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Abstract

We present analytical solutions for a universe with a scalar field equivalent
to a mixture of three perfect fluids: dark energy, dust and stiff matter. The
space-time is an anisotropic and homogenous universe of Petrov Type D that
expands isotropically in two spatial axes. We also determine the singular-
ities with the Kretschmann scalar, the Hubble parameter, the deceleration
parameter, and the temperature in terms of time. Finally, we study the
Jacobi stability of the universe with the scalar field and conclude that the
model is stable at all times.

Keywords: cosmology; exact solution; scalar field; Einstein’s equations; temperature;
Hubble; deceleration parameter; Kretschmann; singularity; Jacobi stability.

Resumen

Se presentan soluciones analiticas para un universo con un campo escalar
equivalente a una mezcla de tres fluidos perfectos: energia oscura, polvo y
materia rigida. El espacio-tiempo del universo es anisotrépico y homogé-
neo del tipo Petrov D que se expande isotrépicamente en dos direcciones
espaciales. También se determina el pardmetro de Hubble, pardmetro de
desaceleracion y la temperatura en términos del tiempo. Por tdltimo, se es-
tudia la estabilidad de Jacobi para la evolucién dindmica del universo con el
campo escalar y se concluye que el modelo es estable para cualquier tiempo.

Palabras clave: cosmologia; solucién exacta; campo escalar; ecuaciones de Einstein;
temperatura; Hubble; pardmetro de deceleraciéon; Kretschmann; singularidad;
estabilidad de Jacobi.
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1. INTRODUCTION

Improvements in cosmological observations by COBE, WMAP, DES, PLANCK,
and other missions have positioned relativistic cosmology as a precise science ca-
pable of validating theoretical models that aim to explain the composition and
dynamical evolution of the universe. Due to these advances, precision cosmology
has found evidence that challenges the Cosmological Principle (CP). This principle
requires the universe to be homogeneous and isotropic for sufficiently large scales,
a cornerstone of the well-established paradigm of ACDM.

The upper bound of large-scale structures depends on the model employed.
In the concordance model, simulations estimate this limit to be around 370 Mpc
[20, 27]. However, there are large structures that surpass this limit. The quasar
group U1.27 is part of these huge gravitationally bound formations with a proper
size of ~ 500 Mpc [14]. The largest one is the Hercules-Corona Borealis Great
Wall with about 2 -3 Gpc of proper size [18]. Other large-scale structures are the
“Giant Arc” (GA), a large filamentary crescent-shape structure with a proper size
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of ~ 1 Gpe, which was discovered at a redshift of z ~ 0.8 by [22]; the Giant GRB
Ring with ~ 1.72 Gpe [13]; and the “Big Ring” (recently found by the same team
that discovered the GA), which has a ring with a diameter of ~ 200 — 300 Mpc at
the same distance as the GA [23]. This last work is pending peer review but it is
part of the increasing observational evidence of structures larger than the required
scale of homogeneity. If this evidence surpasses the improvement of statistical and
observational tools, the implications of the CP in the standard model of cosmology
must be revised.

Another result challenging the CP is the so-called “axis of evil” of the cosmic
microwave background (CMB). The axis of evil includes the dipole anomaly [ = 1
in which the motion of the solar system is just about 10 degrees apart from the
direction of the ecliptic plane, as well as the quadrupole [ = 2 and octupole [ = 3,
which are mysteriously aligned in a direction perpendicular to this elliptical plane.

There are also variational directions in cosmological parameters such as Hy,
coherent peculiar velocities of cosmic objects called bulk flows, alignment of large
quasar groups, radio galaxies, and preference in the direction of rotation of galax-
ies. Further evidence has already been presented in [1], and, more recently, the
extensive work in [20] discusses in great detail the current observations that present
deviations from the CP.

In response to these challenges, this study focuses on a particular universe
with an anisotropic and homogeneous Bianchi type-I spacetime in which the main
constraint is that two of the spatial scale factors are equal, so that the solution
has a Petrov Type D symmetry [1].

We find solutions of a scalar field and scalar potential equivalent to a mixture
of perfect fluids with this Petrov Type D symmetry. The importance of studying
cosmological scenarios with different fluids has already been discussed in [1, 12]
and more recently in [4]. Studies that explore different fluids and their mixtures
in this Petrov type D universe can been seen here [1, 8, 9, 10, 11, 12].

