1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Distribution, richness, and abundance of Lycaenidae
(Lepidoptera: Papilionoidea) in the Loxicha Region, Oaxaca,
Mexico: A regional analysis on the Pacific slope
Armando M. Luis-Martínez1; https://orcid.org/0000-0002-1044-3986
Robert K. Robbins2; https://orcid.org/0000-0003-4137-786X
Marysol Trujano-Ortega1; https://orcid.org/0000-0001-8911-8504
Jorge E. Llorente-Bousquets1; https://orcid.org/0000-0003-0876-0533
Arturo Arellano-Covarrubias1; https://orcid.org/0000-0001-9515-5782
Omar Ávalos-Hernández1*; https://orcid.org/0000-0002-5476-9400
1. Museo de Zoología (Entomología), Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional
Autónoma de México, Ciudad de México, México; alm@ciencias.unam.mx, marysol_trujano@yahoo.com.mx, lloren-
tebousquets@gmail.com, arellano.covarrubias@gmail.com, omaravalosh@ciencias.unam.mx (*Correspondence)
2. Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of
Columbia, USA; robbinsr@si.edu
Received 21-III-2025. Corrected 23-VII-2025. Accepted 12-VIII-2025.
ABSTRACT
Introduction: The Sierra Madre del Sur in Mexico, known for its geological complexity and elevational gradient,
hosts diverse ecosystems. The Loxicha region in Oaxaca, with five vegetation types and a 2 500 m elevation range,
has the richest documented butterfly fauna on the Pacific slope. This study focuses on Lycaenidae butterflies,
exploring their distribution, richness, and abundance along vegetation and elevational transects.
Objective: To document geographic, elevational, and ecological patterns of Lycaenidae butterflies on the Pacific
slope Loxicha region as part of a larger project on the distribution of diurnal butterflies in the state of Oaxaca,
Mexico. Also, to compare Loxicha fauna with other regions to recognize biogeographical patterns at a larger scale.
Methods: Spatial and temporal patterns of Lycaenidae diversity are based on systematic sampling conducted
between 2005 and 2014 along elevational (80 to 2 500 m) and vegetational transects. Exclusive and characteristic
species for each elevation and vegetation type are recognized.
Results: A total of 123 species of Lycaenidae were recorded: nine species of Polyommatinae and 114 of Theclinae.
The highest species richness occurs in May in tropical semi-deciduous forest. It decreases with increasing eleva-
tion. The results are compared with four other butterfly families. Lycaenid community similarity in the Sierra
Madre del Sur and Pacific slope is correlated with elevation and vegetation type, though variability within
each grouping is significant. Higher elevation faunal isolation also plays a role, as seen in other mountainous
Papilionoidea taxa.
Conclusions: Lycaenidae is one of the most diverse and least known butterfly families in Mexico. This is the
fourth study on the Loxicha Regions lepidopteran fauna, confirming its high diversity among five Papilionoidea
families. Systematic studies aid in understanding speciation and endemism, particularly for stenotopic species.
The distribution of Lycaenidae in the Loxicha region is the most comprehensive to date for any region in Mexico.
Key words: elevational gradient; Eumaeini; phenology; Sierra Madre del Sur.
https://doi.org/10.15517/61cmxq06
INVERTEBRATE BIOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
INTRODUCTION
Mexicos Sierra Madre del Sur is recog-
nized for its complex geological history and for
an elevational gradient that generates ecosys-
tem heterogeneity (Espinosa et al., 2016). This
complexity is reflected in the Loxicha region
(Oaxaca), which consists of five distinctive
vegetation types and an elevation gradient of 2
500 m. It is an underlying reason why we have
been investigating its butterfly richness along
elevation and vegetation transects (Arellano-
Covarrubias et al., 2018; Luis-Martínez et al.,
2016; Luis-Martínez et al., 2020; Luis-Martínez
et al., 2022). It has the richest documented but-
terfly fauna on Mexicos Pacific slope for the
four families treated so far.
Lycaenidae present challenges for sampling.
Adults tend to be more rarely encountered than
other butterflies, for example, at about half the
rate as that of Riodinidae (Lamas et al., 2023).
Bait traps with rotting carrion seem to be inef-
fective in Mesoamerican localities (Busby et al.,
2019). These characteristics potentially bias the
documentation of Lycaenidae spatial and tem-
poral patterns compared to other butterflies.
New World Lycaenidae exhibit other eco-
logical characteristics that distinguish the fam-
ily. The caterpillars show significant variation
in feeding habits, including extreme polyphagy
(Chew & Robbins, 1984), florivory (Silva et al.,
2014), detritivory (Duarte & Robbins, 2009,
Robbins et al., 2010), and fungivory (Nishida
& Robbins, 2020). Many species are facultative-
ly myrmecophilous (DeVries, 1990; DeVries,
1991; Kaminski et al., 2012). More than 90 %
of the species have adult males with secondary
sexual organs (Valencia-Montoya et al., 2021).
RESUMEN
Distribución, riqueza y abundancia de Lycaenidae (Lepidoptera: Papilionoidea) en la Región Loxicha,
Oaxaca, México: Un análisis regional en la vertiente del Pacífico
Introducción: La Sierra Madre del Sur en México, conocida por su complejidad geológica y gradiente de eleva-
ción, alberga ecosistemas diversos. La región de Loxicha en Oaxaca, con cinco tipos de vegetación y un rango de
elevación de 2 500 m, tiene la fauna de mariposas documentada más rica en la vertiente del Pacífico. Este estudio
se enfoca en las mariposas de la familia Lycaenidae, explorando su distribución, riqueza y abundancia a lo largo
de transectos de vegetación y elevación.
Objetivo: Documentar los patrones geográficos, altitudinales y ecológicos de Lycaenidae en la región de Loxicha
en la vertiente del Pacífico, como parte de un proyecto más amplio sobre la distribución de mariposas diurnas en
el estado de Oaxaca, México. También, comparar la fauna de Loxicha con otras regiones para reconocer patrones
biogeográficos a mayor escala.
Métodos: Los patrones espaciales y temporales de diversidad de Lycaenidae se basan en muestreos sistemáticos
realizados entre 2005 y 2014 a lo largo de transectos de elevación (80 a 2 500 m) y vegetación. Se reconocen espe-
cies exclusivas y características de cada altitud y tipo de vegetación.
Resultados: Se registraron un total de 123 especies de Lycaenidae: nueve especies de Polyommatinae y 114 de
Theclinae. La mayor riqueza de especies se observa en mayo en bosques tropicales semi-deciduos. Esta disminuye
con el aumento de la elevación. Los resultados se comparan con otras cuatro familias de mariposas. La similitud
de la comunidad de Lycaenidae en la Sierra Madre del Sur y la vertiente del Pacífico está correlacionada con la
elevación y el tipo de vegetación, aunque la variabilidad dentro de cada agrupación es significativa. El aislamiento
faunístico en elevaciones altas también juega un papel, como se observa en otros taxones de Papilionoidea de
sistemas montañosos.
Conclusiones: Lycaenidae es una de las familias de mariposas más diversas y menos conocidas de México. Este
es el cuarto estudio sobre la fauna lepidópteros de la región de Loxicha, confirmando su alta diversidad entre
cinco familias de Papilionoidea. Los estudios sistemáticos ayudan a comprender la especiación y el endemismo,
particularmente para las especies estenotópicas. La distribución de Lycaenidae en la región de Loxicha es la más
completa hasta la fecha para cualquier región de México.
Palabras clave: gradiente altitudinal; Eumaeini; fenología; Sierra Madre del Sur.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
The characteristics of Lycaenidae suggest
that their spatial and temporal distributions
might differ from those of other Papilionoidea.
This study specifically examines the distribu-
tion, richness, and abundance of Lycaenidae
along vegetation and elevational transects in
the Loxicha region and is the first such investi-
gation in any of Mexicos most diverse regions.
The results are compared with those of other
regions of the Pacific and Atlantic slopes in
Mexico. An updated checklist with photographs
of Lycaenidae from Loxicha is presented, serv-
ing as a reference for future identification
within the family.
Documentation of the Mexican lycaenid
butterfly fauna has progressed for more than
a century. Godman and Salvin (1887-1901)
monographed the diurnal butterfly fauna of
Mesoamerica, recording 124 species of Mexi-
can Lycaenidae. Hoffmanns (1933), Hoffmanns
(1936), Hoffmanns (1940) and Hoffmanns
(1941) checklist of Mexican Papilionoidea
included distribution by state, physiograph-
ic unit, elevation, and climatic subtype. He
included 221 Lycaenidae. Subsequently, Llor-
ente-Bousquets et al. (2006) recorded 255 spe-
cies and subspecies of Mexican Lycaenidae,
which was later refined to 252 species and
subspecies, representing 13 % of the Mexican
Papilionoidea (Llorente-Bousquets et al., 2014).
Knowledge of the lycaenid fauna of Oaxa-
ca has similarly steadily improved. Hoffmann
(1940) and Hoffman (1941) recorded 164 lycae-
nid species in Oaxaca. More recently, Luis-Mar-
tínez et al. (2016) listed 180 lycaenid species,
partitioned taxonomically into 169 Theclinae,
10 Polyommatinae, and 1 Lycaeninae.
MATERIAL AND METHODS
Previous data: The MARIPOSA database
(Luis-Martínez et al., 2005) from the Zool-
ogy Museum of the Faculty of Science, UNAM
has more than 65 000 records documenting
the geographic distribution of Lycaenidae and
other butterflies in Mexico. Some data are avail-
able on the CONABIO website (Gobierno de
México, n. d.), and we are uploading more. The
data range from the late 19th century (Godman
& Salvin, 1887-1901) to the present and include
more than 2 300 sites. Using the database and
publications on Lycaenidae from other Mexican
regions (de la Maza & de la Maza, 1993, de la
Maza & de la Maza, 2015; Luis-Martínez et
al., 1991; Raguso & Llorente-Bousquets, 1991;
Ross, 1966, Ross, 1976; Vargas-Fernández et
al., 1994; Vargas-Fernández et al., 1999), the
localities and regions (groups of localities) with
the greatest recorded Lycaenidae richness in
Mexico are listed (Table 1).
