiles de masa
idealizados, incluyendo la esfera transparente uniforme, la esfera de gas
isotérmico, la esfera de gas isotérmico no singular, y el perfil de King trans-
parente. Utilizando técnicas numéricas y el software XFGLenses, se calculan
v se visualizan las imégenes resultantes, junto con las curvas criticas y cdus-
ticas asociadas. Los resultados son consistentes con las predicciones tedricas
de los lentes transparentes, como lo son un nimero impar de imagenes, y
la reduccién del nimero de imédgenes en dos cuando la fuente atraviesa la
caustica. Las geometrias que presentan las curvas cdusticas encontradas in-
cluyen la forma de diamante, forma eliptica, y tipo lemniscata. Entre las
curvas criticas, formas elipticas fueron las més encontradas, y la forma tipo
lemniscata aparecieron especificamente en el case de la esfera isotérmica no
singular, lo cual es esperado de lo conocido de lentes gravitacionales debido
a distribuciones ideales.

Palabras clave: lentes gravitacionales; simulaciones numéricas; relatividad general.

Mathematics Subject Classification: Primary: 83-01, 83-08; secondary 85-04,

97Mxx.

1. INTRODUCTION

Due to the curvature of space-time, light rays from a distant source can take differ-
ent paths in the presence of a massive object. In this way, multiple images can be
generated due to this effect. The mass distribution of the lens plays an important
role in the generation of these images. This phenomenon of observing multiple
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TRANSPARENT SPHERES AS GRAVITATIONAL LENS 93

images is called gravitational lensing [30]. Gravitational lenses were proposed by
several researchers since Einstein’s time, including Einstein himself [29]. However,
these objects were not observed until 1979 [37]. After this discovery, observations
increased and currently more than 100 gravitational lenses have been observed
over multiple wavebands (See [17, 28, 32]). With the release of projects like the
James Webb Space Telescope, and the Rubin Observatory Legacy Survey of Space
and Time, the interest in strong gravitational lenses has once again increased dra-
matically [34, 36]. It has even been claimed that a strong gravitational lens could
improve the angular resolution of modern gamma-ray instruments up to 6 orders
of magnitude [2].

The treatment of gravitational lenses as transparent objects has not been con-
sidered as much as the opaque case, but some interesting studies have appeared
throughout the years. In 1971, Clark considered the uniform and transparent
gravitational lens and calculated the deflection angle and the effects on beam
area, apparent luminosity and focusing effects [7]. Bourassa and Kantowski made
further calculations on cases with spheroidal symmetry [3, 4]. After this, in 1984,
there was a minor correction made by Bray in the surface density integral made by
Bourassa and Kantowski [5]. Another article regarding the subject was made by
McKenzie in 1985, where he shows that transparent lenses make an odd number
of images [24]. This was also shown by Dyer and Roeder in 1980 [9]. Although
Gottlieb argues this is not always true [13]. Nandor and Helliwell analyzed gravi-
tational lensing with Fermat’s principle and they used the model of a transparent
lens with a logarithmic varying thickness [25]. Fermat’s principle in the study of
strong gravitational lenses has also appeared more recently in 2013 [18], and in
2014 an interesting software named GLASS appeared to help figure out gravita-
tional lens models from observational data [8]. Another use of the transparent
case was done by Patla and Nemiroff in 2008, where they modelled the Sun as
a Transparent Sphere [27]. Theoretical work in gravitational lensing nowadays
is more focused on exploring gravitational lensing under new metrics, multiplane
sources, or even developing the analysis through geometric optics [33].

