Resumen
En esta contribución, presentamos un estudio conciso y educativo de lentes gravitacionales debido a distribuciones de masa transparentes. Nos enfocamos en los cálculos de las propiedades de la imagen para perfiles de masa idealizados, incluyendo la esfera transparente uniforme, la esfera de gas isotérmico, la esfera de gas isotérmino no singular, y el perfil de King transparente. Utilizando técnicas numéricas y el software XFGLenses, se calculan y se visualizan las imágenes resultantes, junto con las curvas críticas y cáusticas asociadas. Los resultados son consistentes con las predicciones teóricas de los lentes transparentes, como lo son un número impar de imágenes, y la reducción del número de imágenes en dos cuando la fuente atraviesa la cáustica. Las geometrías que presentan las curvas cáusticas encontradas incluyen la forma de diamante, forma elíptica, y tipo lemniscata. Entre las curvas críticas, formas elípticas fueron las más encontradas, y la forma tipo lemniscata aparecieron específicamente en el case de la esfera isotérmica no singular, lo cual es esperado de lo conocido de lentes gravitacionales debido a distribuciones ideales.
Referencias
[1] R. J. Adler, W. C. Barber, M. E. Redar, Gravitational lenses and plastic simulators. American Journal of Physics 63(1995), no. 6, 536–541. doi: 10.1119/1.17865
[2] A. Barnacka, Gravitational lenses as high-resolution telescopes. Physics Reports 778-779(2018). Gravitational lenses as high-resolution telescopes, 1–46. doi: 10.1016/j.physrep.2018.10.001
[3] R. R. Bourassa, R. Kantowski, The theory of transparent gravitational lenses. The Astrophysical Journal 195(1975), 13. doi: 10.1086/153300
[4] R. R. Bourassa, R. Kantowski, T. D. Norton, The Spheroidal Gravitational Lens. The Astrophysical Journal 185(1973), 747. doi: 10.1086/152452
[5] I. Bray, Spheroidal gravitational lenses. Monthly Notices of the Royal Astronomical Society 208(1984), 511–516. doi: 10.1093/mnras/208.3.511
[6] O. Chwolson, Über eine mögliche Form fiktiver Doppelsterne. Astronomische Nachrichten 221(1924), no. 20, 329–330. doi: 10.1002/asna.19242212003
[7] E. E. Clark, The Uniform Transparent Gravitational Lens. Monthly Notices of the Royal Astronomical Society 158(1972), no. 2, 233–243. doi: 10.1093/mnras/158.2.233
[8] J. P. Coles, J. I. Read, P. Saha, Gravitational lens recovery with glass: measuring the mass profile and shape of a lens. Monthly Notices of the Royal Astronomical Society 445(2014), no. 3, 2181–2197. doi: 10.1093/mnras/stu1781
[9] C. C. Dyer, R. C. Roeder, Possible multiple imaging by spherical galaxies. The Astrophysical Journal 238(1980), L67. doi: 10.1086/183260
[10] M. Falbo-Kenkel, J. Lohre, Simple gravitational lens demonstrations. The Physics Teacher 34(1996), no. 9, 555–557. doi: 10.1119/1.2344566
[11] F. Frutos-Alfaro, A computer program to visualize gravitational lenses. American Journal of Physics 69(2001), no. 2, 218–222. doi: 10.1119/1.1290251
[12] F. Frutos-Alfaro, Reduction of the gravitational lens equation to a one-dimensional non-linear form for the tilted Plummer model family.Monthly Notices of the Royal Astronomical Society: Letters 376(2007), no. 1, L72–L75. doi: 10.1111/j.1745-3933.2007.00289.x
[13] D. H. Gottlieb, A gravitational lens need not produce an odd number of images. Journal of Mathematical Physics 35(1994), no. 10, 5507–5510. doi: 10.1063/1.530762
[14] J. Higbie, Gravitational lens. American Journal of Physics 49(1981), no. 7, 652–655. doi: 10.1119/1.12440
[15] G. Hinshaw, L. M. Krauss, Gravitational Lensing by Isothermal Spheres with Finite Core Radii: Galaxies and Dark Matter. Astrophysical Journal 320(1987), 468. doi: 10.1086/165564
[16] V. Icke, Construction of a gravitational lens. American Journal of Physics 48(1980), no. 10, 883–886. doi: 10.1119/1.12284
