1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
Human disturbance promotes an increasing abundance
of shrubby plants in the páramo landscape of Southern Ecuador
Pedro X. Astudillo1*; https://orcid.org/0000-0002-9945-9414
Paul Porras1; https://orcid.org/0000-0002-0428-9070
David C. Siddons1; https://orcid.org/0000-0003-3305-2969
Eduardo Barnuevo1; https://orcid.org/0000-0001-8946-2081
Santiago Barros1; https://orcid.org/0000-0003-2647-6579
1. Laboratorio de Ecología, Escuela de Biología, Universidad del Azuay, Cuenca, Ecuador; pastudillow@uazuay.edu.ec
(Correspondence*); paulporraspolo@gmail.com; dsiddons@uazuay.edu.ec; barflo93@gmail.com;
jsanty.b1@gmail.com
Received 17-IX-2024. Corrected 13-II-2025. Accepted 30-V-2025.
ABSTRACT
Introduction: The páramo grassland ecosystem is an important center of plant diversity and endemism.
However, human activities, such as burning and livestock grazing, are altering the plant composition of the pára-
mos. These changes may be associated with an increase in the abundance of shrubby species and a corresponding
decrease in native grass cover.
Objective: To evaluate the effects of human disturbance on the composition of woody plant species in páramo
habitats.
Methods: We conducted 36 transects across the páramo landscape of the Macizo del Cajas Biosphere Reserve
in Southern Ecuador between April 2017 and November 2019, recording woody plant species (e.g., bushes and
shrubs) along each transect. To explore variations in woody plant composition, we employed non-metric multidi-
mensional scaling, using the proportion of disturbed area, páramo grassland, and elevation as predictor variables.
Results: We recorded a total of 13 377 woody plants. The proportion of disturbed areas has an influence on the
composition of the woody plant species. Shrubby species such as Diplostephium ericoides, Hypericum quitense,
Valeriana microphylla, and Valeriana hirtella are more prevalent in transects with a greater proportion of dis-
turbed areas.
Conclusion: There was a greater presence of fast-growing woody plant species in response to human-induced
disturbance. This suggests that native herbaceous species are gradually being replaced by woody encroachment,
particularly in human-accessible páramos. Conservation and restoration efforts should take this phenomenon
into account to prevent the accelerated spread of woody encroachment and enhance the availability of páramo
grassland habitats.
Key words: high Andes; woody plant encroachment; plant community composition; grasslands; biosphere
reserve.
RESUMEN
Las perturbaciones humanas promueven el incremento en la abundancia
de plantas arbustivas en el paisaje de páramo del sur de Ecuador
Introducción: El ecosistema de páramo herbáceo es un importante centro de diversidad y endemismo de plantas.
Sin embargo, las actividades humanas como el pastoreo y las quemas están alterando la composición de plantas
https://doi.org/10.15517/rev.biol.trop..v73i1.61916
CONSERVATION
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
INTRODUCTION
The Tropical Andes is an important center
of biodiversity and endemism (Jiménez-Rivillas
et al., 2018; Myers et al., 2000). The region is
one of the most biological diverse hotspots
globally (Baquero et al., 2004; Jiménez-Rivillas
et al., 2018; Neill, 1999; Sarmiento, 2000), har-
boring one sixth of the terrestrial plant diversity
on less than 1 % of the global surface (Myers et
al., 2000). Páramo is the major vegetation type
in the high Andes (> 3 000 m.a.s.l.) of North-
ern South America (Llambí et al., 2012). In
Ecuador, the páramos are a mosaic of habitats,
mainly characterized by native tussock grasses
(páramo grassland), but also associated with
small woody plants within marshes, bog plants
in more humid areas (cushion páramo), taller
vegetation in semi-open shrubland (shrubby
páramo), and numerous patches of Polylepis
woodlands (García et al., 2020; Neill, 1999;
Sklenár & Ramsay, 2001).
This páramo ecosystem, like other biodi-
versity hotspots, is impacted by human activi-
ties such as burning to facilitate pastures for
grazing, agricultural expansion and habitat
modification at roadsides (Bagchi et al., 2018;
Barros et al., 2020; Hofstede & Llambí, 2020;
Matson & Bart, 2013; Sylvester et al., 2017).
