
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025-171, enero-diciembre 2025 (Publicado Set. 30, 2025)
Collins, B. W. (1982). Growth of the striped bass in the
Sacramento-San Joaquin estuary. California Fish and
Game, 68(3), 146–159.
Dagogo, J., Orumie, U. C., & Biu, E. O. (2023). Comparative
analysis of additive and multiplicative error terms
of Weibull, Logistic Gompertz, Hills and Richards
Models with four parameters. Journal of Advances in
Mathematics and Computer Science, 38(5), 1–34.
Fairfield, E. A., Richardson, D. S., Daniels, C. L., Butler, C.
L., Bell, E., & Taylor, M. I. (2021). Ageing European
lobsters (Homarus gammarus) using DNA methyla-
tion of evolutionary conserved ribosomal DNA. Evo-
lutionary Applications, 14(9), 2305–2318. https://doi.
org/10.1111/eva.13296
Forsberg, J. E. (2001). Aging manual for Pacific halibut:
procedures and methods used at the International
Pacific Halibut Commission (IPHC) [Technical report
No. 46]. International Pacific Halibut Commission.
https://www.iphc.int/uploads/2023/10/IPHC-2001-
TR046.pdf
Gamito, S. (1998). Growth models and their use in ecolo-
gical modelling: an application to a fish population.
Ecological Modelling, 113(1–3), 83–94. https://doi.
org/10.1016/s0304-3800(98)00136-7
Gervasi, C. L. (2015). The reproductive biology of striped
bass (Morone saxatilis) in Chesapeake Bay [Master’s
thesis, Virginia Institute of Marine Science]. William
& Mary Libraries. https://dx.doi.org/doi:10.25773/
v5-mdh7-b167
Gupta, R. D., & Kundu, D. (1999). Theory & Methods:
Generalized exponential distribution. Australian and
New Zealand Journal of Statistics, 41(2), 173–188.
https://doi.org/10.1111/1467-842X.00072
Haddon, M. J. (2011). Modelling and quantitative methods
in fisheries (2nd ed.). Chapman and Hall/CRC Press.
Hallinan, A. J. (1993). A review of the Weibull distribution.
Journal of Quality Technology, 25, 85–93. https://doi.
org/10.1080/00224065.1993.11979431
Hoel, P. G., Port, S. C., & Stone, C. J. (1971). Introduc-
tion to statistical theory (1st ed.). Houghton Mifflin
Company.
International Pacific Halibut Commission. (1987). The
Pacific halibut: Biology, fishery and management
[Technical report No. 22]. International Pacific Hali-
but Commission. https://www.iphc.int/2021/10/31/
iphc-1987-tr022-the-pacific-halibut-biology-fishery-
and-management/
International Pacific Halibut Commission. (1998). The
Pacific halibut: Biology, fishery and management
[Technical report No. 40]. International Pacific Hali-
but Commission. https://www.iphc.int/2021/10/31/
iphc-1998-tr040-the-pacific-halibut-biology-fishery-
and-management/
Juan-Jordá, M. J., Mosqueira, I., Freire, J., & Dulvy, N.
K. (2015). Population declines of tuna and rela-
tives depend on their speed of life. Proceedings.
Biological Sciences, 282(1811), 20150322. https://doi.
org/10.1098/rspb.2015.0322
Katsanevakis, S., & Maravelias, C. D. (2008). Mode-
lling fish growth: Multimodel inference as a better
alternative to a priori using von Bertalanffy equa-
tion. Fish and Fisheries, 9(2), 178–187. https://doi.
org/10.1111/j.1467-2979.2008.00279.x
Knight, W. (1968). Asymptotic growth: An example of
nonsense disguised as mathematics. Journal of the Fis-
heries Research Board of Canada, 25(6), 1303–1307.
https://doi.org/10.1139/f68-114
Knight, W. (1969). A formulation of the von Bertalanffy
growth curve when the growth rate is roughly cons-
tant. Journal of the Fisheries Research Board of Cana-
da, 26(11), 3069–3072.
Lowerre-Barbieri, S., & Friess, C. (2022). Modeling fecun-
dity at age in Gulf of Mexico Red Snapper to help
evaluate the best measure of reproductive potential
[Report SEDAR74-DW-40. SEDAR]. Southeast
Data, Assessment & Review. https://sedarweb.org/
documents/sedar-74-dw-40-modeling-fecundity-at-
age-in-gulf-of-mexico-red-snapper-to-help-evaluate-
the-best-measure-of-reproductive-potential/
Luquín-Covarrubias, M. A., Morales-Bojórquez, E., & Gon-
zález-Peláez, S. S. (2022). The last geoduck: The expe-
rience of geoduck clam fishery management in the
Mexican Pacific Ocean. Marine Policy, 143, 105145.
https://doi.org/10.1016/j.marpol.2022.105145
Marshall, A. W., & Olkin, I. (2007). Life Distributions: Struc-
ture of nonparametric, semiparametric, and parametric
families (1st ed.). Springer.
Meeker, W. Q., Escobar, L. A., & Pascual, F. G. (2022).
Statistical methods for reliability data (2nd ed.). John
Wiley and Sons Inc.
Mudholkar, G. S., & Hutson, A. D. (1996). The exponentia-
ted Weibull family: Some properties and flood data
application. Communications in Statistics-Theory and
Methods, 25(12), 3059–3083.
Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated
Weibull family for analyzing bathtub failure-rate data.
IEEE Transactions on Reliability, 42(2), 299–302.
https://doi.org/10.1109/24.229504
Mudholkar, G. S., Srivastava, D. K., & Freimer, M. (1995).
The exponentiated Weibull family: A reanalysis of the
bus-motor-failure data. Technometrics, 37(4), 436–
445. https://doi.org/10.2307/1269735
Ogle, D. H. (2016). Introductory fisheries analyses with R
(1st ed.). Chapman and Hall/CRC Press.