Faunistic inventory and localities: Since
2005, we conducted systematic butterfly sam-
pling in the Loxicha region (Fig. 1), com-
prising 318 sampling days over seven years
(2005, 2007, 2008, 2011–2014) at 21 localities
(Table 2) (Arellano-Covarrubias et al., 2018;
Luis-Martínez et al., 2016; Luis-Martínez et al.,
2020; Luis-Martínez et al., 2021; Luis-Martínez
et al., 2022). The surveys involved 16 par-
ticipants, averaging five per locality per day,
most of whom had extensive experience in
sampling butterflies.
Localities were grouped by elevation and
vegetation to analyze distribution patterns,
which facilitates comparison with other locali-
ties. Vegetation type classification follows Rze-
dowski (1978) and Llorente-Bousquets (1984):
tropical deciduous forest (TDF), tropical sub-
deciduous forest (TSDF), montane cloud forest
(CF) with three subtypes, and oak-pine forest
(OPF). Additionally, in some sites at elevations
between 2 000 and 2 400 m, a vegetation type
primarily comprising pine-oak forest with ele-
ments of high-altitude montane cloud forest
was recognized, mostly located at the bottom
of ravines. This high-altitude oak-pine and
montane cloud forest (OPCF) is distinct from
OPF and CF, although adjacent to them, and
was considered a separate category (Arellano-
Covarrubias et al., 2018; Luis-Martínez et al.,
2020; Luis-Martínez et al., 2021; Luis-Martínez
et al., 2022). Sampling focused on effective
sites, such as sunny areas with small white
inflorescences, where species of the subfamily
Theclinae were primarily observed.
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Taxonomy: Identification was carried out
by comparison with the Lepidoptera Collection
at the Museum of Zoology, Faculty of Sciences,
UNAM (MZFC) and the National Museum
of Natural History, Smithsonian Institution
(USNM). The updated species list by subtribe
follows Robbins et al. (2022).
Deposition and permits: Specimens were
deposited in the Papilionoidea Collection (Lep-
idoptera) at the Museum of Zoology under
registration number DFE.IN.071.0798 issued
by the Secretariat of Environment, Natural
Resources, and Fisheries (SEMARNAP). The
specimens were collected under the scientific
Table 1
Single sites and regions (Reg. is a group of sites with more than one elevation or vegetation zone) with highest species richness
of Lycaenidae in Mexico.
Altitude (m) Site / Region spp. P / T / Total
Atlantic Slope
0-1 700 Reg. Los Tuxtlas-Catemaco3,4,5* - Ver. 8 / 129 / 137
100-2 800 Reg. Sierra de Juárez2* - Oax. 8 / 117 / 125
500-1 500 Reg. Macizo Central6 - Chis. 7 / 116 / 123+1^
100-1 500 Reg. Selva Lacandona6 - Chis. 4 / 115 / 119
0-2 500 Reg. Cuenca de Tulijá6 - Chis. 4 / 109 / 113
250-1 000 Reg. Cuenca del Grijalva6 - Chis. 4 / 108 / 112
140-200 Site. Río Lacantún1 - Chis. 5 / 103 / 108
200-350 Site. Cuetzalapan* - Ver. 2 / 101 / 103
350 Site. Catemaco* - Ver. 3 / 95 / 98
350-950 Reg. Barranca de Patla* - Pue. 5 / 86 / 91
650 Site. Tequezquitla* - Pue. 5 / 84 / 89
1 350 Site. San Antonio Buenavista (Sta Rosa)* - Chis. 4 / 81 / 85
350 Site. Presidio* - Ver. 4 / 77 / 81
1 200-1 600 Reg. Xalapa* - Ver. 7 / 71 / 78
900 Site. Carretera 175, Metates2* - Oax. 4 / 66 / 70
1 150-1 350 Site. Coatepec* - Ver. 4 / 64 / 68
300 Site. Tapalapan* - Ver. 3 / 64 / 67
860 Site. Cerro El Vigía, Santiago Tuxtla* - Ver. 2 / 64 / 66
1 200-1 500 Reg. Sierra Madre6 - Chis. 5 / 59 / 64
500-1 500 Reg. Depresión Central5 - Chis. 6 / 54 / 60
Pacific slope
80-2 850 Reg. Loxicha - Oax. 9 / 114 / 123
400 Site. Rancho Hagia Sofía* - Oax. 7 / 84 / 91
300-2 500 Reg. Sierra de Atoyac7* - Gro. 7 / 81 / 88
750 Site. Rancho “El Zorrillo, Cañada Húmeda* - Mich. 6 / 74 / 80
260 Site. Chiquihuitillo* - Mich. 6 / 65 / 70
250-1 800 Reg. Sierra de Manantlán8* - Jal. / Col. 8 / 59 / 67
2 250 Site. Santa Rosa, Comitán* - Chis. 6 / 60 / 66
900 Site. Planta Hidroeléctrica Cupatitzio* - Mich. 7 / 58 / 65
1 200-1 500 Reg. Soconusco6 - Chis. 4 / 58 / 62+1^
650 Site. Río Santiago, 4 km W* - Gro. 8 / 53 / 61
850 Site. Arteaga* - Mich. 6 / 55 / 61
P: Polyommatinae; T: Theclinae; Chis.: Chiapas; Col.: Colima; Gro.: Guerrero; Jal.: Jalisco; Mich.: Michoacán; Oax.: Oaxaca;
Ver.: Veracruz; ^ Species recorded from the Lycaeninae subfamily. Source of data: *, MARIPOSA database (Luis-Martínez
et al., 2005); 1, de la Maza & de la Maza (1993); 2, Luis-Martínez et al. (1991); 3, Ross (1966); 4, Ross (1976); 5, Raguso &
Llorente-Bousquets (1991); 6, de la Maza & de la Maza (2015); 7, Vargas-Fernández et al. (1994); 8, Vargas-Fernández et al.
(1999).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Fig 1. Location of the geographic units on the Pacific slope analyzed: Loxicha Region, Oaxaca; Sierra de Atoyac de Álvarez,
Guerrero; Omiltemi Region, Guerrero; locality Ixcateopan de Cuauhtémoc, Guerrero; Sierra de Manantlán, Jalisco-Colima.
The Sierra Madre del Sur province (grey) and state lines are outlined.
Table 2
Number of specimens and species by locality.
Altitude (m) Vegetation / Site P T Total
Tropical deciduous forest (TDF)
0-500 80-100 Parque Nacional Huatulco, río Cacaluta 53 / 4 37 / 16 90 / 20
100 Parque Nacional Huatulco 151 / 5 53 / 20 204 / 25
Tropical subdeciduous forest (TSDF)
380-500 Azulillo 298 / 8 212 / 37 510 / 45
410 Rancho Hagia Sofía 303 / 7 1 738 / 84 2041 / 91
Cloud forest (CF)
500-1 000 530-700 Río Molinos* 24 / 4 13 / 9 37 / 13
600-1 200 Copalita, río Copalita* 3 / 2 19 / 15 22 / 17
750-900 Magdalena, El Lirio 57 / 5 95 / 27 152 / 32
900 Copalita, Los Plátanos* 0 / 0 1 / 1 1 / 1
940 Copalita, Siete Veneros* 29 / 4 5 / 2 34 / 6
1 000-1 500 1 000 San Mateo Piñas* 0 / 0 3 / 3 3 / 3
1 100-1 200 Pluma Hidalgo, 4 km NW “La Curva 128 / 9 146 / 34 274 / 43
1 100-1 250 Finca Aurora-Finca San Isidro 65 / 5 105 / 18 170 / 23
1 200 Copalita, Llano de Ocote* 0 / 0 18 / 4 18 / 4
1 200-1 530 Portillo del Rayo-Finca El Encanto 47 / 6 54 / 16 101 / 22
1 470-1 550 La Soledad-Buenavista 54 / 6 63 / 21 117 / 27
1 500-1 650 La Pasionaria 11 / 3 114 / 16 125 / 19
Oak-pine - cloud forest (OPCF)
1 500-2 000 1 950-2 150 Puente Arroyo “El Guajolote 53 / 5 26 / 12 79 / 17
>2 000 2 280-2 400 San José del Pacífico, 1 km S 281 / 6 264 / 32 545 / 38
Oak-pine forest (OPF)
2 700-2 800 Manzanal-Doncella* 14 / 3 4 / 3 18 / 6
2 700-2 800 Camino a San Agustín Loxicha* 0 / 0 2 / 2 2 / 2
2 820-2 850 Nevería-La Ciénega* 1 / 1 2 / 2 3 / 3
Total 1 572 / 9 2 974 / 114 4 547 / 123
P: Polyommatinae. T: Theclinae. specimens / number of species. * Localities considered without exhaustive sampling.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
collecting permit issued to Jorge Enrique Llor-
ente Bousquets by the Ministry of Environment
and Natural Resources (SEMARNAT), with
permit number FAUT-0148. Specimen data
were incorporated into the MARIPOSA data-
base (Luis-Martínez et al. 2005).
Species richness by vegetation and eleva-
tion: Species richness was estimated for each
vegetation type and for five elevation zones:
0-500, 500-1 000, 1 000-1 500, 1 500-2 000, >
2 000 m. The non-parametric estimator Chao1
(Colwell & Coddington, 1994) was used with
the SpadeR package (Chao et al., 2016). A con-
fidence interval (95 %) with the standard error
was calculated for each estimate using the Boot-
strap technique. Significant differences in spe-
cies richness among months, vegetation types,
and elevation zones were evaluated by the over-
lap of confidence intervals for the estimates.
Additionally, for the elevation zones, eco-
logical diversity was estimated as the exponen-
tial of the Shannon-Wiener index (H’), using
the Chao & Shen (2003) method implemented
in SpadeR (Chao et al., 2016). This diversity
measure is also known as the Effective Number
of Species (NES) (Jost, 2006). The index takes
into account both species richness and their
relative abundance.