Here, we minimally couple a scalar field to the action and find the field ¢ and
the potential V(¢) in terms of the fluid parameters. The significance of studying
scalar fields in cosmology as a source of matter lies in their versatility in seeking
viable solutions. For example, a scalar field called the inflaton was introduced to
drive a possible expansion in the early universe to solve the problems of flatness
and horizon [16]. The quintessence is a scalar field varying in time introduced to
explain the late-time cosmic acceleration [28]. A scalar field with a Ratra-Peblees
potential is able to track radiation and dust behaviors in the early universe to then
transition to a dark energy behavior in the late universe [19].

Regarding our Petrov type D symmetry with a scalar field, the work [5] explored
a potential of the form V(¢) ~ (1 + cosh(C(¢ + ¢¢)))"? that behaves in early times
similarly to dark energy and in late times like a stiff fluid of Zeldovich (wy = 1).
In [6], the authors found for ¢ and V(¢) an isobaric fluid P = =D where D is a
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positive constant, and in the case of [7], the author found the interaction of scalar
and spinorial field equivalent to a Chaplygin Gas studied in [3].

Commonly, the potential is defined first to study the equation of state; however,
this study is looking for the potential V(¢) and scalar field ¢ equivalent to dark
energy, dust and stiff matter. The properties of these fluids have been well studied
and under- stood in the context of the dynamical evolution and composition of
the universe.

To further analyze this model, we also calculate the Hubble and deceleration
parameters, as well as the temperature. These values are crucial because they
act as cosmological observables, validating the model by aligning with the current
observations. On the other hand, we also determined the non-removable singu-
larities of this universe: when spacetime breaks down; in this case, we use the
Kretschmann invariant.

This study also determines the global stability to exponential deviations to
nearby trajectories with the theory of Kosambi-Cartan-Chern (KCC);
the KCC theory was applied for the first time to scalar field cosmologies in [15], and
used in the context of the Petrov type D universe in [6]. This is an
essential tool for discriminating which cosmological models are viable for observa-
tions and predictions.

In Section 2, we introduce the symmetry under study and the solutions for the
scale factors K(f) and F(f). In Section 3 we calculate the Hubble and decelera-
tion parameters together with the temperature and Kretchmann invariant for the
singularities. In Section 4, we present the solutions for the scalar field ¢(r) and
potential V(¢) that generate a source of matter equivalent to a mixture of dark
energy, dust and stiff matter. In Section 5, we use the KCC theory to determine
the system’s stability with this scalar field and potential. Finally, in Section 6 we
present our conclusions.

2. SYMMETRY, EINSTEIN’S EQUATIONS AND THE SOLUTIONS

The next line-element describes the dynamical evolution of the universe under

study [1], s
t
ds® = Fdi* — #PK(dx* + dy*) - Fdzz, (2.1)

where F and K are functions of . This metric defines an anisotropic and homoge-
neous universe that expands isotropically just in the x and y directions: so this is
a symmetry of Petrov Type D.

The functions for the energy density u(f) and pressure P(f) were already ob-
tained in [1]. Here again, we supposed that each perfect fluid follows P = wy, so
that the energy density and pressure take the forms

@, wa,
u(n) = Il P@) = 3l (22)
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respectively, where @,, > 0. These solutions (2.2) are for w # 1, if w = 1 then
ay/3 =B, for B, > 0. Since we supposed a mixture of non-interacting fluids, these
thermodynamic variables can be expressed as a linear summation of each variable
for the corresponding perfect fluid in the following way:

Pr = Ppr + Pp + Py, (2.3)
MT = HUA + UDp + Uz,

where the pressures P,, Pp, and Pz are for dark energy, dust and stiff matter
respectively, while ua, pup, and uz represent their respective energy densities.

Using the solutions (2.2), the total energy density and the total pressure for
the mixture of fluids are

D Z
ﬂT=A+7+t—2, (25)
Z
Pr=-A+3. (2.6)

where for dark energy A = @_1/3, dust D = @y/3 and stiff matter Z = 8;. The scale
factor F(f) can be define in terms of the total energy density ur as

4
F(t)= ————>—, (2.7)
9C? + 122247
where C| is a constant. The solution for the other scale factor is (see [1])
£2
K(t) = Koe&' 741, (2.8)

where Kj is a constant; the constant C; defines a set of models with different
behaviors, depending on its value. If we use the total energy density given by (2.5)
and C| = £2/3, then

