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ABSTRACT
Introduction: Knowledge of different functions associated with a probability distribution, as well as their prop-
erties, can be translated into functions that provide information about different characteristics of the growth 
process under study. 
Objectives: To analyze the relationship between individual growth models and the cumulative distribution func-
tions of continuous random variables. 
Methods: We compare the flexibility and goodness of fit of the Weibull-type model against the von Bertalanffy 
weight growth model. We fit these two growth models to two very different sets of age-weight data taken from the 
literature; the first comprises 22 pairs of Pacific halibut mean weight at age, and the second 900 pairs of striped 
bass weight-age-data. 
Results: The Weibull-type growth model had greater flexibility and neglected less information available in the 
data sets than the von Bertalanffy model. 
Conclusions: The Weibull model, derived from cumulative probability distribution, is a good choice to fit 
weight-at-age data as it is more flexible than the commonly used von Bertalanffy model.

Keywords: cumulative distribution function; age-weight relationship; model comparison; Weibull growth model; 
von Bertalanffy growth model.

RESUMEN
Eficacia del modelo de crecimiento individual de Weibull para datos de peso por edad

Introducción: El conocimiento de diferentes funciones asociadas a una distribución de probabilidad, así como 
sus propiedades, se puede traducir en funciones que proporcionen información sobre diferentes características 
del proceso de crecimiento en estudio. 
Objetivos: Analizar la relación entre los modelos de crecimiento individuales y las funciones de distribución 
acumulativa de variables aleatorias continuas. 

https://doi.org/10.15517/cy079f12
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INTRODUCTION

Growth of fishery production or biological 
production in general, implies an increase or 
decrease in production in weight / biomass / 
yield. However, mathematical biological mod-
els for assessing growth are commonly length 
growth models (von Bertalanffy, Gompertz, 
Logistic, Richards) (Katsanevakis, & Marave-
lias, 2008). Length is one of the most com-
monly used indicators for assessing growth, 
since it is less expensive, faster, and simpler to 
obtain from a sampling perspective. However, 
it is necessary to translate this information into 
weight by evaluating the relationship between 
length and weight (L-W) to return to assess 
biological production. In several studies growth 
is expressed in weight (Botello-Ruvalcaba et al., 
2010; Luquín-Covarrubias et al., 2022).

Individual growth in fish is based in physi-
ological processes and is the net result of two 
opposing processes, catabolism, and anabolism 
(von Bertalanffy, 1938). Specifically (von Berta-
lanffy, 1957), the origin of the von Bertalanffy 
(vB) model can be expressed as

where m represents body weight, t is time; n 
and κ are constants of anabolism and catabo-
lism, respectively. Here, α and β indicate that 
the rates of anabolism or catabolism are pro-
portional to body weight m to the power of α 
or β, usually with α ≤ β and β = 1. The abil-
ity to model growth in fish has a wide range 

of applications in population dynamics. For 
example, growth models are a vital compo-
nent of many stock assessments as they reflect 
potential production of the species (Juan-Jordá 
et al., 2015). The most common practice in fish 
growth modelling is to select a priori a single 
model, generally the vB growth model (e.g., 
Haddon, 2011). Inference and estimation of 
parameters and their precision are based solely 
on that fitted model (Katsanevakis & Marave-
lias, 2008). An important restriction of the vB 
model when age-length data are available is 
that individual growth rate is monotonically 
decreasing. The fit is poor in the case of hav-
ing age-length or age-weight data that have 
more than one inflection point (Knight, 1968; 
Knight, 1969).

It has been established that, seen as an 
individual growth model, the Weibull function 
is a derivation of the cumulative distribution 
function of a random variable that follows a 
Weibull random distribution (Swintek et al., 
2019). The Weibull function has been success-
fully applied to growth of trees (Seo et al., 2023; 
Souza et al., 2021; Yang et al., 1978); as dis-
cussed below, this has not been the case for fish 
growth. The nexus between individual growth 
models and cumulative distribution functions 
proves invaluable, enabling understanding of 
distribution functions effectively. Describing 
the distribution of a random variable offers dif-
ferent options, including alternative functions. 
Familiarity with diverse functions –density, 
cumulative distribution, survival, and more– 
linked with probability distribution and their 

Métodos: Comparamos la flexibilidad y bondad de ajuste del modelo tipo Weibull con el modelo de crecimiento 
de peso de von Bertalanffy. Ajustamos estos dos modelos de crecimiento a dos conjuntos muy diferentes de datos 
edad-peso tomados de la literatura; el primero comprende 22 pares de lenguado del Pacífico usando peso medio 
por edad, y el segundo, 900 pares de corvina rayada con parejas de peso-edad. 
Resultados: El modelo de crecimiento tipo Weibull tuvo mayor flexibilidad y descartó menos información dispo-
nible en los conjuntos de datos que el modelo de von Bertalanffy. 
Conclusiones: El modelo de Weibull, derivado de una distribución de probabilidad acumulada, es una buena 
opción para ajustar datos de peso por edad, ya que es más flexible que el comúnmente utilizado modelo de von 
Bertalanffy.