Exclusive and characteristic species: Spe-
cies recorded only in a single vegetation type
or in a single elevation zone, were considered
stenoecious sensu Udvardy (1969), occupying
a narrow range of the habitats available, and
referred as “exclusive. Those with 80 to 99 %
of their records in a particular vegetation type
or elevation zone were considered amphiecious
and referred as “characteristic”, occupying two
or more types of habitats with a broader ecolog-
ical tolerance than stenoecious species, but still
not as flexible as euryecious species. The rest of
the species were considered euryecious, occu-
pying a wide range of the habitats available.
Faunal similarity with other Mexican
Pacific Slope localities: To determine how veg-
etation and elevation determine the occurrence
of lycaenid species on Mexicos Pacific slope, we
calculated a distance matrix dendrogram from
species abundance data using the Bray-Curtis
index through the “vegan” package (Oksanen et
al., 2022) in R 4.0.0 (R Core Team, 2023). The
analysis included data from 31 localities (Fig.
1): 12 from the Loxicha region in Oaxaca (this
study); 10 from Guerrero: El Faisanal, Las Paro-
tas, Nueva Delhi, Puente de los Lugardo, and Río
Santiago 4 km W in Sierra de Atoyac de Álvarez
(Vargas-Fernández et al., 1994); Cañada W of La
Gruta del Borrego, Potrerillo, Presa de la Perra,
and Rancho Omiltemi in the Omiltemi region
(Luis-Martínez & Llorente-Bousquets, 1993),
and Ixcateopan de Cuauhtémoc. Also included
were six localities from the Sierra de Manantlán
in Jalisco-Colima: Agua Dulce, Ahuacapán, La
Calera, Los Mazos 9 mi SW Autlán, Platanarillo,
and Zenzontla (Vargas-Fernández et al., 1994).
The localities were selected based on vegetation
type, geographic location (region), elevation
(100-2 600 m), and sampling coverage.
RESULTS
Mexican Lycaenidae richness by local-
ity: The 17 individual localities and 14 regions
(groups of localities) with the highest Lycae-
nidae species richness in Mexico are listed
(Table 1). Two localities exceed 100 species:
Río Lacantún in Chiapas with 108 (45 %)
species (de la Maza & de la Maza, 1993) and
Cuetzalapan in Veracruz with 103 (43 %) spe-
cies (Luis-Martínez et al., 2005). The region
(group of localities) with the highest number
of species is Los Tuxtlas and the surroundings
of Catemaco, Veracruz, with 137 species (57 %
of the total recorded in the country); this is one
of the regions with the most extensive sampling
efforts primarily from 1960 to 1990 (Raguso &
Llorente-Bousquets, 1991). More than 94 % of
the 2 159 documented Mexican localities have
10 or fewer lycaenid species recorded. These
data demonstrate the historic insufficiency of
sampling effort in most of Mexico.
The Loxicha region: The MARIPOSA
database (Luis-Martínez et al., 2005) had
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Family Lycaenidae [Leach], [1815])
Subfamily Theclinae Swainson, 1831
Tribe Eumaeini Doubleday, 1847
Subtribe Eumaeina Doubleday, 1847
Eumaeus Hübner, [1819]
1. Eumaeus childrenae (Gray, 1832)
2. Eumaeus toxea (Godart, [1824])
Micandra Staudinger, 1888
3. Micandra cyda (Godman & Salvin, 1887)
Subtribe Rhammina Prieto & Busby, 2021
Lathecla Robbins, 2004
4. Lathecla latagus (Godman & Salvin, 1887)
Subtribe Timaetina Prieto & Busby, 2021
Nesiostrymon Clench, [1964]
5. Nesiostrymon dodava (Hewitson, 1877)
Subtribe Atlidina Martins & Duarte, 2021
Brangas Hübner, [1819]
6. Brangas neora (Hewitson, 1867)
7. Brangas getus (Fabricius, 1787)
Atlides Hübner, [1819]
8. Atlides halesus (Cramer, 1777)
9. Atlides gaumeri (Godman, 1901)
10. Atlides polybe (Linnaeus, 1763)
11. Atlides inachus (Cramer, 1775)
12. Atlides carpasia (Hewitson, 1868)
Arcas Swainson, 1832
13. Arcas cypria (Geyer, 1837)
Pseudolycaena Wallengren, 1858
14. Pseudolycaena damo (H. Druce, 1875)
Denivia K. Johnson, 1992
15. Denivia theocritus (Fabricius, 1793)
16. Denivia hisbon (Godman & Salvin, 1887)
Subtribe Evenina Faynel & Grishin, 2021
Evenus Hübner, [1819]
17. Evenus regalis (Cramer, 1775)
Subtribe Jantheclina Robbins & Faynel, 2021
Contrafacia K. Johnson, 1989
18. Contrafacia bassania (Hewitson, 1868)
19. Contrafacia ahola (Hewitson, 1867)
Allosmaitia Clench, [1964]
20. Allosmaitia strophius (Godart, [1824])
200 specimen records from the Loxicha region
between 1968 and 1992 from 100 to 2 280 m
elevation. From these historic specimens, 41
genera were recorded, with five Polyommatinae
species and 53 Theclinae species. As a result
of the faunistic work carried out for this study
from 2005 to 2014, an additional 4 547 speci-
mens were sampled, belonging to 67 genera
with nine species of Polyommatinae and 114 of
Theclinae (from 80 to 2 850 m elevation) (Fig.
2, Fig. 3, Fig. 4). A nomenclatural list of the
species follows.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Laothus K. Johnson, Kruse & Kroenlein, 1997
21. Laothus erybathis (Hewitson, 1867)
Subtribe Paiwarriina Lamas & Robbins, 2021
Kolana Robbins, 2004
22. Kolana ligurina (Hewitson, 1874)
Subtribe Cupatheclina Lamas & Grishin, 2021
Cupathecla Robbins, 2002
23. Cupathecla cupentus (Stoll, 1781)
Subtribe Parrhasiina Busby & Robbins, 2021
Parrhasiusbner, [1819]
24. Parrhasius polibetes (Stoll, 1781)
25. Parrhasius orgia (Hewitson, 1867)
26. Parrhasius moctezuma (Clench, 1971)
Ignata K. Johnson, 1992
27. Ignata gadira (Hewitson, 1867)
Michaelus Nicolay, 1979
28. Michaelus jebus (Godart, [1824])
29. Michaelus hecate (Godman & Salvin, 1887)
30. Michaelus ira (Hewitson, 1867)
Apuecla Robbins, 2004
31. Apuecla maeonis (Godman & Salvin, 1887)
Dicya K. Johnson, 1991
32. Dicya carnica (Hewitson, 1873)
Symbiopsis Nicolay, 1971
33. Symbiopsis sp.
Subtribe Ipideclina Martins & Grishin, 2021
Ipidecla Dyar, 1916
34. Ipidecla miadora Dyar, 1916
Subtribe Calycopidina Duarte & Robbins, 2010
Gigantorubra Johnson, 1993
35. Gigantorubra collucia (Hewitson, 1877)
Ziegleria K. Johnson, 1993
36. Ziegleria hesperitis (Butler & H. Druce, 1872)
37. Ziegleria hoffmani K. Johnson, 1993
Arzecla Duarte & Robbins, 2010
38. Arzecla ceromia (Hewitson, 1877)
Kisutam K. Johnson & Kroenlein, 1993
39. Kisutam syllis (Godman & Salvin, 1887)
Rubroserrata K. Johnson & Kroenlein, 1993
40. Rubroserrata mathewi (Hewitson, 1874)
Electrostrymon Clench, 1961
41. Electrostrymon hugon (Godart, [1824])
42. Electrostrymon joya (Dognin, 1895)
Pendantus K. Johnson & Kroenlein, 1993
43. Pendantus denarius (Butler & H. Druce, 1872)
44. Pendantus guzanta (Schaus, 1902)
Mercedes K. Johnson, 1992
45. Mercedes clarina (Hewitson, 1874)
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
46. Mercedes atnius (Herrich-Schäffer, [1853])
47. Mercedes demonassa (Hewitson, 1868)
48. Mercedes calus (Godart, [1824])
Calycopis Scudder, 1876
49. Calycopis isobeon (Butler & H. Druce, 1872)
Subtribe Strymonina Tutt, 1907
Thereus Hübner, [1819]
50. Thereus orasus (Godman & Salvin, 1887)
51. Thereus oppia (Godman & Salvin, 1887)
52. Thereus ortalus (Godman & Salvin, 1887)
Rekoa Kaye, 1904
53. Rekoa meton (Cramer, 1779)
Heterosmaitia Clench, [1964]
54. Heterosmaitia palegon (Cramer, 1780)
55. Heterosmaitia zebina (Hewitson, 1869)
56. Heterosmaitia marius (Lucas, 1857)
57. Heterosmaitia stagira (Hewitson, 1867)
Arawacus Kaye, 1904
58. Arawacus togarna (Hewitson, 1867)
59. Arawacus sito (Boisduval, 1836)
60. Arawacus jada (Hewitson, 1867)
Strymon Hübner, 1818
61. Strymon melinus (Hübner, 1818)
62. Strymon albata (C. Felder & R. Felder, 1865)
63. Strymon bebrycia (Hewitson, 1868)
64. Strymon yojoa (Reakirt, [1867])
65. Strymon cestri (Reakirt, [1867])
66. Strymon bazochii (Godart, [1824])
67. Strymon istapa (Reakirt, [1867])
68. Strymon serapio (Godman & Salvin, 1887)
69. Strymon megarus (Godart, [1824])
70. Strymon ziba (Hewitson, 1868)
Panthiades Hübner, [1819]
71. Panthiades bathildis (C. Felder & R. Felder, 1865)
72. Panthiades sierrae (Dyar, 1916)
73. Panthiades ochus (Godman & Salvin, 1887)
Subtribe Strephonotina K. Johnson, Austin, Le Crom & Salazar, 1997
Tmolus Hübner, [1819]
74. Tmolus echion (Linnaeus, 1767)
75. Tmolus crolinus Butler & Druce, 1872
Nicolaea K. Johnson, 1993
76. Nicolaea dolium (H.H. Druce, 1907)
Crimsinota K. Johnson, 1993
76. Crimsinota velina (Hewitson, 1868)
Ministrymon Clench, 1961
77. Ministrymon clytie (W.H. Edwards, 1877)
78. Ministrymon arola (Hewitson, 1868)
79. Ministrymon zilda (Hewitson, 1873)
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
80. Ministrymon inoa (Godman & Salvin, 1887)
81. Ministrymon phrutus (Geyer, 1832)