1
F(t) = . 2.
® A2 +3Dt+3Z +1 (29)
We now calculate the integral in the exponent of (2.8)
INTT3ZV3AR + 3D + 32+ 1 - 3Dt — 67— 2) 77
K+(t)=K0( V1+3ZV3AL + 3Dt +3Z + ] . (2.10)
2V1+3ZV3A2 +3Dt +3Z + 1+ 3Dt + 6Z +2

If stiff matter is decoupled (Z = 0), we obtain the expected solution for a
universe with a constant negative pressure (dark energy) and dust [6]. If both
dust and dark energy are decoupled (A = 0 and D = 0), which is the same as
setting ¢t = 0, the scale factor in the z direction diverges. However, near ¢t = 0
and defining

3(=3D% + 4A + 12AZ)
Kos =

N 16(3Z + 1)?

F1/(3V3Z+1D)
) , (2.11)
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the metric takes the following form:

dsZ ~ an _ t2/312/(3 \/SZH)(de + dyZ) _ l‘2/3$4/(3 V32+1)dz2’ (212)

which is a universe that for small values of Z, approximates the Kasner behavior:
an anisotropic and homogeneous vacuum solution. In the case of the late universe
t — oo and choosing

F1/(3V1+32)
2V3A +9AZ -3D
Ko = ( i ) , (2.13)
2V3A+9AZ +3D
with the temporal variable defined as ¢ = em”, we obtain
ds® = di? — P VN(dx? + dy? + dZ), (2.14)

which matches the solution for a universe with only dark energy with this same
Petrov type D solution [1]. In fact, (2.14) is a de Sitter spacetime universe
expected as an asymptotic solution for this model (2.1), which belongs to the
Bianchi I universes.

3. COSMOLOGICAL PARAMETERS AND SINGULARITIES

3.1. The Hubble and the deceleration parameters.
These parameters were previously determined in [2], for a Bianchi I metric

ds* = d*di* — a*dx* - b*dy* - *d7, (3.1)
the average Hubble parameter is

1 d

— 1/3
H = WE‘ ((le) 5 (32)

and using (2.1) the result is

V3AR2 +3Dt+3Z + 1

H() = 31

(3.3)
When ¢ — 0, the early universe approximates H — oo; in the late universe, as

t — oo, dark energy takes over H — VA/3.

For the deceleration parameter (see [2])

q:—(1+d£1;12), (3.4)
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and using (2.1), we obtain

6Ar-3Dt—12Z -4
6A2 +6Dt+6Z+2

q(t) = - (3.5)

As t — 0, the universe begins decelerating with ¢ — 2; but must transition,
at least once, through a final accelerating phase that approximates ¢ — —1 when
t — oo. This transition occurs at a single moment:

_ 3D+ V288AZ +9D? + 96A
B 12A '

fo (3.6)

This behavior arises from dark energy taking over non-relativistic matter at a later
time. The accelerating expansion in the late universe has already been identified

by Supernovae Type Ia data [24, 25] and by later works, which included kinematic
methods of galaxy clusters and the cosmic microwave background [17, 21, 26].

3.2. The universe’s temperature.

The equation of state for the universe must satisfy the following thermo-
dynamic relation
dpP dT
u+P T’

(3.7)

as previously established in [4]. In the case of (2.1), the equation of state for
dark energy, dust, and stiff matter follows (2.6) and (2.5), which leads to the
following temperature

(3.8)

Dt +27
T=T, .

In the early universe when ¢t — 0, the temperature approaches infinity T — oo
and is dominated by stiff matter fluid; in the late universe when t — co, the
temperature is dominated by the dust fluid T = ToD. The result (3.8) does not
depend on dark energy, a characteristic shared with other fluid mixtures [8, 12].

3.3. Singularities.

To determine non-removable singularities, we use the Kretschmann invariant,
which is the square of the Riemann curvature tensor

K = R R, (3.9)
In terms of F we can use (2.8) with C; = £2/3 so that

£32F"2 + 36F* — 24F> + 20F% + 24FF1(1 - F) + 9F°1*
2TF4t* ’

(3.10)
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then, with (2.9), we obtain

1
K=o |+ V3412 + 381 +3Z + 1 + 724" + 36ABr°

+ ((=72Z + 48)A + 45B)1* + (1447 + 48)Bt + 180Z% + 487 + 32] ) (3.11)
When ¢ — 0 the Kretschmann invariant approximates

4(4522 +12Z+8V3Z + 1 +8)
K. = T ) (3.12)

There is a singularity proportional to ~ r#, which generally happens when the
positive constant C; = +2/3 is used for different fluid mixtures [1, 6, 12], and is
equivalent to the anisotropic vacuum solution of Kasner with exponents p; = 2/3,
p2 = 2/3 and p3 = —1/3. For the negative constant C; = —-2/3, when Z = 0,
the singularity ~ +* disappears together with the next one in the series ~ 73,
but the ~ 2 remains, so it presents the same behavior as dust and dark energy
found in [6].