[17] C. Jacobs et al., An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks. The Astrophysical Journal Supplement Series 243(2019), no. 1, 17. doi:10.3847/1538-4365/ab26b6
[18] R. Kantowski, B. Chen, X. Dai, Fermat’s least-time principle and the embedded transparent lens. Phys. Rev. D 88(2013) 8, 083001. doi: 10.1103/ PhysRevD.88.083001
[19] H. Karttunen et al., Fundamental astronomy. Springer, 2007. doi: 10.1007/ 978-3-540-34144-4
[20] R. Kayser, P. Helbig, T. Schramm, A general and practical method for calculating cosmological distances. 1997. doi: 10.48550/arXiv.astro-ph/9603028
[21] I. R. King, Density Data and Emission Measure for a Model of the Coma Cluster. The Astrophysical Journal 174(1972), L123. doi: 10.1086/180963
[22] S. Liebes, Gravitational Lenses. Physical Review 133(1964), no. 3B, B835–B844. doi: 10.1103/physrev.133.b835
[23] S. Liebes, Gravitational Lens Simulator. American Journal of Physics 37(1969), no. 1, 103–104. doi: 10.1119/1.1975345
[24] R. H. McKenzie, A gravitational lens produces an odd number of images. Journal of Mathematical Physics 26(1985), no. 7, 1592–1596. doi: 10.1063/ 1.526923
[25] M. J. Nandor, T. M. Helliwell, Fermat’s principle and multiple imaging by gravitational lenses. American Journal of Physics 64(1996), 45–49. doi: 10.1119/1.18291
26] P. R. Newbury, R. J. Spiteri, Inverting Gravitational Lenses. SIAM Review 44(2002), no. 1, 111–130. doi: 10.1137/S0036144500380934
[27] B. Patla, R. J. Nemiroff, Gravitational Lensing Characteristics of the Transparent Sun. The Astrophysical Journal 685(2008), no. 2, 1297. doi: 10.1086/588805
[28] M. Quirós-Rojas et al., ALMA follow-up of 3000 red-Herschel galaxies: the nature of extreme submillimetre galaxies. Monthly Notices of the Royal Astronomical Society 533(2024), no. 3, 2966–2979. doi: 10.1093/mnras /stae1974
[29] T. Sauer, Nova Geminorum 1912 and the Origin of the Idea of Gravitational Lensing. Archive for History of Exact Sciences 62(2008), 1–22. doi: 10.1007/ s00407-007-0008-4
[30] P. Schneider, J. Ehlers, E. E. Falco, Gravitational Lenses. Springer Berlin Heidelberg, 1992. doi: 10.1007/978-3-662-03758-4
[31] M. Selmke, An optical n-body gravitational lens analogy. American Journal of Physics 89(2021), no. 1, 11–20. doi: 10.1119/10.0002117
[32] A. Sonnenfeld et al., Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publications of the Astronomical Society of Japan 70(2017), no. SP1, S29. doi:10.1093/pasj/psx062
[33] B. Szafraniec, J. F. Harford, A simple model of a gravitational lens from geometric optics. American Journal of Physics 92(2024), no. 11, 878–884. doi: 10.1119/5.0157513
[34] H. Thuruthipilly, A. Zadrozny, A. Pollo, M. Biesiada, Finding strong gravitational lenses through self-attention - Study based on the Bologna Lens Challenge. A&A 664(2022), A4. doi: 10.1051/0004-6361/202142463
[35] E. L. Turner, J. P. Ostriker, J. R. Gott III, The statistics of gravitational lenses : the distributions of image angular separations and lens redshifts. Astrophysical Journal 284(1984), 1–22. doi: 10.1086/162379
[36] P. van Dokkum et al., A massive compact quiescent galaxy at z=2 with a complete Einstein ring in JWST imaging. Nature Astronomy 8(2024), 119. doi: 10.1038/s41550-023-02103-9
[37] D. Walsh, R. Carswell, R. Weymann, 0957+561 A, B: Twin quasi-stellar objects or gravitational lens? Nature 279(1979), 381–384. doi: 10.1038 /279381a0
[38] S. Xu, G. Su, Y. Zhang, Y. Liu, Mimicking gravitational lens on a thin elastic plate. Applied Physics Letters 120(2022), no. 3, 031106. doi: 10.1063/5.0075683
[39] P. Young et al., The double quasar Q0957+561 A, B: a gravitational lens image formed by a galaxy at z=0.39. Astrophysical Journal 241(1980), 507–520. doi: 10.1086/158365

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2025 Edwin Santiago-Leandro, Alexander Mora-Chaverri, Francisco Frutos-Alfaro (Autor/a)