There have also been interesting experiments where images with transparent
objects were reproduced, simulating the effects realistically. In 1969, Liebes used
Plexiglas to simulate magnification and lensing effects like the ones he studied
previously in 1964 [22, 23]. Icke constructed a cylindrical lens, also employing
Plexiglas, to approximate the lensing of a point mass object in 1980 [16]. Higbie
used Plexiglass too [14], and Falbo-Kenkel and Lohre used bases of wine glasses
to simulate gravitational lensing [10]. Adler et al. employed plastic lenses accord-
ing to their calculations for the point mass, the constant density sphere and the
isothermal gas sphere [1]. Recently, Selmke used a setup with a water filled acrylic
pool and small discs to replicate the case of a single, a binary and a triple mass
lens [31].There is even an interesting work from 2022 where Xu et al. try to model
gravitational lensing effects with metamaterial in a thin elastic plate [38]. That
said, not much has been done in terms of computer simulations of these images
caused by the transparent cases. There have been works such as Newbury and Spi-
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teri in 2002 [26], but the focus is not in the transparent case nor in the macrolens
generalization (See Section 2.2). It is unsurprising that not much attention has
been given to this aspect of gravitational lensing now that the community has fo-
cused on other aspects of the theory. Moreover, we consider an interesting avenue
for educational purposes on bringing back attention to the computational model-
ing of the images that has been relatively unexplored, as opposed to exploring the
concepts through experiments.

In gravitational lensing, the singular isothermal sphere (SIS) represents a sim-
plified mass distribution where the mass density decreases as the inverse square of
the distance from the center (leading to a singularity at the center). This model is
useful because it provides a good approximation for the mass distribution of certain
types of galaxy clusters or elliptical galaxies. The SIS model helps in understand-
ing how light from a background object is bent around a foreground mass, causing
the characteristic lensing effects such as multiple images or distorted arcs [35].

The Non-Singular Isothermal Sphere (NIS) model is another variant used in
gravitational lensing studies, and it serves as an extension or refinement of the SIS
model. Unlike the SIS model, the NIS model modifies this approach to avoid the
singularity. This model helps in overcoming the limitations of the SIS model by
providing a more physically plausible description of a mass distribution, particu-
larly in systems where the core density needs to be finite [15].

The King model profile is valuable for modeling systems with a finite extent
and a well-defined core, making it useful for both stellar clusters and certain types
of galaxy clusters in gravitational lensing studies [39]. In this article we review
these gravitational lens models.

Adler et al. calculated the deflection angle for the transparent uniform sphere,
the transparent SIS, and the non-singular case (NIS) [1]. In this article, using the
results of Adler et al., we develop and get the calculations that are necessary to
plot the caustics and critical curves. The transparent King profile, and its deriva-
tives are also included. From these results, images are obtained for the different
transparent profiles, with some caustics and critical curves associated with these
profiles. Although we do this mainly for educational purposes, considering that
the concepts of strong gravitational lensing are well represented in the models
we studied, we also consider valuable for these calculations and images to be in
the contribution, given that this area is relatively unexplored. For the compu-
tational images, the simulator XFGLenses [11, 12] is employed and for some of
the critical curves and caustics, and a code made in MATLAB is used to find the
curves. XGFLenses is a computational tool capable of producing the images that
produces a certain galaxy or galaxy cluster given the density distribution and the
parameters relevant for the calculation of the images. It is also capable of calcu-
lating the caustics of a given gravitational lens. Our aim is to better illustrate the
strong gravitational lensing by transparent matter distribution concepts by making
computer simulated images made with XFGLenses of different transparent cases,
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including the transparent and uniform sphere, and the non uniform cases with
spheroidal symmetry. It is important to note that we want this article to serve
as an introduction for someone interested in the topic, alongside some findings
regarding the differences between images, caustic and critic curves for different
density profiles in the transparent sphere and adding macrolenses, with the aid of
computational simulations.

The structure of the paper is as follows: in Section 2, a brief description of the
gravitational lens theory is given. In Section 3, the transparent uniform sphere
is discussed. In following sections, the results for the mentioned lens models are
presented. In Section 7, we will show the images and analyze them, and in Section
8, some conclusions are given.