4. SCALAR FIELD SOLUTION EQUIVALENT TO DARK ENERGY, DUST, AND STIFF
MATTER

The present study considers the minimal coupling of a scalar field ¢ with the
Einstein-Hilbert action

R 1
s = [aavg(5 + g0u0.0 - Vo). (a.)

Here the lagrangian of the scalar field is L; = %6ﬂ¢6"¢— V(¢). When the field does
not interact with any external source, implying no x* dependence, the conserved
quantity in the Euler-Lagrange equations is the following stress-energy tensor

=L

o= %(b# - -55;: (4.2)

The fluid parameters in terms of the scalar field, using (4.2) and (2.1), are

_ e

_ Ll
P=2d - V@) (4.4)

If the Einstein field equations are considered along with the scalar field and its
potential, then

F-1 _¢*+2VF

_ - 4,
3F1? 2F (4.5)
F2—Ft—F —¢*+2VF
3F22 T 2F (4.6)
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By eliminating V from the two last equations, we obtain

o 2F*—2F—Fr

=0, 4.7
3Fr? (4.7)
and using the expression for F(f) from (2.9)
. Dt +27
¢ i (4.8)

T 2GA2+3D1+3Z+ 1)

If we take the positive value of the square root and integrate this last equation,
we obtain

2D 1
o(t) = — LiLy |F (Ly VDt +2Z, Ly) - 1| Ly VDt + 2Z, ——. L
V3A 2712
1
+ F(\/2ZL1,L2) - H(\/2ZL1, E,Lz)]. (4.9)
1

Here, F(z,k) is the incomplete elliptic integral of the first kind, and II(z, v, k) is the
incomplete elliptic integral of the third kind, where

6A
L = , (4.10)
12AZ — D+9D? — (36Z + 12)A — 3D?
12AZ — D+OD? — (36Z + 12)A — 3D?
L= VD - (367 + 12) . (4.11)
12AZ + D+9D* — (36Z + 12)A — 3D?

The same universe can be modeled without changing the form of the metric
(2.1) and scale factors (2.9, 2.10) by establishing a new set of coordinate system
n=1t/{ and ¥ = {x', where D' = D/{, ' = A and ¢ = V3Z + 1. In this case, the
scalar field takes the following form:

o(t) = —% \/ﬁ(ﬁ“(m%)—l((%)) (4.12)

The scalar potential V(¢) is obtained from the relation V = 22[ + A and the time ¢
in terms of ¢ from (4.12), so that

2

DL L
V(g) = A - —nc iw—%),—‘

, (4.13)
22—t V2

in which ¢¢ = % 1/L% — 1K(L/ V2) and nc(x, n) is a Jacobi Elliptic function.
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5. JACOBI STABILITY

To assess the system’s stability, we introduce the Kosambi-Cartan-Chern (KCC)
developed in [15] for scalar field cosmologies and applied in [6] to our Petrov Type
D symmetry. The general idea is to find a set of second-order ordinary differential
equations equivalent to the Euler-Lagrange equations. The Jacobi equation can
be obtained by doing a small perturbation, which involves the deviation curvature
tensor that determines the system’s stability.