Palabras clave: función de distribución acumulada; relación edad-peso; comparación de modelos; modelo de 
crecimiento de Weibull; modelo de crecimiento de von Bertalanffy.
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inherent properties, facilitates to extrapolate 
functions shedding light on distinct facets of 
the growth process (Marshall & Olkin, 2007).

In the present work we develop a Weibull 
age-weight model and compare its performance 
with the vB, using two sets of age and weight 
data. We compare the fit of these models 
based on the Akaike information criterion 
(Burnham & Anderson, 2002). The Weibull 
growth model is flexible (Meeker et al., 2022) 
which facilitates goodness of fit. Here, we first 
analyze the origin of the vB model for age and 
weight data and then develop the alternative 
Weibull departing from a cumulative distribu-
tion function. Because the two data sets used 
were very different in structure, it is expected 
that results shown here are general and useful 
in other situations.

MATERIALS AND METHODS

Theory and calculations: We caution that 
data for the present work are scarce; therefore, 

we used only two data sets available, as explained 
below. The length growth model of vB is given 
by the expression (von Bertalanffy, 1938): 

where L∞ is asymptotic length, t0 is the age for 
a null length and k is the intrinsic growth rate.

From equation 1 one can derive another 
model for growth in weight, using the power 
function  relating weight (W) at length (L). The 
resulting model is (Table 1):

where W∞ is the maximum possible individual 
weight corresponding to asymptotic length, 
and b is the same as b in the weight-length 
relationship.

From model 1, one has that:

which is the proportion of the maximum theo-
retical length that an average individual has 
grown at age t.

Table 1
Description of parameters used in this work for both models (vB andWeibull) and data sets.

Model Parameters Description Units
Weibull

W Body weight kg or lb
t Age Years

to  Location parameter Years
W∞ Maximum theoretical weight kg or lb
h Scale parameter Years

h - |to| Age corresponding to 63.2 % W∞ Years
β Shape parameter
c Shape parameter
s Random error term  kg or lb

von Bertalanffy
W Body weight kg or lb
t Age Years

W∞ Maximum theoretical weight  kg or lb
k Brody growth rate coefficient  1/year
to Theoretical age for t = 0 Years
b Weight-length exponent
s Random error term kg or lb

Because data were derived from tables, weight for Pacific halibut (Hippoglossus stenolepis) is in kg, and for striped bass 
(Morone saxatilis) is in pounds. Data for halibut were obtained from Quinn II and Deriso (1999), and those of bass were 
derived from Baum (2002).
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Equation 3 has the properties of a cumu-
lative distribution (Seber & Wild, 1989) and 
coincides with the cumulative exponential dis-
tribution with location parameter t0 and failure 
rate k (Marshall & Olkin, 2007). The vB length 
growth model is widely used in fisheries, while 
the exponential distribution is fundamental in 
life span studies with wide application in reli-
ability and medicine (Collet, 2015; Marshall & 
Olkin, 2007).

For the vB growth model in weight,

where F(t) is the generalized exponential cumu-
lative distribution (Gupta & Kundu, 1999; Mar-
shal & Orkin, 2007). 

To derive a weight model which is an 
extension of the vB length model one begins 
with understanding the process involved in the 
extension of model 1. It is easy to realize that 
transforming length L(t) with a power function,

is transformed into:

A similar extension consists in transform-
ing age t with the power function t1/b, which 
results in a shape function given by

This shape function coincides with one of 
the formulations of the Weibull distribution 
(Hallinan, 1993). It has found wide use in areas 
of reliability and in the analysis of survival to 
model life spans or failure times (Meeker et al., 
2022; Thach, 2022). A convenient reparameter-
ization of the Weibull distribution consists in 
expressing its cumulative distribution as

where ß is the shape parameter and its value 
determines the form of the distribution, while 
h is the scale parameter because its location 
modifies the value of t; both h and t have the 
same units (time).