In Southern Ecuador, livestock grazing is the
main activity affecting the páramo landscape
(Astudillo et al., 2017; Suárez & Medina, 2001)
resulting in the homogenization (i.e., botani-
cally and structurally) of páramo vegetation
(Astudillo et al., 2017; García et al., 2020; Hof-
stede & Llambí, 2020; Jørgensen et al., 2011;
Smart et al., 2006; Sylvester et al., 2017). This
region is also expected to experience changes
in habitat structure and composition due to
climate change (Carrillo-Rojas et al., 2019;
Hofstede & Llambí, 2020). It is predicted that
vegetation adaptable to more extreme climate
ranges (e.g., longer and more intense droughts
with shorter and more intense rainfalls) will
become more dominant (Foster, 2001; Hudson
et al., 2014). These actual and future pressures
have led the páramo ecosystem to become a
priority for biological conservation (Astudillo
et al., 2024; Hofstede & Llambí, 2020; Madriñán
et al., 2013).
The intensity and frequency of human-
induced disturbances have been shown to result
in changes to plant composition (González et al.,
2023; He et al., 2019; Hofstede & Llambí, 2020;
de los páramos. Estos cambios pueden estar asociados a un incremento en la abundancia de especies arbustivas y
una menor cobertura de pastizales nativos.
Objetivo: Evaluar los efectos de la alteración humana sobre la composición de plantas leñosas en hábitats de
páramo.
Métodos: Entre abril de 2017 y noviembre de 2019, recorrimos 36 transectos a través del paisaje de páramo de
la Reserva de la Biósfera del Macizo del Cajas en el sur de Ecuador, registrando las especies de plantas leñosas
(e.g., arbustos y matorrales) a lo largo de cada transecto. Para explorar las diferencias en la composición de las
plantas leñosas, usamos un escalamiento multidimensional no métrico, con la proporción en la cobertura de área
alterada, páramo herbáceo y elevación como variables predictoras.
Resultados: En total, registramos 13 337 plantas leñosas. La proporción de área alterada influye en la composi-
ción de las especies de plantas leñosas. Las especies arbustivas como Diplostephium ericoides, Hypericum quitense,
Valeriana microphylla y Valeriana hirtella tiene mayor presencia en transectos con un incremento en la propor-
ción de las áreas alteradas.
Conclusiones: Hay una mayor presencia de especies de plantas leñosas de crecimiento rápido en respuesta al
efecto de la alteración inducida por los humanos. Esta observación sugiere que las especies herbáceas nativas están
siendo gradualmente reemplazadas por un engrosamiento con plantas leñosas, particularmente en páramos con
acceso humano. Los esfuerzos de conservación y restauración deberían tener en cuenta este fenómeno para evitar
una aceleración de la invasión de plantas leñosas y, asegurar la disponibilidad de hábitats de páramo herbáceo.
Palabras clave: altos Andes; engrosamiento de plantas leñosas; composición de la comunidad de plantas; pasti-
zales; reserva de la biósfera.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
Suárez & Medina, 2001; Sylvester et al., 2017).
For example, research shows that excluding fire
leads to an increase in woody plants, such as
shrubs and bushes (Brandt et al., 2013; Matson
& Bart, 2014) with a consequent reduction of
available grazing areas (Matson & Bart, 2014;
Montané et al., 2007). Here, following a fire,
the regeneration of vegetation typically begins
with the establishment of species that have a
patchy distribution, such as those belonging
to the Poaceae family (Jantz & Behling, 2012;
Sarango-Cobos et al., 2019). However, in the
long term, woody plants colonize páramo soils
when they are left to regenerate, mainly occu-
pying areas lacking native grass cover (Matson
& Bart, 2014). This final phenomenon occurs
in conjunction with irregular topography (e.g.,
along elevation gradients and on steep slopes
with minimal grass cover) and facilitates the
encroachment of woody shrubs and bushes
across the páramo landscape (Matson & Bart,
2013). Furthermore, in more extreme climate
regime scenarios, plants with a wider geo-
graphic range, rapid dispersion, and presence
in the montane forest tree line close to the
lower limit of the páramo will also contribute
to woody encroachment (Caballero-Villalobos
et al., 2021; Foster, 2001; Jantz & Behling, 2012;
Loughlin et al., 2018; McKinney & Lockwood,
1999; Montaño-Centellas et al., 2024). Nev-
ertheless, the natural presence of shrubs may
also create favorable conditions (e.g., shade
and protection from the wind), which in turn
may lead to an increase in the species richness
of páramo plant communities (Sylvester et al.,
2017; Vargas-Ríos & Ávila-Rodríguez, 2021).