The second-order ordinary differential equation is a vector field on the tan-
gent bundle 7 M of the manifold M. This field is called semispray and has the
following form:

5=y 9 -2G'(x )i (5.1)
= o Yo’ ’
where y' = ¥ and G(x,y) are some local coefficients. The curve c(¢) = (x(¢)) is a
geodesic of S if and only if
d*x' o ; dx
— +2G'|X',— | =0. 5.2
ac " (x dt ) (52)
By infinitesimally perturbing the dynamical system of (5.2) with ¥(f) = x/(¢) + €£'(¢)
where € is a small parameter and & (r) goes along x(t), we have
d*¢ d¢ G

F + ZN;E + Zwéﬂ = 0, (53)

where N;'. is a nonlinear connection on M defined as

v 9

1= 5 (5.4)

The KKC-covariant differential on v/, defined as 2 = 4= +N;vf , Now operating

on y is A
Dy’ .o .
— =Ny -2G". 5.5
o =N (5.5)
Equation (5.2) can now be written as the Jacobi equation
D¢

Here Pj. is the deviation curvature tensor given by

; i

0G'

Pl =257 ~2G'G) + )/ + NiN,, (5.7)
where the Bernald connections G;l are
o,
G, = YR (5.8)
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The trajectories in (5.2) are said to be Jacobi stable if and only if all real
parts of the eigenvalues of the deviation curvature tensor P"j are strictly negative.
Otherwise, they are Jacobi unstable if at least one is strictly positive. Such a
condition for Jacobi stability requires the following Hurtwats determinants to be
positive:

Hy = |-(P} + P})| > 0, (5.9)
_ |-+ P 0

so that the deviation curvature tensor must obey the following inequalities
Pl +P3<0, PIPi-PP2>0. (5.11)

In summary, to determine the stability we first need to derive the pair of coupled
differential equations that completely describe the dynamical evolution with the
scalar field. After defining the phase space variables, the next step is to identify
the local coefficients G(x, y), obtain the deviation tensor and determine the stability
via condition (5.11).

By combining equations (4.5) and (4.6)

F
— +2V =0, 5.12
3tF? (512)
the first equation can be derived using the conservation of the stress-energy tensor
. (1 1F
+¢|——==|+Fo,V =0, 5.13
b1 - 5]+ Foo (5.13)
and (5.12), so that
. dF  6F*V¢
+ FoVy — — — - =0. 5.14
¢ T (5.14)

This corresponds to the first equation. The second one arises from (5.12) and its
time derivative ]
2F?

. 0, VOF
F—T+6VF2—ﬂ=

0. (5.15)

Defining the new phase space variables as x! = F,y! = F,x* = ¢, y* = ¢ and
V' = 9,.V, we identify the local coefficients as

V/yZyl (yl)Z xlv/ y2yl 3(x1)2y2v

GI:_ +3 le_—’ Gzz—————. 5.16
2V ) x! 2 4x! y! (5.16)

Therefore, the nonlinear connections from (5.4) are

, , 1 a2
[T SV 2=_i+—3(x) vy (5.17)
Po2v xR v T 4y Gy '
2
I 3(x]) 1%
2 __ Y

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 73-89, Jul — Dic 2025



84 A. ANGULO-SIBAJA — R. ALVARADO

and the Bernald connections, as defined in (5.8), are

2 %4
G{l = _F’ Gél = G}z = _ﬁ’ G%z = Géz =0, (5~19)
D o o A 1 3V
Gll = T3 G21 = G12 = -1 + a3 (520)
o) 4x o)

Finally, the components of the deviation curvature tensor from (5.7) are

v ave o) v () v 3(e) v

Pl=— - 21
e ) 2 o A (5.21)
2 2
LY gy 3TV ()Y
pl= - — - + (5.22)
2V 4V 2 8x!V
2 4
9(x') y*V’ 12y 9(x') v?
sz_x1vu+ ( )1 _yyl +3xly - ( )2
2y 8x'V oY)
2
3(v)
2 4
y 12 9(xy?) v 45(xt) y2v?
po_ Vo (=) + (=) (5.24)
4 ey’ 20" o’
3 2
3(x') vV () vV
- ( ) ( ) (5.25)

+ .
0"’ BV

The derivative of the potential dyV is given by (5.13), whereas the double
derivative 044V is

V”: F+1(3¢;F+E+E)+l(l—£+£) (526)

FrE\ 2% IR\ T )

Now, combining all these equations with (4.7), we express the conditions (5.11)
in terms of the fluids parameters as
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(3Z + 1) (144A%° + 576A°Dr°)
" 1622 (3A2 + 3Dt + 3Z + 1)2 (2A1 + D)?
12A%(3Z + 1) (69D + 8A(3Z + 1)) 1*
162 BAP2 + 3Dt + 3Z + 1)2 2A1 + D)?
36AD(3Z + 1) (1 1D? + 12A3Z + 1)) A
1622 (3A2 + 3Dt + 3Z + 1)2 (2A1 + D)?
(3Z +1)(27D* + 336AD*(3Z + 1) + 64A(3Z + 1)) £
- 1622 (3A2 + 3Dt + 3Z + 1)° (2A1 + D)?
AD(Z + 12 (9D? + 60AZ + 20A) t
" 1612 (3A2 + 3Dt + 3Z + 1) At + D)?
12D*(3Z + 1)3
1622 (3A2 +3D1 +3Z + 1) 2Ar + D)