2. GRAVITATIONAL LENSES

2.1. Deflection angle.

For the case of a point mass, using the Schwarzschild metric, it can be shown from
the geodesic equation that the deflection angle, is given by

. 4GM
a = W, (21)

where @& is the deflection angle (See Figure 1), G is the gravitational constant, M
is the mass of the deflecting object, ¢ is the speed of light and ¢ is the impact
parameter or the closest distance from the light to the object. This is valid for
small angles of deflection [30].

Starting from a point mass distribution, it is possible to generalize the previous
result to a mass distribution by integrating Equation 2.1, obtaining

46 €-8)
o= f S (2.2)

where X(£') is the surface mass distribution, and we are using bold characters to
represent vectors and matrices. Even though it is clear that the mass distribution
is a volumetric distribution, we can use the fact that the size of the lens is very
small compared to the cosmological distances from the lens to the source plane
and to the observer. This is known as the thin lens approximation.

In this article, we calculate different deflection angles but in all cases the matter
distributions are axially symmetric. This allows the deflection angle equation to
be reduced to a similar form according to Equation 2.1, as follows:
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Figure 1: Diagram of the angle of deflection, showing the plane of the Source, the plane
where the lens is located, and the plane of the observer.

o = MO (2.3)

cr

where M(r) is the projected mass that is enclosed a distance r from the origin
(See Figure 2). This simplifies the procedure of obtaining the angle of deflection
by just calculating M(r) for a given distribution. There are actually two ways of
calculating M(r). For a tridimensional mass distribution u(r), one can calculate
the projected bidimensional distribution X£(£) by applying an Abel Transformation
[19] to find M(r), or, alternatively, one can perform the tridimensional integration
with u(r), making sure that the integration only encompasses the enclosed mass in
a cylinder of radius r as seen from Earth (see Figure 2).

2.2. Lens equation.

Although gravitational lensing is an effect from general relativity, it is possible
to establish a purely geometric relation. Using the notation from Figure 1, the
following geometric relation can be written as

B=0-—& 2.4
Ds (24)

where B is the angle the observer and the source make with a line normal to the
lens plane, @ is the angle between a line normal to the lens plane and the ray of

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 91-115, Jul — Dic 2025



TRANSPARENT SPHERES AS GRAVITATIONAL LENS 97

Figure 2: Diagram of the enclosed mass in a cylinder of radius r. The left image represents
the projected mass, as seen from Earth. On the right, the lateral view.

light before deflection, Dy is the distance between the Observer plane and the Lens
plane, D;g is the distance between the Source plane and the Lens plane, and Dg
is the distance between the Observer plane and the Source plane (in cosmology,
distances cannot be added: Dg # Dy + D;g. If the reader is interested in how to
work with cosmological distances, we recommend the work from Kayser in 1997
[20]). From (2.4), the dimensionless lens equation

y=x-ax), (2.5)

is obtained, where

D ’
at) = St = [ w)Eo

y= — and x

£
&

The parameter & is the length scale on the lens surface. The dimensionless surface
density of the lens is given by

where X. represents the critical density, which is given by

y = C2DS
“ 47TGDLDLS '

A generalization of the lens equation (2.5) is
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y=M x-a), (2.8)

where x = (x1, x,)7 is the image position on the lens plane (x2 = x%+x%), y =01 )’

is the source position on the source plane, and the matrix M is given by

1 -0 —vycos2¢ —ysin2¢

M= —ysin2¢ l-0+7ycos2¢ |’

(2.9)

where o is the dimensionless macrolens density, v is the dimensionless macrolens
shear, and ¢ is the shear angle. In a physical sense, o can contribute to the
magnification or reduction of the lens, y to the deformation of the lens, and ¢ to a
rotation in the lens. Notice that when all of these 3 quantities are 0, M becomes
the identity matrix and Equation 2.8 reduces to Equation 2.5. The components
M;; (i, j=1,2) of the matrix are:

My = 1-0—-vycos2p,
M12 = le ==Y sin 2¢, (210)
My, = 1—-0+vycos2ep.