82. Ministrymon azia (Hewitson, 1873)
83. Ministrymon una (Hewitson, 1873)
Gargina Robbins, 2004
84. Gargina gargophia (Hewitson, 1877)
85. Gargina caninius (H.H. Druce, 1907)
86. Gargina thoria (Hewitson, 1869)
Siderus Kaye, 1904
87. Siderus philinna (Hewitson, 1868)
Theclopsis Godman & Salvin, 1887
88. Theclopsis mycon (Godman & Salvin, 1887)
Ostrinotes K. Johnson, Austin, Le Crom & Salazar, 1997
89. Ostrinotes keila (Hewitson, 1869)
Strephonota K. Johnson, Austin, Le Crom & Salazar, 1997
90. Strephonota tephraeus (Geyer, 1837)
91. Strephonota syedra (Hewitson, 1867)
Celmia K. Johnson, 1991
92. Celmia celmus (Cramer, 1775)
Subtribe Callophryidina Tutt, 1907
Radissima Johnson, 1992
94. Radissima umbratus (Geyer, 1837)
Thaeides K. Johnson, Kruse & Kroenlein, 1997
95. Thaeides theia (Hewitson, 1870)
Ocaria Clench, 1970
96. Ocaria petelina (Hewitson, 1877)
97. Ocaria ocrisia (Hewitson, 1868)
Chlorostrymon Clench, 1961
98. Chlorostrymon simaethis (Drury, 1773)
99. Chlorostrymon telea (Hewitson, 1868)
Magnastigma Nicolay, 1977
100. Magnastigma elsa (Hewitson, 1877)
Cyanophrys Clench, 1961
101. Cyanophrys fusius (Godman & Salvin, 1887)
102. Cyanophrys herodotus (Fabricius, 1793)
103. Cyanophrys miserabilis (Clench, 1946)
104. Cyanophrys longula (Hewitson, 1868)
105. Cyanophrys agricolor (Butler & H. Druce, 1872)
Callophrys Billberg, 1820
106. Callophrys guatemalena Clench, 1981
Erora Scudder, 1872
107. Erora quaderna (Hewitson, 1868)
108. Erora nitetis (Godman & Salvin, 1887)
109. Erora carla (Schaus, 1902)
110. Erora gabina (Godman & Salvin, 1887)
111. Erora opisena (H.H. Druce, 1912)
112. Erora muridosca (Dyar, 1918)
Semonina Robbins, 2004
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Fig. 2. Lycaenidae from the Loxicha Region. The numbers correspond to the species list (Line: scale 1 cm). Only species not
shown in Fig. 8 and Fig. 9 are included.
113. Semonina semones (Godman & Salvin, 1887)
Chalybs Hübner, [1819]
114. Chalybs hassan (Stoll, 1790)
Subfamily Polyommatinae Swainson, 1827
Leptotes Scudder, 1876
115. Leptotes cassius cassidula (Boisduval, 1870)
116. Leptotes marina (Reakirt, 1868)
Zizula Chapman, 1910
117. Zizula cyna (W.H. Edwards, 1881)
Brephidium Scudder, 1876
118. Brephidium exilis exilis (Boisduval, 1852)
Cupido Schrank, 1801
119. Cupido comyntas (Godart, [1824])
Celastrina Tutt, 1906
120. Celastrina echo gozora (Boisduval, 1870)
Hemiargus Hübner, 1818
121. Hemiargus ceraunus astenidas (Lucas, 1857)
Echinargus Nabokov, 1945
122. Echinargus isola (Reakirt, [1867])
Icaricia Nabokov, 1945
123. Icaricia acmon (Westwood, [1851])
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Encounter rates: Most species sampled
were rarely encountered, which is a widely
observed pattern among animals and plants
(Kunin & Gaston, 1993). Thirty-five species (28
%) were sampled once or twice, representing an
encounter rate of less than 0.03 %. Alternatively,
the ten most commonly encountered species
made up 51 % of the individuals, namely
Cupido comyntas (413 specimens), Leptotes
cassius cassidula (378), Celastrina echo gozora
Fig. 4. Lycaenidae from the Loxicha Region (continued). The numbers correspond to the species list (Line: scale 1 cm).
Fig. 3. Lycaenidae from the Loxicha Region (continued). The numbers correspond to the species list (Line: scale 1 cm).
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
(323), Calycopis isobeon (262), Pseudolycae-
na damo (242), Hemiargus ceraunus astenidas
(222), Theclopsis mycon (169), Ministrymon
arola (157), Arawacus sito (148), and Zizula
cyna (122). Half the species are Polyommatinae
and half are Theclinae.
Patterns of species richness: The Lycae-
nidae richness of the Loxicha region represents
53 % of the Mexican fauna (Llorente-Bousquets
et al., 2014) and 71 % at the state level (Luis-
Martínez et al., 2016). The richness of the
Loxicha region is equivalent to that of the
Central Chiapas Massif (de la Maza & de la
Maza, 2015) and is slightly less than the Los
Tuxtlas-Catemaco region, Veracruz (with the
highest richness: 137 species) and the Sierra
de Juárez, Oaxaca (125 species) (Luis-Martínez
et al., 1991). Llorente-Bousquets et al. (2014)
reported 106 Lycaenidae species for the Sierra
Madre del Sur, with 17 species fewer than the
Loxicha region. Loxicha hosts four of the eight
Mexican endemic Theclinae species: Ipidecla
miadora (7 specimens), Laothus erybathis (43),
Semonina semones (4), and Symbiopsis sp. (2)
(Trujano-Ortega et al., 2024).
The Loxicha locality with the highest rich-
ness was Rancho Hagia Sofía, with 84 Thecli-
nae and seven Polyommatinae (Table 2). The
sample included 80 % of the species and 45
% of the specimens in the Loxicha region. It
ranks fourth among the 18 most species-rich
localities in Mexico, and is the richest on the
Pacific slope, surpassing Rancho “El Zorrillo
and Cañada Húmeda in Michoacán by 11 spe-
cies (Table 1). The locality also had the greatest
sampling effort with 47 fieldwork days.
A contrast to Rancho Hagia Sofía is Azulil-
lo, with an equivalent number of vegetation and
elevational zones. During 43 days of sampling
for Theclinae, we recorded about half as many
species and 12 % of the specimens compared to
Rancho Hagia Sofía (Table 2). In contrast, for
Polyommatinae, Azulillo had one more species
than Rancho Hagia Sofía and nearly the same
number of specimens.
The remaining 20 localities complete the
richness of the Loxicha region with 33 species
and 55 % of the specimens. Notably, Azulillo
and Pluma Hidalgo (4 km NW “La Curva”)
show similar richness with 45 and 43 species,
respectively, even though Azulillo is located at
lower elevation (Table 2). The locality of San
José del Pacífico stands out for its richness with
38 species; it had the second-highest number
of specimens after Rancho Hagia Sofía and is
the richest among the localities above 2 000 m
in Mexico (e.g., Luis-Martínez & Llorente-
Bousquets, 1990, Luis-Martínez & Llorente-
Bousquets, 1993; Luis-Martínez et al. 1991;
Vargas-Fernández et al., 1994; Vargas-Fernán-
dez et al., 1999).
Phenology: Both abundance and estimat-
ed richness show the same annual variation
(Fig. 5, SMT 1). According to the estimates,
richness is highest at the beginning of the rainy
season (May-June), remaining consistent with
no significant differences until October (Fig. 5,
SMT 1). At the start of the dry season (Novem-
ber), there is a significant decrease in both rich-
ness and abundance, with minimum values in
February. The estimates indicate sufficient sam-
pling for most months, although the confidence
intervals are wide, particularly for December,
due to lower abundance and a higher propor-
tion of rarely encountered species.
Vegetation type: The greatest number of
Loxicha Lycaenidae inhabit tropical subdecidu-
ous forest (124 estimated species) and montane
cloud forest (106 estimated species) (Fig. 6,
SMT 1). High-elevation oak-pine and montane
cloud forest are less rich (62 estimated species).
The wide confidence intervals for richness
estimates in tropical deciduous forest, tropical
subdeciduous forest, and high-altitude oak-
pine and montane cloud forest are due to the
high frequency of rarely encountered species.
In contrast, no species were rarely encountered
in oak-pine forest, and the confidence interval
was low.
Elevation: Lower elevations (0-500 m) with
103 estimated species and the 1 000-1 500 m
zone with 123 species had the highest estimated
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
richness (Fig. 7). The 0-500 m range is the best
sampled, with 91 % of the species sampled,
according to the estimation. In contrast, for
the 1 000-1 500 m range, only 56 % of the
species were sampled. Additionally, the wide
confidence interval at this elevation (a high fre-
quency of rarely encountered species) may be
due to the montane cloud forest. On the other
hand, ecological diversity (Effective Number
of Species) is high at the lowest elevations and
decreases with elevation (Fig. 7). This ecologi-
cal diversity is affected by the proportion of rare
and dominant species present in each elevation
zone. In general, encounter rates are low, with
Fig. 5. Observed species richness, estimated richness, and abundance of Lycaenidae by month. Both parameters show a peak
at the beginning of the rainy season in May and a decrease at the start of the dry season in November. The estimated richness
indicates good sampling levels for each month, except December.