1 2
P, +P;=

(5.27)

and
3D(Z + 1) (9DA%* + 18D*AP)
16/*(2At + D)2 (3A2 + 3Dt + 3Z + 1)°
3D(3Z + 1) (18ADF + 8AB3Z + 1))
+

AQAL+ D)2 BAR + 3Dt +3Z + 1)
N 3D*(3Z + 1)*
1642At + D)2 (3A2 + 3Dt +3Z + 1)*

1p2 1p2
PP; - PP} =

(5.28)

According to the criteria established in (5.11), the model remains stable through-
out the entire evolution of the universe. Most models explored so far have
exhibit at least regions with unstable trajectories. These include the Higgs po-
tential V(¢) = Vo + %quﬁz + ﬁ(f)“, exponential potential V = Vye*®, and the Tachyion
field V = Vy¢® [15]. For the FLRW universe with scalar field equivalent to dark
energy and dust, the model also has unstable regions, but in our Petrov type D
symmetry, is stable during the entire evolution of the universe [6].

6. CONCLUSIONS

This study derived the solutions for a scalar field minimally coupled to gravity and
equivalent to a mixture of three fluids in a Petrov Type D universe: dark energy,
dust, and stiff matter. The scalar field ¢ and the potential V(¢) can be simpli-
fied via a suitable change of coordinates—see Equations (4.12) and (4.13)—with-
out altering the scale factors or cosmological observables. Additionally, using
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the Kosambi-Cartan-Chern (KKC) theory [15], we determined the stability of the
model by using components of the deviation curvature tensor and the criteria of
stability given in Equation (5.11). We conclude that the system is stable during
the entire evolution of the universe.

In the early universe t — 0, the behavior of the spacetime approximates a Kas-
ner universe, but with perturbations predominantly dominated by the stiff matter
fluid. In the late universe t — oo, we have the typical behavior of de Sitter space-
time driven by dark energy. Similarly, when ¢ — 0, the average Hubble parameter
approximates H — oo, and when t — oo dark energy takes over H — +/A/3. There
is a transition #y given by Equation (3.6), which separates the decelerating phase
with ¢ — 2 in the early universe from the accelerating phase that approximates
g — —1 in the late universe, which has been observed in other theoretical results
and observational data [12, 24, 25].

The Kretschmann invariant reveals a non-removable singularity proportional
to ~ t* if the positive sign C; = +2/3 is taken, and ~ ¢72 if the negative sign
Cy = -2/3. In the limits, T tends to infinity as t — 0, while it approaches a
constant value T — TyD when t — co. Finally, we observed that the temperature
does not depend on A, because the energy density and pressure of the dark fluid
remain constant throughout the entire evolution of the universe.

7. ACKNOWLEDGMENTS

The authors would like to express their gratitude to the referees, whose recom-
mendations and comments contributed to improving the paper’s quality.

8. FINANCIAL SUPPORT

This work was supported by the Research Vice-Rectory of the University of
Costa Rica.

REFERENCES

[1] R. Alvarado, Cosmological Exact Solutions Set of a Perfect Fluid in an
Anisotropic Space-Time in Petrov Type D. Advanced Studies in Theoreti-
cal Physics 10(2016), no. 6, 267-295. DOI: 10.12988 /astp.2016.6311

[2] R. Alvarado, The Hubble constant and the deceleration parameter in
anisotropic cosmological spaces of Petrov type D. Advanced Studies in The-
oretical Physics 10(2016), no. 8, 421-431. por: 10.12988/astp.2016.6930

[3] R. Alvarado, Ezact solutions of a Chaplygin gas in an anisotropic space-time
of Petrov D. Advanced Studies in Theoretical Physics 11(2017), no. 12, 609
619. por: 10.12988/astp.2017.7836

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 73-89, Jul — Dic 2025


https://doi.org/10.12988/astp.2016.6311
https://doi.org/10.12988/astp.2016.6930
https://doi.org/10.12988/astp.2017.7836