2.3. Caustics and critical curves.

The critical and caustic curves are important in gravitational lensing analysis,
because they divide the lens into regions of interest. Knowing the caustics and the
position of the source, the number of images that a gravitational lens will create
can be determined, as well as where the images will be magnified [30].

The critical curves are the curves that are formed in the lens plane, on the
other hand, the caustics are formed in the source plane. It can be shown that the
magnification of a gravitational lens is inversely proportional to the determinant
of the Jacobian matrix. Because the caustic gives us information about the con-
centration of light rays, mathematically the curve we are looking for can be found
when the magnification diverges [30]. Thus, critical curves can be obtained if the
determinant of the Jacobian is equal to zero, that is det(J) = 0 with the matrix J
given by

J = Ju T\ _ 9y
Jo In)  ox’

were the components of J are:
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=2t _ﬁ)_x_?(d_a_z),
0x x) x2\dx «x
Jio = Z_ic); = M12—%(%—%),
Iy = % = My - % (j—i - %) (2.11)
O Al ]
Then, the determinant of the Jacobian is given by
J = fiet J=JiJn - J12121_ (2.12)
,a\ X da:

X (MZZ‘XIF)‘Ea

The caustics are mapped using the lens equation, in which the x; and x, are
evaluated by equating the determinant of the Jacobian matrix to zero. Caustic
curves are generally described by polar curves, therefore using the following change
of variable of x; and x; in terms of 6 and x:

xcos0,
xsiné. (2.13)

X1

X2

From (2.8), (2.10) and (2.11), we can obtain a general expression for the determi-
nant given by

det J = det M + (d—“ - TrM) e (d—“ - g)(1TrM +cos(2(6 — ¢))). (2.14)
dx X dx x/)\2

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 91-115, Jul — Dic 2025



100 E. SANTIAGO-LEANDRO — A. MORA-CHAVERRI — F. FRUTOS-ALFARO

Considering the case in which M is equal to identity matrix, Equation (2.14) does
not depend on the angular coordinate (y = 0), reducing to the expression

det J = (% - 1)(‘;—6; - 1). (2.15)

In this case, the form of the caustics can be obtained from

(d—“-l)(c—'—l)=o. (2.16)

3. TRANSPARENT SPHERE

As first example, the transparent sphere is considered. Whether it is the trans-
parent or opaque case, an uniform matter distribution is useful as a first case to
study, because it is among the easiest mass distributions.

The transparent sphere density is given by

() ={ 84/‘/ :iﬁ’ (3.1)

where M is its mass, R its radius, and V = 47R3/3 its volume. Because the
transparent uniform sphere is axially symmetric, we only need to pay attention
to the enclosed mass a distance r from the center of the distribution, so it can be
scaled to find the deflection angle as a function of the scaled radius x.

The integration for M(r) gives

r R 2\
M(r) = 47rf f updzdp = M[l - (1 - —) . (3.2)
0o Jo

R2

Then, the deflection angle would be

r

o= 2R [1 _ (1 - ’—2)3/2], (3.3)
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where Ry = 2GM/c? is the Schwarzschild radius. The final step is to scale in terms
of x. The way this is done is by defining x = r/(2R;), and xy = R/(2R;), where x, xg
are the new scaled variable and the new scaled radius, respectively. From this, the
Einstein angle becomes

1 2\3/2
—[1—(1—)‘—2) x < x,
a(x) = )lc Xp (3.4)
- X > Xp.
X
The derivative is
da —fl(x) x < Xp, .
E B —F X > X0, ( ' )

with

| 21\3/2 3 2N\172
f(x)=;l1—(l—x—2] ]——2(1—%) : (3.6)

0

4. TRANSPARENT ISOTHERMAL (GAS SPHERE

The singular isothermal gas sphere or SIS describes a relatively simple distribution
of matter with certain realistic properties. It is an axially symmetric distribution
that gives flat rotation curves. This is important to describe the dark matter halo
in galaxies. The name stems from the fact that it also represents a distribution of
gas where the pressure is proportional to its density [1, 30].