Fig. 6. Estimation of species richness by vegetation type. CF shows high richness considering it covers a smaller area. The
letters indicate significant differences (p < 0.05) in the estimation of species richness based on the overlap of confidence
intervals. TDF: tropical deciduous forest; TSDF: tropical subdeciduous forest; CF: cloud forest; OPCF: oak-pine – cloud
forest; OPF: oak-pine forest.
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
33 % of the 123 sampled species represented
by five or fewer specimens. We note that the
elevation range with the fewest “unseen” spe-
cies is 1 500-2 000 m, which may be a sampling
artifact because only one locality occurs at this
elevation (Table 2).
Exclusive and characteristic species by
vegetation type: Forty-four species (Table 3,
Fig. 8) were sampled in only one vegetation
type, but 25 were represented by only one or
two specimens (Table 3). The exclusive species
are all Theclinae species, with a majority (29
species, 65 %) limited to tropical subdeciduous
forest. The most abundant exclusive species in
tropical subdeciduous forest are Rekoa meton
(37 specimens), Gargina thoria (24), and G.
caninius (17). In montane cloud forest, 12
exclusive species were recorded, with the most
abundant being Arawacus togarna (5). In Oak-
Pine cloud forest, only three exclusive species
were present: Erora quaderna, E. nitetis, and
Thereus ortalus.
For characteristic species (80 to 99 %
of specimens in a specific vegetation type),
tropical subdeciduous forest has the highest
number, with 26 species, followed by montane
cloud forest with six species and oak-pine cloud
forest with five (Table 3, Fig. 9). Three Poly-
ommatinae species were each characteristic of
one vegetation type: Icaricia acmon (tropical
subdeciduous forest), Zizula cyna (montane
cloud forest), and Celastrina echo gozora (high-
altitude oak-pine and montane cloud forest).
Despite its small extent, the montane cloud
forest had 12 exclusive and six characteris-
tic species, with the most frequently encoun-
tered being Zizula cyna, Pendantus denarius,
Eumaeus toxea, and E. childrenae. The other
two vegetation types (tropical deciduous forest
and oak-pine forest) did not have exclusive or
characteristic species.
Community composition: The distance
matrix dendrogram based on species abun-
dance data results in three groupings of fau-
nal similarity characterized by elevation and
vegetation type (Fig. 10). The first group con-
sists of seven localities above 1 800 m eleva-
tion, including the two highest localities in the
Fig. 7. Species richness and diversity by elevation. Observed species richness is higher in the lowest elevational range,
although the estimation shows no differences with intermediate altitudes, which had lower sampling effort. Both richness and
ecological diversity decrease with elevation. Letters indicate significant differences (p < 0.05) in species richness estimation,
based on the overlap of confidence intervals.
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Fig. 8. Distribution of ‘exclusive’ species recorded only in one type of vegetation. The numbers correspond to the species list.
Table 3
‘Exclusive’ and ‘characteristic’ species by vegetation type.
Tropical
Subdeciduous
Forest
55
Atlides carpasia, Allosmaitia strophius, Arzecla ceromia (13), Atlides gaumeri (9), Atlides polybe (11),
Brangas getus (7), Brangas neora (1), Cyanophrys fusius, Chalybs hassan, Cyanophrys herodotus, Cyanophrys
miserabilis, Chlorostrymon telea, Cupathecla cupentus (1), Denivia theocritus, Erora carla, Electrostrymon
hugon, Electrostrymon joya (2), Erora gabina (2), Erora muridosca (2), Erora opisena (6), Evenus regalis (12),
Gigantorubra collucia, Gargina caninius (17), Gargina thoria (24), Heterosmaitia marius, Heterosmaitia
stagira, Rekoa meton (37), Heterosmaitia zebina (14), Icaricia acmon, Ipidecla miadora, Ignata gadira (7),
Kisutam syllis (1), Lathecla latagus (1), Ministrymon arola, Mercedes clarina, Mercedes demonassa, Michaelus
jebus, Ministrymon phrutus, Magnastigma elsa (2), Mercedes calus (2), Michaelus hecate (14), Ministrymon
inoa (1), Ministrymon zilda (2), Nicolaea dolium (11), Pseudolycaena damo, Panthiades sierrae, Parrhasius
orgia (6), Radissima umbratus, Siderus philinna, Strephonota tephraeus, Semonina semones (4), Strymon
melinus (2), Symbiopsis sp. (2), Tmolus echion, Ziegleria hesperitis (1)
Cloud forest
18
Arawacus togarna (5), Atlides inachus (1), Celmia celmus (1), Contrafacia bassania (2), Denivia hisbon
(3), Eumaeus childrenae, Eumaeus toxea, Mercedes atnius (1), Ministrymon una (1), Nesiostrymon dodava
(1), Ocaria petelina (1), Panthiades ochus, Pendantus denarius, Strephonota syedra (1), Thaeides theia (1),
Theorema eumenia (1), Thereus orasus, Zizula cyna
Oak-Pine
cloud forest
8
Arawacus jada, Atlides halesus, C. guatemalena, Celastrina echo gozora, Erora nitetis (2), Erora quaderna (8),
Parrhasius moctezuma, Thereus ortalus (1)
Characteristic’ species (underlined) have 80 to 99 % of their records in one type of vegetation. The number of records for the
exclusive’ species is indicated in parentheses.
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Loxicha region and four localities in Omiltemi.
In addition to elevation, this group is also char-
acterized by the predominance of oak forests
and high-altitude oak-pine, which are environ-
ments exclusive to this group.
The second group is characterized by the
presence of tropical subdeciduous forest and
tropical deciduous forest. Eight localities occur
under 1 000 m elevation, but there are also nine
localities at this elevation in the third group.
In other words, vegetation type explains more
than elevation explains similarity between
localities in the second group.
The third group includes the five localities
from the Sierra de Atoyac, nine from the Loxi-
cha region, and Los Mazos from the Sierra de
Manantlán region. This group contains locali-
ties between 1 000 and 1 500 m mixed with
lower-altitude localities. The common char-
acteristic of 12 of the 16 localities is the pres-
ence of montane cloud forest. Thus, similar to
group 2, the similarity among these localities,
which belong to three different regions, are
mainly determined by vegetation type.
DISCUSSION
Species richness: The Loxicha region
fauna represents about 11 % of the Neotropical
Eumaeini fauna (Robbins, 2004). It is the high-
est documented Lycaenidae species richness on
Mexicos Pacific slope, as was the case for other
butterfly families (Arellano-Covarrubias et al.,
2018; Luis-Martínez et al., 2016, Luis-Martínez
et al., 2020; Luis-Martínez et al., 2022). The
only Mexican regions with a greater Lycaenidae
species richness are Los Tuxtlas-Catemaco in
Veracruz and the Sierra de Juárez in Oaxaca on
the Atlantic slope, both regions with well-doc-
umented sampling during the 1960s to 1980s
(Luis-Martínez et al., 1991; Raguso & Llorente-
Bousquets, 1991; Ross, 1966; Ross, 1976).
Fig. 9. Distribution of ‘characteristic’ species, which account for 80 to 99 % of their records in one type of vegetation. The
numbers correspond to the species list.
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Among the Loxicha region localities, Hagia
Sofía stands out for its richness, accounting for
73 % of the species. It has a diversity similar to
less-studied entire regions. The high richness
at Hagia Sofía may be due to the prevalence of
areas suitable for adult foraging, as previously
noted by Arellano-Covarrubias et al. (2018)
for Riodinidae. At this site, inflorescences of
the introduced rambutan (Nephelium lappace-
um L.) and Indian almond trees (Terminalia
catappa L.) were major nectar sources. We sus-
pect that the differences in Theclinae diver-
sity between Hagia Sofía and Azulillo – similar
environments and sampling effort – are due to
the presence of these trees at the former locality.
The high species richness of the Loxicha
region on its Pacific slope is the result of its
biogeographic history, altitudinal-vegetational
heterogeneity, and its location within the Sierra
Madre del Sur. The Sierra Madre del Sur is
Fig. 10. Similarity in the composition of Lycaenidae species from the Pacific slope. Three groups of localities are recognized,
characterized by the altitude and the type of vegetation they present. Vegetation types: TDF, tropical deciduous forest; TSDF,
tropical subdeciduous forest; CF, cloud forest; OF, oak forest; OPCF, oak-pine – cloud forest. Regions: ATO, Atoyac; IXCA,
Ixcateopan; LOX, Loxicha; MAN, Manantlán; OMI, Omiltemi. Localities: Azuli, Azulillo; CLoxi, Candelaria Loxicha; Copal,
Copalita Siete Veneros; FAuro, Finca Aurora-Finca San Isidro; Pasio, La Pasionaria; Soled, La Soledad-Buenavista; Magda,
Magdalena El Lirio; PNHua, Parque Nacional Huatulco; PNHRC, Parque Nacional Huatulco Río Cacaluta; PluHi, Pluma
Hidalgo 4 km NW “La Curva”; PorRa, Portillo del Rayo-Finca El Encanto; Guajo, Puente Arroyo “El_Guajolote”; RhagS,
Rancho Hagía Sofía; RMoli, Río Molinos; SJPac, San José del Pacífico 1 km S; Faisa, El Faisanal; Parot, Las Parotas; NDelh,
Nueva Delhi; PLuga, Puente de los Lugardo; RSant, Río Santiago 4 km W; GBorr, Cañada W de la Gruta del Borrego; Potre,
Potrerillo; LPerr, Presa de la Perra; ROmil, Rancho Omiltemi; Ixcat, Ixcateopan de Cuauhtémoc; AguDu, Agua Dulce; Ahuac,
Ahuacapan; Caler, La Calera; Mazos, Los Mazos 9 mi SW Autlán; Plata, Platanarillo; Zenzo, Zenzontla.
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
recognized as a region of high diversity due to
its complex geological history and altitudinal
gradient that generates ecosystem heterogene-
ity (Espinosa et al., 2016). This is reflected in
the Loxicha region, which includes five types of
vegetation. Therefore, the altitudinal gradient
and environmental heterogeneity of the Loxi-
cha region explain the high butterfly species
richness, particularly that of Lycaenidae.