To get a better grasp of the meaning of ß, 
cumulative relative weight was calculated using 
equation 8 with t0 = 0 and t = h = 2 for five 
values of ß. As observed (Fig. 1), at age t = h 
= 2, the growth is equal to 0.632 W∞, regard-
less of the value of ß. The five curves, seen as 

Fig. 1. Shape functions (generalized exponential cumulative distribution) of the Weibull growth model, for different values 
of the parameter  (= 1, 2, 3, 4, 5).
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cumulative distribution functions, coincide at 
t = h = 2; that is, in reliability research, when 
initial time = zero, for this model, the 0.632 
quantile is equal t = h = 2.

As shown, parameter h is interpreted as 
the 0.632 quantile of asymptotic weight. A 
possible biological interpretation is discussed 
below. This behavior is easy to see expressed 
as follows:

In contrast, when one repeats the exercise 
using the vB growth model, unlike the previous 
model, the curves remain in lower locations 
as the value of b is greater. This is because in 
the vB model, the shape function F(t) takes 
values in the interval (0, 1) and consequently, 
when raised to an increasing exponent b it 
takes decreasing values (Fig. 2). The plots are 
ordered in reverse order to the values of b, and 
consequently, the graphs of the shape function 
do not intersect.

The density and survival functions of the 
Weibull distribution are given, respectively, by

And

From the perspective of growth models, 
the Weibull type model is given in terms of the 
cumulative distribution function: 

Interestingly, in this distribution, the shape 
parameter ß relates to the form of the growth 
curve; when the average individual reaches age 
h - |t0| (Table 2), it will have grown 63.2 % of 
its asymptotic size plus an error term e (e.g., 
Swintek et al., 2019).

Extensions of the vB length model: Thus 
far we have discussed the vB length growth 
model (1) and two extensions, growth in weight 
(2) and the Weibull model (12). As seen, expres-
sions for the two extensions are, respectively 
(eq. 7) F(t) = [1-exp(-k(t-t0))]b and (eq. 8) (t)= 
[1-exp{-((t-t0) ⁄ h)ß}].

In addition to being shape functions 
of individual growth models, they are also 
cumulative distribution functions. There is an 
additional distribution function which is a 
generalization of both; this is the generalized or 
exponential Weibull distribution.

The cumulative distribution of the latter is 
given by (Mudholkar & Hutson, 1996; Mudhol-
kar & Srivastava, 1993; Mudholkar et al., 1995):

F(t) = 

Fig. 2. Shape functions (generalized exponential cumulative distribution) of the von Bertalanffy growth model for different 
values of the parameter ß (= 1, 2, 3, 4, 5).
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where ß and c are both shape parameters; when 
c = 1 the function corresponds to the Weibull 
model, else is a generalized Weibull function. 

This is the shape function of the generalized 
Weibull model, which is expressed as follows 
when errors are additive:

Derivation of confidence intervals for 
parameter values: We obtained confidence 
intervals for parameters using a method based 
on the likelihood function L(θ) or loglikelihood 
function l(θ) = ln[L(θ)]. We first obtained an 
information matrix I of parameters given by the 
negative values of the second derivatives of the 
loglikelihood l(θ) evaluated at the maximum 
likelihood estimates of the model parameters, 
 = ( 1, 2, … , k). For example, for the Weibull 

model we have the following parameter esti-
mates 1 = ∞, 2 = , 3 = 0, 4 = , 5 = . The 
information matrix is given by:

The variance-covariance matrix Σ = l-1 for 
parameters is obtained by inverting the infor-
mation matrix, or:

Estimates of the model parameter varianc-
es are the terms of the diagonal of the variance-
covariance matrix. So, the variance of the i-th 
term of the parameter vector is:

Similarly, the covariance between terms i 
and j of the parameter vector is term (i, j) of the 
variance-covariance matrix:

This is a squared, symmetric matrix, i.e.,

In the case of the Weibull model, the 
variances of the model parameter estimates 
are the terms of the diagonal of the variance-
covariance matrix:

Once we have the variances of the param-
eter estimates, the process of calculating the 
confidence intervals (CI) has two stages. First, 
the parameters are estimated by maximum 
likelihood, and then the limits of the CI are 
obtained by the Normal approximation (Hoel et 
al., 1971; Meeker et al., 2022) as follows:

All calculations were made using the sta-
tistical computing language R (R Core Team, 
2023). Table 2 shows the features of the models 
contrasted and applied to the next two different 
data series, as well as the rationale of the analy-
sis involved (parameters, likelihood function 
and type of error used).