The density profile for the SIS is

b

-2 4.1
0 (11)

b
#(”)=ﬁ

where b is a parameter of the model that is fitted according to the distribution in
question. Here, the deflection angle becomes [1]

1
ZRS 2\2
(r) = “1-Z) + % arccos(i) , (4.2)
R? R R

a(r) =

r
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with total mass M = 4xbR. Now, the scaled deflection angle is

1
1 2\2
alx) = - ll - (1 - x_z) + X arccos(i)}.
X Xy Xo X0

The derivative of the deflection angle is

(-5

5. TRANSPARENT NON SINGULAR ISOTHERMAL GAS SPHERE

dae -1

dx  x?

(4.4)

The non Singular Isothermal Gas Sphere (NIS) generalizes the SIS by adding a core
radius, which eliminates the divergence the SIS model has at r = 0. Moreover, this
model is more studied because realistic mass distributions and gravitational lenses
are better reproduced with a non singular model, when compared to a singular

one. For the NIS distribution, the density profile is given by

b
pr+2+r

up,2) =

where r, is the core radius. The deflection angle is [1]

1
2R, rP\2 \r+ 2 re
a = i-1- ) ¥ T _re _
a(r) B ( R2) R arccos Bi R eeos B>

Scaling, the deflection angle becomes

1
2\2 )
X VX2 +x X
alx)= — |1 - (1 - —2] + ———C arccos 3| — — arccos 3 |,
X533 X X0 Xo
where
Xe = r:/(2Ry),
X2+ xZ
B = R,
x5+ X2
Xc
B = ;
2, ,2
x5 + X2
X
B3 = 1-arccosfs.
X0
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Note that if x. = 0, the deflection angle is the SIS angle. Its derivative is

da 1 x? x? x? f
— = —— |——arccosB; + — + fo — — — arccos B — s 5.5
dx 2B | ofi Bi 25 Jo WAl % B1—P3 (5.5)
where
2
fo = 1-=,
X0
f = AP+ (5.6)
Hh = ,/xé+x§,
X% + x2
N
2

6. TRANSPARENT KING MODEL

The King density model was proposed as a distribution that maps the density
profile of the Coma cluster of galaxies [21]. Moreover, it is advantageous, because
it does not diverge at r = 0, and it works well in general as a density model
for clusters of galaxies with a flat rotation curve. The King density model is
given by [21]

. Ho
u(r') = m , (6.1)

where ' = (% + z2)/r. is the scaled distance from the center and p and z are the
cylindrical coordinates.

The deflection angle becomes

167G uor? 1 R VR? - 12
&(r) = T Z,uorc ( VR? — 12 — R) arctanh (— — arctanh (—r] .
cr VI + R? 2+ R? 2+ R?

(6.2)

By evaluating to find the total enclosed mass M(r) in r = R, one obtains

M = mpor’ fi, (6.3)
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where
R
fa= 4arctanh[ J - . (6.4)
JiZ+RY)  \rZ+R?
With this definition, we can write the deflection angle as
. 2R, 1 |R2-7r2 1 fRz -r?
a(r) = . 1+ ﬁ m - ﬁ arctanh( ’%_'_—Rz] . (65)
Scaling, and using the definitions f; defined for the NIS case, we obtain
1 Xfo S (xofo )}
a(x) = — |1+ —— — = arctanh| — ||, 6.6
x [ 55 S (6.6)
where
X0
=5 arctanh(—) - X. (6.7)
f2
The derivative of the deflection angle is
d 1 2x2 2
£2 _ -=|1- 22 N *__ L arctanh(xo—fo) + xo_fo]. (6.8)
dx  x xofofs(fs = xgfs)  xofofs S 12 fs