Encounter rates: For the Loxicha region,
54 species (44 % of the fauna) were repre-
sented by 10 or fewer individuals. This result
is frequent in faunistic studies of hyperdiverse
groups and is pronounced in Theclinae (Arella-
no-Covarrubias et al., 2018; Lamas et al., 2021;
Luis-Martínez & Llorente-Bousquets, 1990;
Luis-Martínez et al., 1991; Vargas-Fernández
et al., 1994; Vargas-Fernández et al., 1999). The
significance of this low encounter rate for many
species is that it indicates a large number of
unseen” species. Statistically, this significance
is reflected in large species richness estimate
intervals. In sharp contrast to the Theclinae,
most species of Polyommatinae were frequently
encountered, perhaps because they tend to
inhabit highly disturbed habitats.
Of the species previously recorded for the
Loxicha region but not sampled during field-
work, four were recorded from a single speci-
men in La Soledad – Buenavista during the
1970s and 1980s (Atlides inachus, Ministrymon
una, Nesiostrymon dodava, and Strephonota
syedra). Low encounter rates are a probable
explanation for the result, but we note the pos-
sibility that this locality was confused with La
Soledad in the Sierra de Juárez region on the
Gulf slope.
Phenology: The seasonal distribution of
Lycaenidae in the Loxicha region is similar to
that for Papilionidae, Pieridae, and Riodinidae
(Arellano-Covarrubias et al., 2018; Luis-Mar-
tínez et al., 2020; Luis-Martínez et al., 2022).
In all families, a marked decrease in richness
and abundance occurs at the transition from
the wet to the dry season (November). Alter-
natively, greatest richness and abundance occur
at the transition from the dry to the wet season
in May and June except in Nymphalidae, with
greatest richness in September and October
(Luis-Martínez et al., 2022).
At other Neotropical sites, Lycaenidae rich-
ness is also lowest at the transition from wet to
dry seasons. It may be greatest during the dry
season (Bates, 1864; Robbins & Small, 1981),
during the wet season (Prieto & Dahners,
2009), or at the transition from dry to wet sea-
sons (Lamas et al., 2021; Robbins et al., 1996).
Vegetation types: Lycaenidae distribu-
tion by vegetation type shows similarities with
butterfly families Papilionidae, Pieridae, and
Nymphalidae (Luis-Martínez et al., 2020; Luis-
Martínez et al., 2022). All are most diverse
in tropical subdeciduous forest and montane
cloud forest and are least diverse in oak-pine
forest. Tropical subdeciduous forest and mon-
tane cloud forest have the most exclusive and
characteristic Lycaenidae species, as is the case
with Papilionidae and Nymphalidae (Luis-Mar-
tínez et al., 2020; Luis-Martínez et al., 2022).
In contrast to these patterns of butterfly
diversity in the Sierra Madre del Sur, ferns
(Tejero-Díez et al., 2016), gymnosperms
(Contreras-Medina, 2016), Quercus (Valencia-
Ávalos & Morales-Saldaña, 2016), and Salvia
(Martínez-Gordillo et al., 2016) have greatest
richness in oak-pine forest and montane cloud
forest but lower richness in tropical subdecidu-
ous forest. In other words, in the Sierra Madre
del Sur, it would appear that plant diversity,
albeit a small sample of plants, need not beget
butterfly diversity.
Elevation: Species richness of Lycaenidae
in the Loxicha region is greatest at lower eleva-
tions, similar to Riodinidae, Papilionidae, Pieri-
dae, and Nymphalidae (Arellano-Covarrubias
et al., 2018; Luis-Martínez et al., 2020; Luis-
Martínez et al., 2022). More generally, but-
terfly richness decreases as elevation increases
(Álvarez-García et al., 2016; Lamas et al., 2021;
Luis-Martínez & Llorente-Bousquets, 1990;
Luis-Martínez & Llorente-Bousquets, 1993;
Luis-Martínez et al., 1991; Vargas-Fernández
20 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
et al., 1994; Vargas-Fernández et al., 1999). In
contrast, butterflies from Serra do Cipó, Brazil
(Pires et al., 2020) and Geometridae from Costa
Rica (Brehm et al., 2007) show greater diversity
at intermediate elevations. McCoy (1990) found
that short-term studies find higher diversity
at intermediate elevations, while longer stud-
ies, like this one for Lycaenidae, find greater
diversity at lower elevations. Given the broad
estimates of species richness (Fig. 7), definitive
conclusions would require more sampling.
Species composition similarity: The
three main community similarity groupings for
lycaenids in the Sierra Madre del Sur and the
Pacific slope are, as expected, correlated with
elevation and vegetation type (Fig. 10). How-
ever, the substantial variability of elevation and
vegetation type within each similarity grouping
is perhaps unexpected. In other words, eleva-
tion and vegetation type do not definitively
predict the lycaenid community that will occur
in a habitat. Rather, groupings appear to also be
explained by isolation of faunas at higher eleva-
tions, as found in other Papilionoidea (s.l.),
of mountainous systems (Llorente-Bousquets,
1984; Llorente-Bousquets & Escalante, 1994;
Llorente-Bousquets & Luis-Martínez, 1998).
This is the fourth publication on the lepi-
dopteran fauna of the Loxicha Region (Arella-
no-Covarrubias et al., 2018; Luis-Martínez et
al., 2020; Luis-Martínez et al., 2022), confirm-
ing that for the five Papilionoidea families ana-
lyzed, it is one of the most diverse regions in the
country. Systematic faunistic studies with ade-
quate sampling provide a foundation for inves-
tigating biological processes. They allow for the
recognition of disjunct distributions in moun-
tainous systems, and with that, processes of
speciation and endemism. They can also serve
as the basis for measuring changes in species
distribution due to climate change, especially
for stenotopic species that could lead to local
extinctions (e.g. Molina-Martínez et al., 2016).
Lycaenidae has historically received less
attention than other butterfly families in Mex-
ico. The geographic, seasonal, elevational, and
vegetational distribution of Lycaenidae in the
Loxicha region is the most comprehensive to
date for Mexican Lycaenidae. The high propor-
tion of rarely encountered species is a notable
characteristic of Lycaenidae, but many seasonal,
elevational, and vegetation-associated patterns
that we document are similar to those of other
butterfly families.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
See supplementary material
a48v73n1-suppl. 1
ACKNOWLEDGMENTS
Authors thank CONABIO, which in its
three decades of existence have supported the
Lepidoptera collection, granting resources for
infrastructure, fieldwork, and data repatriation
from specimens in USA collections (1991-
2000) and now included in the MARIPOSA
database. Also, we thank the research proj-
ect PAPIIT-IN212925, for financial support.
MTO thanks the support from CONAHCYT
(Estancias Posdoctorales por México para la
Formación y Consolidación de las y los Investi-
gadores por México; CVU131802). To the cura-
tors of the collections who granted access to
specimens, data and specialized literature dur-
ing the development of the MARIPOSA data-
base: Frederick Rindge † (American Museum
of Natural History, Nueva York), Jerry Powell
and John Chemsak (“Essig” Collection Depart-
ment of Entomological Sciences, University of
California, Berkeley campus, California), John
E. Rawlins (Carnegie Museum of Natural
History, Pittsburgh, Pennsylvania), David K.
Faulkner and John W. Brown (San Diego Natu-
ral History Museum, California), Paul Arnaud
Jr. and Norman Penny (California Academy of
21
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Sciences, San Francisco, California), Brian V.
Brown and Brian Harris (Los Angeles County
Museum, California), Lee D. Miller (Allyn
de Entomology Museum, Sarasota, Florida),
George T. Austin (Nevada State Museum),
Philip Ackery and Dick Vane-Wright (British
Museum of Natural History), Harry Brailovsky
(Colección Entomológica del Instituto de
Biología, UNAM, Cd. de México), Thomas
Emmel and Jacqueline Miller (Collection
of the McGuire Center for Lepidoptera and
Biodiversity, Florida Museum of Natural His-
tory, University of Florida), Carmen Pozo de la
Tijera (Colección de Lepidoptera del Colegio
de la Frontera Sur (Chetumal)) and Mercedes
Luna (Colección de Lepidoptera del Museo
de Zoología de la Facultad de Estudios Supe-
riores Zaragoza, UNAM). Our great gratitude
to the residents of Oaxaca and owners of the
lands, like Armando Canavati (Rancho Hagia
Sofía, Santa María Huatulco), who supported
us in the fieldwork. To the managers of the
natural protected area Parque Nacional Huatul-
co for their support for the fieldwork during
five years. To Isabel Vargas Fernández, Jimena
Castro, and Uri García for their help in the
laboratory tasks, as well as Alejandra Sánchez
García, Andrew D. Warren, Blanca Claudia
Hernández Mejía, Ela Stephanie Esquivel Ruíz,
Jessica Hernández Jerónimo, John Kemner, José
Luis Salinas Gutiérrez, Marisol Esther Almaraz
Almaraz, and Sandra Nieves Uribe, who par-
ticipated in the sampling. Finally, Atzinameyali
Sánchez Castañeda, who prepared and labeled
the collected specimens for their incorporation
into the museum collection.
REFERENCES
Álvarez-García, H., Ibarra, A., & Escalante, P. (2016).
Riqueza y distribución altitudinal de las mariposas de
la Sierra Mazateca, Oaxaca (Lepidoptera: Papilionoi-
dea). Acta Zoológica Mexicana (Nueva Serie), 32(3),
323–347. https://doi.org/10.21829/azm.2016.323967
Arellano-Covarrubias, A., Llorente-Bousquets, J., & Luis-
Martínez, A. (2018). Distribución y fenología de la
familia Riodinidae (Lepidoptera: Papilionoidea) en el
bosque tropical subcaducifolio de la porción media
del Pacífico de Oaxaca, México. Revista de Biología
Tropical, 66(2), 503–558. http://dx.doi.org/10.15517/
rbt.v66i2.33378
Bates, H. W. (1864). VI. Contributions to an insect fauna of
the Amazon Valley. Coleoptera: Longicornes.Annals
and Magazine of Natural History, 13(73), 43–56.
https://doi.org/10.5962/bhl.title.110205
Brehm, G., Colwell, R. K., & Kluge, J. (2007) The role of
environment and mid-domain effect on moth species
richness along a tropical elevational gradient. Global
Ecology and Biogeography, 16, 205–219. http://dx.doi.
org/10.1111/j.1466-822x.2006.00281.x
Busby, R. C., Faynel, C., Moser, A., & Robbins, R. K.