EXACT SOLUTIONS AND STABILITY... 87

[4]

[10]

[11]

[12]

R. Alvarado, Thermodynamics and small temporal variations in the equa-
tions of state of anisotropic cosmological models of Petrov type D. Advanced
Studies in Theoretical Physics 11(2017), no. 1, 9-17. poI: 10.12988 /astp.
2017.6932

R. Alvarado, Ezact cosmological solution of a scalar field of type +cosh in
anisotropic space-time of Petrov type D. Advanced Studies in Theoretical
Physics 12(2018), no. 3, 121-128. po1: 10.12988/astp.2018.825

R. Alvarado, Ezxact cosmological solutions of isobaric scalar fields in space-
times: anisotropic of the type of Petrov D and isotropic homogeneous. Ad-
vanced Studies in Theoretical Physics 12(2018), no. 7, 319-333. por: 10.
12988 /astp.2018.8937

R. Alvarado, Interactive spinorial and scalar fields congruent to the Chaply-
gin’s gas. Exact cosmologic solutions in a space-time of Petrov D. Advanced
Studies in Theoretical Physics 12(2018), no. 7, 335-345. DOI: 10.12988/astp.
2018.8938

R. Alvarado, Cosmological Ezact Solutions of Petrov Type D. A Mizture
of Three Fluids: Quintessence, Dust and Radiation. Advanced Studies in
Theoretical Physics 14(2020), no. 7, 327-334. poI: 10.12988 /astp.2020.91502

R. Alvarado, Cosmological Exact Solution of Petrov Type D of a Mixture of
Fluids of Dark Energy and Dust and a Non Disrupted Primordial Magnetic
Field. Advanced Studies in Theoretical Physics 15(2021), no. 3, 107-114.
DOTL: 10.12988/astp.2021.91519

R. Alvarado, Cosmological Ezact Solution of Petrov Type D of a
Non-Disrupted Primordial Magnetic Field and o Mizture of Dark Energy
and a Nonlinear Fluid that Becomes into Radiation. Advanced Studies in
Theoretical Physics 15(2021), no. 7, 333-340. Do1: 10.12988 /astp.2021.91519

R. Alvarado, Anisotropic Cosmological Ezxact Solutions of Petrov Type D
of a Mizture of Dark Energy and an Attractive Bose-Einstein Condensate.
Advanced Studies in Theoretical Physics 17(2023), no. 3, 139-146. por: 10.
12988 /astp.2023.92009

R. Alvarado, A. Angulo, M. Vargas, Cosmological exact solutions of Petrov
type D. a mizture of two fluids: dark energy and radiation. Revista de
Matemética: Teorfa y Aplicaciones 29(2022), no. 2, 225-238. por: 10.15517/
rmta.v29i2.46390

L. G. Baldzs et al., A giant ring-like structure at 0.78 < z < 0.86 displayed
by GRBs. Monthly Notices of the Royal Astronomical Society 452(2015), no.
3, 2236-2246. por: 10.1093 /mnras/stv1421

R. G. Clowes et al., A structure in the early universe at z ~ 1.3 that exceeds
the homogeneity scale of the RW concordance cosmology. Monthly Notices of
the Royal Astronomical Society 429(2013), no. 4, 2910-2916. por1: 10.1093/
mnras/sts497

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 73-89, Jul — Dic 2025


https://doi.org/10.12988/astp.2017.6932
https://doi.org/10.12988/astp.2017.6932
https://doi.org/10.12988/astp.2018.825
https://doi.org/10.12988/astp.2018.8937
https://doi.org/10.12988/astp.2018.8937
https://doi.org/10.12988/astp.2018.8938
https://doi.org/10.12988/astp.2018.8938
https://doi.org/10.12988/astp.2020.91502
https://doi.org/10.12988/astp.2021.91519
https://doi.org/10.12988/astp.2021.91519
https://doi.org/10.12988/astp.2023.92009
https://doi.org/10.12988/astp.2023.92009
https://doi.org/10.15517/rmta.v29i2.46390
https://doi.org/10.15517/rmta.v29i2.46390
https://doi.org/10.1093/mnras/stv1421
https://doi.org/10.1093/mnras/sts497
https://doi.org/10.1093/mnras/sts497

88

A. ANGULO-SIBAJA — R. ALVARADO

[23]

[24]

B. Danila et al., Jacobi stability analysis of scalar field models with minimal
coupling to gravity in a cosmological background. Advances in High Energy