First data set-small sample case: Firstly, 
using Pacific halibut (Hippoglossus stenolepis) 
22-pair data set in Quinn II and Deriso (1999), 
a comparison was done of the vB and Weibull 
growth models for age-weight data (Table 2). 
Pacific halibut (H. stenolepis) are demersal spe-
cies of flatfish that range throughout the North 
Pacific Ocean. They are among the largest of all 
flatfish: females may reach up to approximately 
227 kg in weight and nearly three meters in 
length (International Pacific Halibut Commis-
sion [IPHC], 1998); they are relatively long-
lived with the oldest individuals estimated to be 
55 years of age (Forsberg, 2001). Maturity varies 
with sex, age, and size of the fish. Females grow 
faster but mature slower than males (IPHC, 
1987). The average age at 50 percent maturity 
is eight years for males and 12 years for females 
(St-Pierre, 1984). The vB growth model param-
eter estimates for female ranged from: L∞, 1.32 
m to 2.39 m; k, 0.109 to 0.039 and t0 0.418 to 
-1.538 (Perkins, 2015). According to the IPHC 
(1987), Pacific halibut can reach a maximum 
length of nine feet (~2.7 m) and maximum 
weight of 500 pounds (~227 kg).
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It is important to note that parameter b was 
originally known (b = 3.24) from previously 
reported work (Quinn II et al., 1983). While 
adjusting the Weibull model, all parameters are 
estimated using equation 12, where, in terms 
of probability, h - |t0| corresponds to quan-
tile 0.632 or 63.2 % of the asymptotic weight 
(Table 2).

To select the “best” of both models (i.e., vB 
and Weibull), we used the Akaike (1973) infor-
mation criterion:

where l( ) is the maximized log-likelihood and 
p is the number of model parameters. The value 
of AIC is interpreted as the loss of information 
available in the data set resulting in the model 
fit; lower values indicate better fits (Burnham & 
Anderson, 2002).

In the case of additive errors, we have the 
following expression for the log-likelihood:

where weight µi at time ti for the vB is given by 
equation (2), whereas for the Weibull model µi 
is given by equation (12). Log-likelihood values 
were obtained numerically using statistical soft-
ware in R language (Ogle, 2016).

Parameters of vector θ estimated are vec-
tors  which maximize the likelihood or log 
likelihood, that is:

where Q is the parametric space where search 
is done to find the maximum (log) likeli-
hood. Although in some problems not too 

complicated one can obtain closed forms for 
the maximum likelihood estimator , common-
ly numerical procedures are used to maximize 
likelihood or log likelihood functions.

Second set-extensive data: For the sec-
ond example, we used 900 pairs (age-weight) 
of striped bass Morone saxatilis from Arkan-
sas, USA derived from an age (years)-weight 
(pounds) key (U.S. Fish & Wildlife Service 
[USFWS], 2010). Briefly, 900 individuals were 
distributed in a matrix, 100 per each of nine 
weight categories (4.5 to 39.5 kg) and from 
three to 15 years of age. The striped bass is a 
temperate anadromous fish species that is the 
basis of an important recreational and com-
mercial fishery in the Eastern United States 
(Gervasi, 2015). Female striped bass mature 
between 5-6 years, and fecundity increases 
asymptotically with age (Brown et al., 2024). 
For several fish species such as red snap-
per, Lutjanus campechanus (Lowerre-Barbieri 
& Friess, 2022) and sablefish, Anoplopoma 
fimbria (Rodgveller et al., 2018) it has been 
determined that fecundity increases with fish 
age. Female striped bass mature between 5-6 
years, and fecundity increases asymptotically 
with age (Brown et al., 2024). To add random 
variability in weight-at-age from the age-weight 
key, raw “observed” weights were multiplied by 
Normal random shocks (1, 1). How there are 
variability in weight grows as age increases; 
this pattern of increasing variation led us to 
consider growth models with an error term that 
acts multiplicatively.

For models with multiplicative error structure, the log likelihood function is given (Table 2) by 
(Quinn II & Deriso, 1999):
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weight µi at time ti for the vB and Weibull 
models are given, respectively, by equations (2) 
and (12).

RESULTS

First data set-small sample case

vB growth model: For the vB model fit, 
Table 3 shows estimated parameter values and 
their uncertainties. Except for t0, all estimates 
were significant (p-values < 0.001).