Therefore, there is an urgent need to moni-
tor páramo habitats to fully understand the
effects of human disturbance and their associ-
ated changes in plant composition in order to
improve conservation and restoration strategies
for natural resource managers. Specifically, it is
important to address how the increasing cover
of woody plants is affecting páramo vegetation
communities. Consequently, in the páramos
of Southern Ecuador, an important region for
plant diversity (Jiménez-Rivillas et al., 2018),
we evaluated the effects of human disturbance
on the vegetation composition of páramo habi-
tats. We expected an increasing abundance of
woody bushes and shrubs in areas with greater
disturbance (mainly influenced by burning
and livestock grazing). Principally, we expected
disturbed areas to have a higher prevalence
of widely distributed, generalist woody plant
species (i.e., faster growing plants and those
associated with the lower limits of páramo and
the upper limits of montane forest).
MATERIALS AND METHODS
Study area: This study was conducted in
the highlands (> 3 500 m.a.s.l.) of the Macizo
del Cajas Biosphere Reserve in SouthWestern
Ecuador (2°55’25’’ S & 79°21’57’’ W) (Fig. 1),
a priority region for biological conservation
(e.g., Astudillo et al., 2024). The study area
is dominated by páramo grassland ecosystem
and covers ~166 000 ha. The Macizo del Cajas
has two protected areas forming the core area
of this reserve, Cajas National Park (2°50’45’
S & 79°14’33’’ W) and Quimsacocha National
Recreation Area (3°00’45’’ S & 79°14’12’’ W)
(Rodríguez et al., 2014). These two protected
areas encompass ~19 % of the total area of
páramos within Macizo del Cajas (Fig. 1) (Bar-
ros et al., 2020). The average monthly tem-
perature ranges between 5 and 12 °C. Average
annual precipitation ranges between 1 200 and
1 500 mm, with two rainy seasons; intense
precipitation between March and May and a
second, less intense peak, between September
and February. The lowest precipitation occurs
between June and August (Ballari et al., 2018;
Celleri et al., 2007).
The study area has an elevation range
between 3 600 and 4 050 m. The vegetation
is dominated by tussock grasses of species
of Calamagrostis and Festuca with cushion
plants and rosette species, such as Plantago and
Oreobolus, in smaller humid areas (Minga et
al., 2016; Sklenár et al., 2005). In more hetero-
geneous páramo, the vegetation is associated
with native shrub species mainly of the fam-
ily Asteraceae such as Chuquiraga jussieui J.F.
Gmel, Monticalia arbutifolia (Kunth) C. Jeffrey,
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
Gynoxys miniphylla Cuatrec. (Ansaloni et al.,
2022; Baquero et al., 2004; Minga et al., 2016;
Neill, 1999). In addition, the páramo is inter-
spersed with patches of Polylepis woodlands
(Astudillo et al., 2020; Pinos, 2020). The main
human activity is livestock grazing associated
with burning to enhance pasture (Astudillo et
al., 2017) with evident negative effects on pára-
mo habitats (e.g., less complex habitat structure
with lower plant diversity).
Vegetation sampling: We randomly estab-
lished, in a suitable area (i.e., avoiding extreme
slopes or mountain tops), 36 transects across
protected areas and surrounding zones within
the páramo ecosystem (Fig. 1). Each transect
was 1 km in length and spaced at least 400 m
apart and located in páramo habitats (e.g.,
páramo grassland, shrubby páramo, cushion
páramo). All sampling was carried out between
April 2017 and November 2019.
We used the vegetation sampling protocol
provided by Astudillo et al. (2017), Astudillo
et al. (2019) and Barros et al. (2020). These
protocols have been widely used in monitoring
páramo habitats and woody plants across the
regional páramo. Thus, along each transect,
ten circular plots with a radius of 12 m were
installed, covering a total sampling area of
452.39 m². These plots were regularly spaced
100 m apart. In each circular plot, the propor-
tion of two habitat types was visually estimated
(Fig. 2): (i) páramo grassland (Fig. 2A), a natu-
ral open habitat with herbaceous vegetation
(Ansaloni et al., 2022; Barros et al., 2020; Hof-
stede et al., 2002) dominated by tussock grasses,
including species of Calamagrostis, Festuca, and
Stipa, as well as cushion and bog plants, such
as Azorella, Oreobolus, and Plantago (Beltrán et
al., 2009; Minga et al., 2016) and (ii) disturbed
area (Fig. 2B), defined as human-modified
habitat with signs of paths, trails, exotic plants
Fig. 1. Study area and location of 36 transects for vegetation sampling in the páramo landscape of the Macizo del Cajas
Biosphere Reserve, Southern Andes of Ecuador. The yellow squares represent the central coordinate of each 1 km transect.