(2019). Sympatric diversification in the upper Ama-
zon: A revision of the Eumaeine genus Paraspiculatus
(Lepidoptera: Lycaenidae). Smithsonian Institution
Scholarly Press.
Chao A., Ma, K. H., Hsieh, T. C., & Chiu, C. (2016). SpadeR:
Species-richness prediction and diversity estimation
with R. R package. (Version 0.1.1.) [Software]. https://
CRAN.R-project.org/package=SpadeR
Chao, A., & Shen, T. J. (2003). Nonparametric estima-
tion of Shannons index of diversity when there
are unseen species in sample. Environmental and
Ecological Statistics, 10(4), 429–443. https://doi.
org/10.1023/A:1026096204727
Chew, F. S., & Robbins, R. K. (1984). Egg-laying in butter-
flies.In R. I. Vane-Wright, & P. R. Ackery (Eds.), The
biology of butterflies (pp. 65–79). Academic press.
Colwell, R. K., & Coddington, J. A. (1994). Estimating
terrestrial biodiversity through extrapolation. Philo-
sophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 345(1311), 101–118.
https://doi.org/10.1098/rstb.1994.0091.
Contreras-Medina, R. (2016). Las gimnospermas de la
Sierra Madre del Sur. In I. Luna-Vega, D. Espinosa, &
R. Contreras-Medina (Eds.), Biodiversidad de la Sierra
Madre del Sur (pp. 157–165). Universidad Nacional
Autónoma de México.
de la Maza, R. E., & de la Maza, J. E. (1993). Mariposas de
Chiapas. Espejo de Obsidiana.
de la Maza, R. E., & de la Maza, J. E. (2015). La fauna de
mariposas (Lepidoptera: Rhopalocera) del rio Lacan-
tun. In R. de la Maza, J. Carabias, J. de la Maza, &
R. Cadena (Eds.), Conservación y desarrollo susten-
table en la Selva Lacandona. 25 años de actividades
y experiencias (pp. 187–192). Natura y Ecosistemas
Mexicanos A. C.
DeVries, P. J. (1990). Enhancement of symbioses between
butterfly caterpillars and ants by vibrational commu-
nication. Science, 248(4959), 1104–1106. https://doi.
org/10.1126/science.248.4959.1104
22 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
DeVries, P. J. (1991). Call production by myrmecophilous
riodinid and lycaenid butterfly caterpillars (Lepi-
doptera): Morphological, acoustical, functional, and
evolutionary patterns. American Museum Novitates,
3025, 21–23. http://hdl.handle.net/2246/5054
Duarte, M., & Robbins, R. K. (2009) Immature stages of
Calycopis bellera (Hewitson) and C. janeirica (Fel-
der) (Lepidoptera, Lycaenidae, Theclinae, Eumaeini):
Taxonomic significance and new evidence for detriti-
vory. Zootaxa, 2325, 39–61. https://doi.org/10.11646/
zootaxa.2325.1.4
Espinosa, D., Ocegueda-Cruz, S., & Luna-Vega, I. (2016).
Introducción al estudio de la biodiversidad de la
Sierra Madre del Sur: Una visión general. In I. Luna-
Vega, D. Espinosa, & R. Contreras-Medina (Eds.),
Biodiversidad de la Sierra Madre del Sur (pp. 23–36).
Universidad Nacional Autónoma de México.
Gobierno de México. (n. d.). CONABIO. http://www.
conabio.gob.mx
Godman, F. D., & Salvin, O. (1887–1901). Biologia Centrali
Americana. Zoología, Insecta, Lepidoptera, Rhopaloce-
ra (Vol. 2). Taylor and Francis.
Hoffmann, C. C. (1933). La fauna de lepidópteros del
distrito del Soconusco (Chiapas). Un estudio zoogeo-
gráfico. Anales del Instituto de Biología Universidad
Nacional de xico, 4(3-4), 207–307.
Hoffmann, C. C. (1936). Relaciones zoogeográficas de los
lepidópteros mexicanos. Anales del Instituto de Bio-
logía Universidad Nacional de xico, 7(1), 47–58.
Hoffmann, C. C. (1940). Catálogo sistemático y zoogeo-
gráfico de los lepidópteros mexicanos. Primera parte.
Papilionoidea. Anales del Instituto de Biología Univer-
sidad Nacional de xico, 11(2), 639–739.
Hoffmann, C. C. (1941). Catálogo sistemático y zoogeo-
gráfico de los lepidópteros mexicanos. Segunda parte.
Hesperioidea. Anales del Instituto de Biología Univer-
sidad Nacional de xico, 12(1), 237–294.
Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375.
https://doi.org/10.1111/j.2006.0030-1299.14714.x.
Kaminski, L. A., Rodrigues, D, & Freitas, A. V. L. (2012).
Immature stages of Parrhasius polibetes (Lepidoptera:
Lycaenidae): Host plants, tending ants, natural ene-
mies, and morphology. Journal of Natural History,
46, 645–667. https://doi.org/10.1080/00222933.201
1.651630
Kunin, W. E., & Gaston, K. J. (1993). The biology of
rarity: Patterns, causes and consequences. Trends
in Ecology & Evolution, 8(8), 298–301. https://doi.
org/10.1016/0169-5347(93)90259-R
Lamas, G., Turner, J. D., McInnis, M. L., & Robbins, R.
K. (2023). Riodinid butterfly fauna (Lepidoptera)
of the Cosñipata Region, Peru: Annotated checklist,
community structure, and contrast with Lycaenidae.
Insecta Mundi, 0988, 1–35.
Lamas, G., McInnis, M. L., Busby, R. C., & Robbins, K. R.
(2021). The lycaenid butterfly fauna (Lepidoptera)
of Cosñipata, Peru: Annotated checklist, elevational
patterns, and rarity. Insecta Mundi, 0861, 1–34.
Llorente-Bousquets, J. (1984). Sinopsis sistemática y bio-
geográfica de los Dismorphiinae de México con
especial referencia al género Enantia Hübner (Lepi-
doptera: Pieridae). Folia Entomológica Mexicana, 58,
3–206.
Llorente-Bousquets, J., & Escalante, P. (1994). Insular bio-
geography of submontane humid forests in México. In
S. P. Darwin, & A. L. Welden (Eds.), Biogeography of
Mesoamerica (pp. 139–146). University of Louisiana.
Llorente-Bousquets, J., & Luis-Martínez, A. (1998). Aná-
lisis conservacionista de las mariposas mexicanas:
Papilionidae (Lepidoptera: Papilionoidea). In T.
Ramammorthy, R. Bye, A. Lot, & J. Fa (Eds.), Diver-
sidad biológica de México: Orígenes y distribución (pp.
149–178). Instituto de Biología UNAM.
Llorente-Bousquets, J., Luis-Martínez, A., & Vargas-Fer-
nández, I. (2006). Apéndice general de Papilionoidea:
Lista sistemática, distribución estatal y provincias
biogeográficas. In J. J. Morrone, & J. Llorente-Bous-
quets (Eds.), Componentes bióticos principales de la
entomofauna mexicana (Vol. 2, pp. 945–1009). Las
Prensas de Ciencias, Universidad Nacional Autónoma
de México.
Llorente-Bousquets, J., Vargas-Fernández, I., Luis-Martí-
nez, A. Trujano-Ortega, M., Hernández-Mejia, B. C.,
& Warren, A. D. (2014). Biodiversidad de Lepidoptera
en México. Revista Mexicana de Biodiversidad, Suple-
mento Biodiversidad de México, 85, 353–371. https://
doi.org/10.7550/rmb.31830
Luis-Martínez, A., Vargas-Fernández, I., & Llorente-Bous-
quets, J. (1991). Lepidopterofauna de Oaxaca I. Distri-
bución y fenología de los Papilionoidea de la Sierra de
Juárez. Publicaciones Especiales del Museo de Zoología
UNAM, 3, 1–121.
Luis-Martínez, A., & Llorente-Bousquets, J. (1990). Mari-
posas en el Valle de México: Introducción e Historia.
1. Distribución local y estacional de los Papilionoidea
de la Cañada de los Dínamos, Magdalena Contre-
ras, D. F., México. Folia Entomológica Mexicana, 78,
95–198.
Luis-Martínez, A., & Llorente-Bousquets, J. (1993). Mari-
posas. In J. Llorente-Bousquets, & I. Luna-Vega
(Eds.), Historia Natural del Parque Ecológico Estatal
Omiltemi, Chilpacingo, Guerrero, México (pp. 307–
385). Facultad de Ciencias Universidad Nacional
Autónoma de México.