Weibull growth model: Table 4 shows 
that, for the Weibull model fit, parameter val-
ues for t0 and β are non-significant judging 
by 1) the relatively large p values, and 2) the 
confidence intervals include zero. This pro-
vides an indication that the model might be 
over parameterized.

The parameterization was done in terms of 
the 0.632 quantile of growth in time.

To reduce over parameterization, we con-
sidered a restriction t0 = 0, which yielded results 
shown in Table 5, where the rest of parameter 
values were significant. This is because by elim-
inating the need to obtain a fit of t0, the relative 
standard error of parameter β decreased (from 
55.6 to 7.2 %). The other estimated parameters 
(W∞ and σ) both have small relative standard 
errors values; hence their confidence intervals 
are unchanged.

Table 6 shows results for the fit of the 
generalized Weibull growth model 16 to data 
shown in Table 2.

It should be noted that the lowest AIC 
value corresponds to the third model adjust-
ment. In general, performance was better using 
the Weibull than the vB growth model.

Second data set-large sample size

vB growth model: Table 7 shows the esti-
mates that result in the fit of the vB model to 

Table 3
Estimated parameter values for the von Bertalanffy growth model using Pacific halibut, Hippoglossus stenolepis, data shown 
in Fig. 3A assuming additive errors.

Parameter Estimate Std error Confidence interval t-value p-value
W∞ 68.60 4.92 (58.96, 78.25) 13.94 < 10-20

k 0.122 0.02 (0.09, 0.15) 8.16 < 10-8

t0 3.037 0.91 (1.25, 4.83) 3.33 0.002
b 3.24
σ 3.06 0.52 (2.06, 4.08) 5.96 < 10-6

logLikMx -54.80
AIC 119.60

Table 4
Maximum likelihood of parameter values for the Weibull growth model using 22 pairs of age-weight data for Pacific halibut, 
assuming additive errors.

Parameter Estimate Std error Confidence interval t-value p-value
W∞ 56.79 1.80 (53.26, 60.33) 31.50 < 10-50

h 24.22 10.19 (4.25, 44.19) 2.38 0.017
t0 -7.32 10.22 (-27.32, 12.67) -0.72 0.473
β 4.50 2.19 (0.21, 8.79) 2.05 0.040
σ 2.05 0.24 (1.60, 2.52) 8.59 < 10-8

logLikMx -53.55
AIC 117.10
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the sample using 900 pairs of age-weight data 
for striped bass (M. saxatilis) shown in Fig. 3B, 
we observe in the age-weight data of this figure 
a reduced variation in the last two age classes 
(14 and 15 years); and a possible structure 
related to selectivity, i.e., larger weights seem to 
be capped between 40 and 50 pounds.

Estimates of all the parameters of this 
model are statistically different from zero, 

although the estimate of the parameter t0 is 
very close to being non-significant because the 
standard error of this estimate has a high rela-
tive standard error or a small t-value (t-value = 
-6.66). This is because, can be seen in the scat-
terplot of the data (Fig. 3B), there is a reduced 
amount of information around zero, which 
is where we have the information about t0. It 
is interesting to compare the estimate of this 

Table 5
Maximum loglikelihood estimates of the Weibull parameter values using 22 pairs of age-weight data for Pacific halibut 
assuming additive errors.

Parameter Estimate Std error Confidence interval t-value p-value
W∞ 59.78 2.84 (54.22, 65.35) 21.06 < 10-50

h 17.62 0.66 (16.34, 18.90) 26.89 < 10-50

t0 0
β 2.80 0.20 (2.42, 3.19) 14.16 < 10-20

σ 2.54 0.38 (1.80, 3.28) 6.72 < 10-8

logLikMx -51.89
AIC 113.77

Two restrictions were used: 1) parameterization of the 0.632 growth in time quantile, and 2) t0 = 0.

Table 6
Maximum loglikelihood parameter estimates for the generalized Weibull model using 22 pairs of age-weight data for Pacific 
halibut assuming additive errors.

Parameter Estimate Std error Confidence interval t-value p-value
W∞ 57.37 1.98 (53.49, 61.25) 28.97 < 10-50

h 21.04 0.86 (19.35, 22.73) 24.43 < 10-50

t0 0
β 6.42 1.59 (3.28, 9.52) 4.02 < 10-4

c 0.33 0.10 (0.14, 0.53) 3.39 < 10-4

σ 2.53 0.42 (1.70, 3.36) 5.97 < 10-6

logLikMx -50.40
AIC 112.80

Two restrictions were used: 1) parameterization of the 0.632 growth in time quantile, and 2) t0 = 0.