7. IMAGES, CAUSTICS AND CRITICAL CURVES FOR THE PROFILES

Now, we proceed to analyze the images, caustics and critical curves generated
by the profiles described above. Figures 3, 5, 7, 9 and 11 were generated with
XFGLenses. For Figures 4, 6, 8, 10 and 12, MATLAB was employed, because
the caustics and critical curves for the transparent version of these profiles are
not implemented in XFGLenses yet. In Figure 3, a ring is formed if the source is
projected at the center of the mass distribution with the parameters y and o are
null. This is known in gravitational lens theory as an Einstein Ring * [30]. Note
that the first image in Figure 5 also has the source in the origin. The difference
between this image and the one from Figure 3 is that a non-zero value for o~ and y
is added. The images are still connected but one can still note that there are four
distinct images surrounding the origin and a small image in the origin, having five
images in total. This is expected because, as we mentioned in the introduction, a
transparent lens should have an odd number of images [24].

n fact, Chwolson was the first to publish that a ring could form if the lens, the source and
the observer are in the same line of vision. [6]
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TRANSPARENT SPHERES AS GRAVITATIONAL LENS 105

‘ l
~o=
==

"44*

Figure 3: Images for the uniform transparent sphere. The black dot represents where
the original source is with respect to the center of the distribution. The values for the
parameters (o and y) are null, which means that M = 1.

The positions of the caustics of the uniform transparent sphere for M = I
(identity matrix) are calculated. Following from (2.14), and using (3.4) and (3.5),
we have two equations when x < xy that give possible critical curves:

The first equation has one solution for 1 < xy < \/g , and the second equation has

one solution when 0 < xy < \/g . Now, let us consider the case x > xy. In this case,
we have the point mass case and the equations would be:

1

1-5 =0 (7.3)
1

I+ =0. (7.4)

In this case, it is obvious that (7.3) has one solution x = 1 and (7.4) has no
solutions. The conclusion from this is that for 0 < xy < 1, there are two critical
curves which are circles whose radii are the solutions of (7.2) and (7.3); and, for

1<x < \/g , there are also two critical curves, which correspond to circles whose
radii are the solutions of (7.1) and (7.2). Figure 4 shows these results.

In Figure 5, there is also an odd number of images. The images stopped being
connected once the source is not on the origin of the mass distribution. Another
interesting result is that the number of images goes from five to three in Figure 5
(columns 1 and 2). This is yet another common result from gravitational lensing.
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Figure 4: Caustics and critical curves for the uniform transparent sphere, for M = I.
The critical curves are in magenta and the caustics in black. The top row has respec-
tively, from left to right, xo = {0.3,0.5,0.7}. The bottom row has values, from left to
right, of xo = {1, 1.1, 1.2}.
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If the source crosses the caustic, the number of images is reduced by two [30]. In
Figure 5, the caustic crossing can be seen.

£
A4
(J

Figure 5: Images (left) and critical curves and caustics (right) for the uniform transparent
sphere. The black dot represents where the original source is with respect to the center
of the distribution, and the green dots represent individual images. The values for the
parameters are: o =0.25, ¢ =0 and y =0.12 and xy = 1.

The images shown in Figure 6 are the critical curve and caustic if xo = 1. The
difference here is that both the diamond and the ellipse form as caustic solutions,
and in the critical curves, two ellipse-like curves are forming as solutions.

From Figure 7, we have a particularly interesting result, because the central
image that appeared in the other models does not appear in this case. The reason
this occurs is that the central image is the result of the unlensed light from the
source going perpendicularly through the lens and to the observer. However, the
SIS model has a divergence in r = 0 that results in the equation not giving this
particular solution. This is consistent with the theory that predict an odd num-
ber of images, because these articles started from the assumption that the mass
distribution was physically sensible, and that it did not have a divergence at the
origin.
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0.5

05[

Figure 6: Images of the caustics (left) and the critical curves (right) plotted for the
uniform transparent sphere. The parameters are ¢ =0, oo = 0.25, y = 0.16. and xy = 1.
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Figure 7: Lens images formed by a SIS distribution. The black dot represents where the
original source is with respect to the center of the distribution. The parameters are ¢ = 0,
o =0.16 and y = 0.12.