Luis-Martínez, A., Ávalos-Hernández, O., Trujano-Ortega,
M., Arellano-Covarrubias, A., Vargas-Fernández, I.,
23
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
& Llorente-Bousquets, J. (2021). Riqueza y ende-
mismo de Papilionoidea (Lepidoptera) de la región
Loxicha en el estado de Oaxaca, México. Dugesiana,
28(2), 233–246. https://doi.org/10.32870/dugesiana.
v28i2.7165
Luis-Martínez, A., Ávalos-Hernández, O., Trujano-Ortega,
M., Arellano-Covarrubias, A., Vargas-Fernández,
I., & Llorente-Bousquets, J. (2022). Distribution,
diversity, endemism, and ecology of Nymphalid but-
terflies (Lepidoptera: Nymphalidae) in the Loxicha
Region, Oaxaca, Mexico. Revista de Biología Tropical,
70, 363–407. https://doi.org/10.15517/rev.biol.trop..
v70i1.48821
Luis-Martínez, A., Hernández-Mejia, B., Trujano-Ortega,
M., Warren, A. D., Salinas-Gutiérrez, J. L., Ávalos-
Hernández, O., Vargas-Fernández, I., & Llorente-
Bousquets, J. (2016). Avances faunísticos en los
Papilionoidea (Lepidoptera) sensu lato de Oaxaca,
México. Southwestern Entomologist, 41(1), 171–224.
https://doi.org/10.3958/059.041.0119
Luis-Martínez, A., Llorente-Bousquets, J., & Vargas-Fer-
nández, I. (2005). MARIPOSA database. Una mega-
base de datos de mariposas y la regionalización
biogeográfica de México. In J. Llorente-Bousquets,
& J. J. Morrone (Eds.), Regionalización geográfica en
Iberoamérica y tópicos afines: Primeras jornadas bio-
geográficas de la Red Iberoamericana de Biogeografía
y Entomología Sistemática (RIBES XII.X-CYTED)
(pp. 269–294). Las Prensas de Ciencias Universidad
Nacional Autónoma de México.
Luis-Martínez, A., Sánchez-García, A., Ávalos-Hernán-
dez, O., Salinas-Gutiérrez, J. L., Trujano-Ortega, M.,
Arellano-Covarrubias, A., & Llorente-Bousquets, J.
(2020). Distribution and diversity of Papilionidae
and Pieridae (Lepidoptera: Papilionoidea) in Loxicha
Region, Oaxaca, Mexico. Revista de Biología Tro-
pical, 68(1), 139–155. https://doi.org/10.15517/rbt.
v68i1.37587.
Martínez-Gordillo, M., Fragoso-Martínez, I., Leautaud-
Valenzuela, P., Ginez-Vázquez, L., Martínez-Ambriz,
E., & Méndez-Solís, V. (2016). Diversidad y endemis-
mo del género Salvia (Lamiaceae) en la Sierra Madre
del Sur de Guerrero, México. In I. Luna-Vega, D. Espi-
nosa, & R. Contreras-Medina (Eds.), Biodiversidad de
la Sierra Madre del Sur (pp. 177–191). Universidad
Nacional Autónoma de México.
McCoy, E. D. (1990). The distribution of insects along
elevational gradients. Oikos, 58, 313–322. https://doi.
org/10.2307/3545222
Molina-Martínez, A., León-Cortes, J. L., Regan, H. M.,
Lewis, O. T., Navarrete, D., Caballero, U., & Luis-
Martínez, A. (2016). Changes in butterfly distri-
butions and species assemblages on a Neotropical
mountain range in response to global warming and
anthropogenic land use. Diversity and Distributions,
22, 1085–1098. https://doi.org/10.1111/ddi.12473
Nishida, K., & Robbins, R. K. (2020). One side makes
you taller: A mushroom-eating butterfly caterpi-
llar (Lycaenidae) in Costa Rica. Neotropical Biolo-
gy and Conservation, 15(4), 463–470. https://doi.
org/10.3897/neotropical.15.e57998
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R.,
Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos,
P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour,
M. G., Bedward, M., Bolker, B. M., Borcard, D.,
Carvalho, G., Chirico, M., De Cáceres, M., Durand,
S., ... Weedon, J. (2022). vegan: Community Ecology
Package. R package (Version 2.6-4) [Software]. https://
CRAN.R-project.org/package=vegan
Pires, A. C., Barbosa, M., Beiroz, W., Beirao, M. V., Marini-
Filho, O. J., Duarte, M., Mielke, O. H. H., Ladeira, F.
A., Nunes, Y. R. F., Negreiros, D., & Fernandes, G. W.
(2020). Altitudinal variation in butterfly community
associated with climate and vegetation. Anais da
Academia Brasileira de Ciências, 92(2), e20190058.
https://doi.org/10.1590/0001-3765202020190058
Prieto, C., & Dahners, H. W. (2009) Resource utilization
and environmental and spatio-temporal overlap of
a hilltopping Lycaenid butterfly community in the
Colombian Andes. Journal of Insect Science, 9(1), 16.
https://doi.org/10.1673/031.009.1601
R Core Team. (2023). R: A language and environment
for statistical computing [Software]. R Foundation
for Statistical Computing, Vienna, Austria. https://
www.R-project.org/
Raguso, R. A., & Llorente-Bousquets, J. (1991). The but-
terflies (Lepidoptera) of the Tuxtlas Mts., Veracruz,
Mexico. Revisited: Species-richness and habitat dis-
turbance. Journal of Research on the Lepidoptera,
29(1-2), 105–133. https://doi.org/10.5962/p.266622
Robbins, R. K. (2004). Introduction to the checklist of
Eumaeini (Lycaenidae). In J. B. Heppner (Ed.), Atlas
of Neotropical Lepidoptera (Vol. 5A, pp. 24–30). Asso-
ciation for Tropical Lepidoptera Scientific Publishers.
Robbins, R. K., & Small, G. B. (1981). Wind dispersal
of Panamanian hairstreak butterflies (Lepidoptera:
Lycaenidae) and its evolutionary significance. Biotro-
pica, 13(4), 308–315. https://doi.org/10.2307/2387810
Robbins, R. K., Aiello, A., Feinstein, J., Berkov, A., Cal-
das, A., Busby, R. C., & Duarte, M. (2010). A tale
of two species: Detritivory, parapatry, and sexual
dimorphism in Lamprospilus collucia and L. orci-
dia (Lycaenidae: Theclinae: Eumaeini). Journal of
Research on the Lepidoptera, 42, 64–73. https://doi.
org/10.5962/p.266516
Robbins, R. K., Cong, Q., Zhang, J., Shen, J., Busby, R. C.,
Faynel, C., Duarte, M., Martins, A. R. P., Prieto, C.,
Lamas, G., & Grishin, N. V. (2022). Genomics-based
higher classification of the species-rich hairstreaks
(Lepidoptera: Lycaenidae: Eumaeini). Systematic
24 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61cmxq06, enero-diciembre 2025 (Publicado Ago. 20, 2025)
Entomology, 47(3), 445–469. https://doi.org/10.1111/
syen.12541
Robbins, R. K., Lamas, G., Mielke, O. H. H., Harvey, D. J.,
& Casagrande, M. M. (1996). Taxonomic composition
and ecological structure of the species-rich butterfly
community at Pakitza, Parque Nacional del Manu,
Perú. In D. E. Wilson, & A. Sandoval (Eds.), Manu:
The biodiversity of southeastern Peru (pp. 217–252).
Smithsonian Institution.
Ross, G. N. (1966). Life history studies on Mexican but-
terflies IV. Annals of the Entomological Society of
America, 59, 985–1003. https://doi.org/10.1093/
aesa/59.5.985
Ross, G. N. (1976). An ecological study of the butterflies of
the Sierra de Tuxtla in Veracruz, Mexico (Continued).
The Journal of Research on the Lepidoptera, 15(3),
185–200. https://doi.org/10.5962/p.333730
Rzedowski, J. (1978). Vegetación de México. Limusa.
Silva, N. A. P., Duarte, M., Araújo, E. B., & Morais, H. C.
(2014) Larval biology of anthophagous Eumaeini
(Lepidoptera: Lycaenidae, Theclinae) in the Cerrado
of Central Brazil. Journal of Insect Science, 14(1), 184.
https://doi.org/10.1093/jisesa/ieu046
Tejero-Díez, J. D., Torres-Díaz, A. N., & Sánchez-González,
A. (2016). Helechos de la Sierra Madre del Sur. In
I. Luna-Vega, D. Espinosa, & R. Contreras-Medina
(Eds.), Biodiversidad de la Sierra Madre del Sur
(pp. 121–155). Universidad Nacional Autónoma de
México.
Trujano-Ortega, M., Luis-Martínez, A., Vargas-Fernández,
I., Ávalos-Hernández, O., & Llorente-Bousquets,
J. (2024). Introduction to the analysis, synthesis,
and comparisons of endemic butterflies in Mexi-
co. Zootaxa, 5479(1), 1–73. https://doi.org/10.11646/
ZOOTAXA.5479.1.1
Udvardy, M. D. F. (1969). Dynamic Zoogeography: With
special reference to land animals. Van Nostrand Rein-
hold Company.
Valencia-Ávalos, S., & Morales-Saldaña, S. (2016). El género
Quercus en la Sierra Madre del Sur. In I. Luna-Vega,
D. Espinosa, & R. Contreras-Medina (Eds.), Biodi-
versidad de la Sierra Madre del Sur (pp. 167–175).
Universidad Nacional Autónoma de México.
Valencia-Montoya, W. A., Quental, T. B., Tonini, J. F. R.,
Talavera, G., Crall, J. D., Lamas, G., Busby, R. C., Car-
valho, A. P. S., Morais, A. B., Oliveira, M. N., Roma-
nowski, H. P., Liénard, M. A., Salzman, S., Whitaker,
M. R. L., Kawahara, A. Y., Lohman, D. J., Robbins,
R. K., & Pierce, N. E. (2021). Evolutionary trade-
offs between male secondary sexual traits revealed
by a phylogeny of the hyperdiverse tribe Eumaeini
(Lepidoptera: Lycaenidae). Proceedings of the Royal
Society B: Biological Sciences, 288, 20202512. https://
doi.org/10.1098/rspb.2020.2512
Vargas-Fernández, I., Llorente-Bousquets, J., & Luis-Mar-
tínez, A. (1994). Listado Lepidopterofaunístico de la
Sierra de Atoyac de Álvarez en el estado de Guerrero:
Notas acerca de su distribución local y estacional
(Rhopalocera: Papilionoidea). Folia Entomológica
Mexicana, 86, 41–178.
Vargas-Fernández, I., Llorente-Bousquets, J., & Luis-Mar-
tínez, A. (1999). Distribución de los Papilionoidea
(Lepidoptera: Rhopalocera) de la Sierra de Manantlán
(250-1 650 m) en los estados de Jalisco y Colima.
Publicaciones Especiales del Museo de Zoología, 11,
11–53.