Table 7
Results of fitting the von Bertalanffy parameter to 900 pairs of age-weight data for striped bass.

Parameter Estimate Std error Confidence interval t-value p-value
W∞ 51.56 2.26 (47.13, 55.99) 22.80 < 10-50

k 0.17 0.02 (0.13, 0.21) 8.16 < 10-8

t0 -4.12 0.62 (-5.33, -2.91) -6.66 < 10-8

b 7.43 0.85 (5.77, 9.09) 8.79 < 10-8

σ 0.28 0.01 (0.27, 0.30) 42.88 < 10-50

l( ) -168.27

AIC 346.55
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parameter in the case of a large data set and in 
the case of the small sample (Quinn II & Deri-
so, 1999). The t-value is of different orders (3.33 
and -6.66). This is further discussed below.

Weibull growth model: Table 8 shows the 
estimates that result in the adjustment of the 
Weibull-type model to the sample of 900 age-
weight pairs of data. In this fit, the estimates 
of all the parameters are significant and the 
estimate with the greatest uncertainty is t0, in a 
similar way adjustment of the previous model, 
in both cases, the systematic part of the model 

is different, but the stochastic part (error term) 
is similar. Parameters W∞ and ß have the lowest 
estimation uncertainties.

Generalized Weibull model: Table 9 
shows the estimates that result in the adjust-
ment of the generalized Weibull type model to 
the sample of 900 age and weight data pairs. 
The generalized Weibull type has one more 
parameter than the Weibull type model. This 
additional parameter causes this last model to 
be over parameterized, which is expressed in an 
estimate with a high uncertainty for parameter 

Fig. 3. Graphical comparison of fits of the von Bertalanffy and Weibull models to two data sets. A. Pacific halibut 22 pairs of 
mean weight-at-age. B. striped bass 900 data pairs of weight-at-age.
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t0. The latter results in a confidence interval 
for t0, that contains zero (-6.1676, 1.1276), 
which indicates that the estimate of t0 is not 
significant. Another parameter that has a low 
significance, although it is still significant, is 
parameter c, with a confidence interval (0.0731, 
0.8465) very close to zero.

When comparing the values of the AIC, we 
observed a ranking of the goodness of fit of the 
three models, vB, Weibull type and generalized 
Weibull. Table 10 shows the values of the AIC 
index for the two example data sets considered 
herein. In the first example, it is assumed in the 
Weibull type model that parameter t0 is zero, 
while in the second example this assumption 
is assumed for the generalized Weibull model.

Comparison of fits: Relative performance 
of both models (vB and Weibull) fit to the two 
data sets can be graphically appreciated (Fig. 3). 
It can be observed how the “winner” Weibull 
model fits better the two data sets as compared 
to the “winner” vB model. Although we observe 
a reduced variation in the last two age classes 

(14 and 15 years); the figure also suggests a 
possible structure related to selectivity, i.e., 
larger weights seem to be capped between 40 
and 50 pounds.

DISCUSSION

In the present work the case is made 
of using the Weibull growth function as an 
alternative to the vB model when pairs of age-
weight data are available. It is striking to realize 
that often growth is analyzed in terms of length 
and as mentioned, this is the result of ease to 
obtaining length data. In fisheries studies it 
is less common to find weight at-age data to 

Table 10
AIC values for three model fits to the data sets.

Model Pacific halibut 
(22 obs.)

Striped bass 
(900 obs.)

von Bertalanffy 119.60 346.55
Weibull 117.10 256.46
Generalized Weibull 112.80 260.22

Table 9
Results of fitting the generalized Weibull model to the data set of 900 pairs of age-weight data for striped bass.

Parameter Estimate Std error Conf interval t-value p-value
W∞ 44.33 2.90 (38.64, 50.01) 15.29 < 10-50

h 17.73 2.21 (13.41, 22.05) 8.04 < 10-8

t0 -6.99 2.28 (-11.45, -2.53) -3.07 0.0027
β 4.51 0.49 (3.54, 5.47) 9.18 < 10-8

c 0.96 0.11 (0.74, 1.18) 8.49 < 10-8

σ 0.27 0.01 (0.26, 0.29) 42.76 < 10-50

l( ) -124.11

AIC 260.22

Table 8
Results of fitting the Weibull model to 900 pairs of age-weight data for striped bass.