Physics 2016(2016), 7521464. por: 10.1155/2016/7521464

A. H. Guth, Inflationary universe: A possible solution to the horizon and
flatness problems. Physical Review D 23(1981), no. 2, 347. por: 10.1103/
PhysRevD.23.347

R. F. Holanda, J. A. Lima, J. V. Cunha, Accessing the Acceleration of the
Universe with Sunyaev—Zeldovich and X-Ray Data from Galazy Clusters.
The Twelfth Marcel Grossmann Meeting: On Recent Developments in The-
oretical and Experimental General Relativity, Astrophysics and Relativistic
Field Theories. 2012. Vol. 1-3, 1308-1311. por: 10.1142/9789814374552_0200

I. Horvath et al., The clustering of gamma-ray bursts in the Hercules—Corona
Borealis Great Wall: the largest structure in the Universe? Monthly Notices
of the Royal Astronomical Society 498(2020), no. 2, 2544-2553. por: 10.
1093 /mnras/staa2460

A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the cosmological standard
model. Physics Reports 568(2015), 1-98. por: 10.1016/j.physrep.2014.12.002

P. Kumar Aluri et al., Is the observable Universe consistent with the cosmo-
logical principle? Classical and Quantum Gravity 40(2023), no. 9, 094001.
DOI: 10.1088/1361-6382/acbefc

J. A. S. Lima, R. F. L. Holanda, J. V. Cunha, Are galaxy clusters suggesting
an accelerating universe? AIP Conference Proceedings. 2010. Vol. 1241, 224~
229. por: 10.1063/1.3462638

A. M. Lopez, R. G. Clowes, G. M. Williger, A giant arc on the sky. Monthly
Notices of the Royal Astronomical Society 516(2022), no. 2, 1557-1572. DOIL:
10.1093 /mnras/stac2204

A. Lopez, R. Clowes, G. Williger, A Big Ring on the sky. Journal of Cosmol-
ogy and Astroparticle Physics 2024(July 2024), no. 07, 055. po1: 10.1088/
1475-7516/2024,/07/055

S. Perlmutter et al., Measurements of Q and A from 42 high-redshift super-
novae. The Astrophysical Journal 517(1999), no. 2, 565-586. DO1: 10.1086/
307221

A. G. Riess et al., Observational Evidence from Supernovae for an Accel-
erating Universe and a Cosmological Constant. The Astronomical Journal
116(1998), no. 3, 1009-1038. po1: 10.1086/300499

R. Stompor et al., Cosmological implications of the MAXIMA-1 high-resolution
cosmic microwave background anisotropy measurement. The Astrophysical
Journal 561(2001), no. 1, L7. por: 10.1086/324438

J. Yadav, J. Bagla, N. Khandai, Fractal dimension as a measure of the
scale of homogeneity. Monthly Notices of the Royal Astronomical Society
405(2010), no. 3, 2009-2015. po1: 10.1111/j.1365-2966.2010.16612.x

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 73-89, Jul — Dic 2025


https://doi.org/10.1155/2016/7521464
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1142/9789814374552_0200
https://doi.org/10.1093/mnras/staa2460
https://doi.org/10.1093/mnras/staa2460
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1088/1361-6382/acbefc
https://doi.org/10.1063/1.3462638
https://doi.org/10.1093/mnras/stac2204
https://doi.org/10.1088/1475-7516/2024/07/055
https://doi.org/10.1088/1475-7516/2024/07/055
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/300499
https://doi.org/10.1086/324438
https://doi.org/10.1111/j.1365-2966.2010.16612.x

EXACT SOLUTIONS AND STABILITY... 89

[28] 1. Zlatev, L. Wang, P. J. Steinhardt, Quintessence, cosmic coincidence, and
the cosmological constant. Physical Review Letters 82(1999), no. 5, 896. DOL:
10.1103/PhysRevLett.82.896

Rev.Mate. Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 32(2): 73-89, Jul — Dic 2025


https://doi.org/10.1103/PhysRevLett.82.896

	Introduction
	Symmetry, Einstein's Equations and the Solutions
	Cosmological parameters and singularities
	The Hubble and the deceleration parameters.
	The universe’s temperature.
	Singularities.

	Scalar field solution equivalent to dark energy, dust, and stiff matter
	Jacobi Stability
	Conclusions
	Acknowledgments
	Financial support