In 1980, Dyer and Roeder mentioned that they deduced the odd number of
images for a transparent profile assuming that the matter distribution diverges
less rapidly than 1/r as r goes to 0, which is not the case for the SIS profile [9].
What we observe in the images on figure 7 correspond to those that come in pairs
in the transparent case, and not the one that goes from the source directly to the
observer.

In Figure 8, it can be seen that the caustic solution for the transparent SIS
profile is a diamond, and the critical curve it is an ellipse. These are very common
as shapes for caustics and critical curves, even though they are not the only possible
solutions. The NIS case is presented in Figure 9. In this case, four symmetrical
images instead of an Einstein ring are observed, and the image from the center
that goes through the matter distribution, because the lens is transparent. This
is known as an Einstein cross, and it has been observed [30]. Five images appear
in the top row and in the bottom left image, when one considers that the arc
contains 3 images. In the bottom right image, the source is outside the distribution,
resulting in two images from the point case.
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Figure 8: Images of the caustics (left) and the critical curves (right) plotted for the
Transparent SIS. The parameters are ¢ =0, oo = 0.25, ¥ = 0.16 and xp = 1.

In Figure 10, the caustic and critical curves for NIS are quite different from the
singular case. The graph for the caustic has a diamond-like figure, and the plot
for the critic curve has a lemniscate-like figure.

The same interesting phenomenon as in the uniform transparent sphere is
shown in Figures 11 and 12. There are two critical curves and two caustics. As
in the transparent NIS profile, if the source is at the origin, an Einstein cross is
observed. Another phenomenom, we can observe from Figure 11 is that, changing
the values vy, ¢, o of M the specific shape for the Einstein cross can change to
the point it is no longer symmetric. Different values for these parameters can be
adjusted so that a real image can be mapped with a model. ¢ has the effect of
rotating the images in this case. In Figure 11, we can also observe the transition
from five to three and then to one image. Note that in the bottom left image, the
arc embodies two images.

8. CONCLUSIONS

In this contribution, we present an extensive explanation regarding
macro-gravitational lenses and how to calculate different properties of this images
in the case of a transparent distribution of matter, following a specific profile.

With the help of XFGLenses, and with MATLAB, we show different images that
arise from all of these profiles, and the different caustics and critical curves. The
images are consistent with several previous results that are expected for trans-
parent profiles. One of them is that these give rise to an odd number of images
[9, 24], even though, as stated before, this may not be a necessary condition [13].
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V 4

Figure 9: Lens images formed by a NIS distribution. The black dot represents where
the original source is with respect to the center of the distribution. The parameters are
¢ =0, 0=0.33 and y = 0.16.
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Figure 10: Images of the caustics (left) and the critical curves (right) plotted for the
transparent NIS. The parameters are ¢ =0, o = 0.25, y =0.16 and x, = 1.
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Figure 11: Lens images formed by a transparent King distribution. The black dot repre-
sents where the original source is with respect to the center of the distribution. In the 4
images, ¢ = 0. For 7, in the first row and bottom left image y = 0.16 and in the bottom
right y = 0.08. For o, the first column have o = 0.33 and the second column o = 0.25. In
the Einstein cross, the central image is little and opaqued by the source.

= 08

Figure 12: Images of the caustics (left) and the critical curves (right) plotted for the
transparent King. The parameters are ¢ =0, o0 = 0.25, y = 0.16 and x, = 1.
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The other one is that if the sources passes through the caustic, the number of
images is reduced by two [30]. These images are also consistent with some of the
lenses from previous observations ([17, 28, 32]). Finally, the curves shown in the
caustics where the diamond, the ellipse and the lemniscate-like. For the critical
curves, the most common curve is the ellipse, and the lemniscate-like appear in
the transparent NIS case, which is consistent with the fact that these curves are
common in gravitational lens theory.
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