Parameter Estimate Std error Conf interval t-value p-value
W∞ 44.23 2.58 (39.17, 49.29) 17.14 < 10-50

h 17.89 1.63 (14.70, 21.08) 10.10 < 10-30

t0 -7.21 1.77 (-10.68, -3.75) -4.08 < 10-4

β 4.43 0.60 (3.26, 5.61) 7.37 < 10-8

σ 0.28 0.01 (0.26, 0.29) 42.29 < 10-50

l( ) -123.23

AIC 256.46
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study growth, although there are good reasons 
to use weight. Allen and Hightower (2010) 
point out that weight can be used as a surrogate 
for fecundity or the contribution of females to 
the spawning population. Harvest regulations 
in some fisheries are set to allow the average 
weight of fish to increase, with the expectation 
that protecting large, highly fecund females will 
improve recruitment; or simply as targets of 
biological production expressed in biomass or 
number of individuals and its relative weight 
(catch quota). Information about growth also 
indicates the “health” of a population relative to 
its food resources and the quality of the aquatic 
environment. There are many fisheries that 
regulation is based on the weight of the indi-
vidual such as abalone and some clams (Botel-
lo-Ruvalcaba et al., 2010; Luquín-Covarrubias 
et al., 2022). However, in aquaculture studies 
age-weight data are often obtained under the 
assumption of controlled conditions.

Since the Weibull distribution was con-
ceived with the probability of failure in mind, 
it inherently tied to time. This intrinsic con-
nection poses a significant challenge for its 
application in marine organisms. In fisheries 
management, age structure is a key predic-
tor of population dynamics and is therefore 
crucial for sustainable management. Age infor-
mation forms the basis for calculations of 
growth rate, mortality rate, and productivity 
(Campana, 2001).

Campana and Thorrold (2001) estimated 
that well over 1 million fish were aged world-
wide in 1999, primarily using scales and oto-
liths. These efforts far exceed those routinely 
applied to non-fish species, underscoring the 
importance of age-structured information in 
fisheries science. Techniques for determining 
the age of organisms have not only improved in 
precision but have also streamlined the research 
and monitoring processes of marine popula-
tions. Among the most notable techniques are 
reading growth rings in otoliths (Fairfield et al., 
2021), scales (Campana & Thorrold, 2001), and 
digital imaging, the latter offering greater preci-
sion and efficiency in reading (Villamor et al., 
2016). Additionally, genetic DNA techniques 

are particularly valuable when other methods 
are not applicable, such as in the case of lobsters 
(Fairfield et al., 2021). The Weibull model could 
see more frequent use.

Comparison of t0 values for both cases. 
vB model: we have two sets of data where the 
ages and weights are in similar ranges, and in 
both cases the data begins in age class 4. The 
level of information about t0 is not similar, in 
the first model the error is additive and average 
age-weight data are used; while in the second 
model, the error is multiplicative, and 900 pairs 
of age-weight data are used. What is noticeable 
in the second example is the reduced uncertain-
ty in the estimation of the error term, compared 
to the fit of the model to the data set of the first 
example (22 pairs of data).

We can see this in the magnitudes of the 
t-values of the fits to both models, t-value = 
5.96 and t-value = 42.88, respectively. Weibull 
model: With both data sets, the systematic part 
of the model is different, but the stochastic 
part (error term) is similar. When fitting the 
vB model, the parameters W∞ and k have the 
lowest estimation uncertainties. When compar-
ing the quality of fit of the vB and Weibull type 
models, using the AIC we found that the second 
model has a better fit, since it has a lower AIC 
value (256.46) than the first model (346.55).

In the Weibull type model, we note that the 
age t = h corresponds to the inflection point 
of the growth model, regardless of the value 
of the parameter β; whereas in the vB model 
the inflection point is not a parameter but is 
a function of the different model parameters. 
Accordingly, parameter β of the two models 
acts differently. In terms of metabolic pro-
cesses, it can be thought that, for the Weibull 
model, catabolic processes dominate up to the 
value h = t - |t0|; thereafter, anabolic processes 
dominate until asymptotic weight is reached. A 
similar interpretation is not straight forward in 
the vB growth model (Shi et al., 2014). In the 
vB model, catabolism is assumed proportional 
to body weight, and anabolism to surface area 
or body weight (Gamito, 1998). For individual 
growth, the Weibull model is a generalized ver-
sion of the vB model and has also been related 
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to the Schnute-Richards general growth model 
(Swintek et al., 2019). The Weibull function 
has also been proposed to model population 
growth because it has similar properties to the 
logistic, with an asymptotic size of K; in this 
case t0 is not present; in other words, the model 
does not depend on t0. In this case, parameter h 
expresses the value of time when the population 
is 0.63 K (Prager et al., 1989).

In growth studies, generally speaking, the 
Weibull model has been found to outperform 
other models including the Richards and Gom-
pertz (Dagogo et al., 2023). A simplified, one-
parameter version of the Weibull model was 
found to fit better pine tree growth as com-
pared to other models, including that of Rich-
ards (Souza et al., 2021). The Weibull model 
best described live weight data of partridges 
compared to other eight other models com-
monly used, including logistic and Richards 
(Wen et al., 2019).

To our knowledge, for striped bass there 
had been no previous publications on indi-
vidual growth using the Weibull model. In 
an earlier study, the vB model was used to fit 
individual growth data. The oldest fish were 12 
years old and differences were found in param-
eters of males and females (Collins, 1982). For 
reared striped bass, the vB model was also 
fitted to growth data using tagging informa-
tion. Maximum age estimated was 9 years and 
analyses were not conducted for separate sexes 
(Callihan et al., 2014).

As expected, the result obtained using the 
vB model with the Pacific halibut was similar 
to that of Quinn II and Deriso (1999). No stud-
ies using the Weibull model for this organism 
were found. For the Pacific halibut, in all cases, 
the Weibull model estimated lower asymp-
totic weights compared to the vB model. This 
is explained by the fact that the latter model 
assumes a rapid initial growth that decreases 
as it approaches the asymptote, whereas the 
Weibull model has a lower initial parameter 
(-7.32 and zero for two scenarios) compared to 
vB (3.037).

In all three cases of the Weibull model, 
using the AIC criterion, the best fit was 

achieved with growth parameterization and 
setting t0 = 0.

The relationship between individual 
growth models and cumulative distribution 
functions is very useful because it allows us to 
use the knowledge we have about distribution 
functions (Marshall & Olkin, 2007), to obtain 
new growth models or extend existing mod-
els. Knowledge of different functions (such as 
density, cumulative distribution, and survival) 
associated with a probability distribution, as 
well as their properties, can be translated into 
functions that inform about characteristics of 
the growth process.

The recognition of the equivalence between 
individual growth models and the cumulative 
distribution functions F(t) allows the use of 
knowledge about the distribution functions of 
continuous random variables. Various func-
tions related to the cumulative distribution 
function can be used to express some type of 
information of the individual growth process. 
For example, the density function f(t), which 
is the derivative of the cumulative distribu-
tion, can be associated with the growth rate 
W∞f(t). The survival function S(t), which is 
the complement of the cumulative distribution 
S(t) = 1-F(t), gives us information about the 
proportion of an organism that remains to grow 
at time t, W∞S(t).

In the study of lifetimes, the quantile func-
tion tp is defined as the time at which a pro-
portion p of failures will have occurred, it 
can be used to know the time at which an 
organism will have grown a proportion p of its 
maximum asymptotic size (Meeker et al., 2022). 
Knowledge of the density, survival, and quan-
tile functions, among others, of a distribution 
associated with a given growth model allows 
us to have a better vision of the characteristics 
and properties of the individual growth model 
under study.

The vB length and weight growth mod-
els are two clear examples of the relationship 
between growth models and distributions. The 
length growth model is associated with the 
exponential distribution, and the vB weight 
growth model is associated with the generalized 
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exponential distribution. That is, the vB weight 
growth model and the generalized exponential 
distribution are two simple extensions of the 
vB weight growth model and the exponential 
distribution, respectively.

It seems that the wide application of the vB 
weight growth model is not due to its quality 
of fit, since the fit of this model to growth data 
does not always outperform other models with 
which it competes, rather very often its use 
is chosen a priori. For this reason, it is worth 
asking if, in addition to the vB weight growth 
model, there is another model, which is an 
extension of the basic vB length growth model, 
and with a similar form, but with adequate flex-
ibility in order to have a better quality of fit to 
age-weight growth data.

An extension of the exponential distribu-
tion that is well known and widely applied in 
the analysis of Survival and Reliability data is 
the Weibull distribution. The above suggests 
that a direct extension of the vB length growth 
model, additional to the vB weight growth 
model, is the Weibull growth model. An impor-
tant advantage of the Weibull-type growth 
model is its flexibility, which yields better fits 
than other models, as shown in the comparative 
study shown herein.
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