The red polygons are the protected areas within the reserve (PNC = Cajas National Park. ANRQ = Quimsacocha National
Recreation Area). / Fig. 1. Área de estudio y ubicación de los 36 transectos para el muestreo de vegetación en el paisaje de
páramo de la Reserva de la Biosfera Macizo del Cajas, sur de los Andes de Ecuador. Los cuadrados amarillos representan
la coordenada central de cada transecto de 1 km. Los polígonos rojos son las áreas protegidas dentro de la reserva (PNC =
Parque Nacional Cajas. ANRQ = Área Nacional de Recreación Quimsacocha).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
(e.g., Pinus sp., Polylepis racemosa Ruiz & Pav.),
burns, evidence of livestock grazing (e.g., feces),
and eroded soils. Additionally, within each
circular plot, we established four 12 m sub-
transects, oriented along the cardinal direc-
tions. Along each sub-transect, we sampled the
vegetation by counting and identifying shrubs
(< 3 cm diameter at breast height [DBH]) and
trees (> 3 cm DBH) touched by an observer
walking with arms extended along the transect.
Data analysis: In order to evalu-
ate the adequacy of the sampling effort, a
species-accumulation curve was used based
on the total abundance of shrubs, bushes and
trees recorded across all transects (n = 36). We
used rarefaction to standardize the observed
richness (Colwell et al., 2012). The Chao 1 esti-
mator was calculated based on 1 000 random
permutations (Chao, 1984) to evaluate whether
the observed richness was representative of the
regional diversity (Colwell et al., 2012).
Community ordination: We used a non-
metric multidimensional analysis (NMDS)
to explore differences in the composition of
Fig. 2. Examples of photos of vegetation monitored in the páramo landscape of Macizo del Cajas Biosphere Reserve. We
present two examples per habitat (upper and lower panels): A. A less human disturbed páramo grassland (e.g., without
evidence of burns and grazing) located inside of Cajas National Park. B. A more human disturbed páramo grassland (e.g.,
with evidence of burns and eroded soils resulting in more presence of certain faster growing woody plants) located outside
of the national system of protected areas. All habitat examples are located at the relatively same elevation (~3 750 m.a.s.l.). /
Fig. 2. Fotos de ejemplo de la vegetación monitoreada en el paisaje de páramo de la Reserva de la Biósfera Macizo del Cajas.
Presentamos dos ejemplos por hábitat (paneles superior e inferior): A. Un páramo herbáceo menos alterado por el humano
(e.g., sin evidencia de quemas y pastoreo) localizado dentro del Parque Nacional Cajas. B. Un páramo herbáceo más alterado
por el humano (e.g., con evidencia de quemas y de suelo erosionado que resulta en una mayor presencia de ciertas plantas
leñosas de crecimiento rápido) localizado fuera del sistema nacional de áreas protegidas. Todos los hábitats de ejemplo están
localizados relativamente a la misma elevación (~3 750 m.s.n.m.).
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
woody plant species (2D solution). The NMDS
used Bray-Curtis dissimilarity with the total
abundance of shrub, bushes and tree species
recorded across the 36 transects (i.e., samples).
Samples closer in the ordination represent less
dissimilarity in vegetation composition. In
order to investigate differences in the com-
munity, the average the proportion of páramo
grassland, the proportion of disturbed area,
as well as the mean elevation (meters above
the sea level) per transect were post-hoc lin-
early fitted and their significance was tested
via random permutations (1 000 iterations).
Correlations among the predictors (proportion
of páramo grassland, proportion of disturbed
area and elevation) were evaluated. We found
a negative correlation between the proportion
of disturbed area and the proportion of páramo
grassland (R = -0.77). Consequently, to obtain
an approximation of the ‘proportion of the
páramo grassland’ independent of the propor-
tion of the disturbed area, we performed a lin-
ear model on páramo grassland with disturbed
area as a predictor and used the residuals as
the predictor variable. Therefore, all predic-
tors showed no correlation (R-range = -0.28 to
0.17). All analyses were carried out in R 4.4.1
(R Core Team, 2024). For estimators and spe-
cies accumulation curves we used the ‘iNext
package (Chao et al., 2024), while for com-
munity ordination we used the ‘vegan’ package
(Oksanen et al., 2024).
RESULTS
In total, we recorded 13 377 woody plants.
The records are grouped in 29 species, 17
genera and 10 families (Table 1). The most
Table 1
Total abundance and codes of woody plant species recorded across 36 transects located in the páramo landscape of the
Macizo del Cajas Biosphere Reserve, Southern Andes of Ecuador / Tabla 1. Abundancia total y códigos de las especies leñosas
registradas a través de 36 transectos ubicados en el paisaje de páramo de la Reserva de la Biosfera Macizo del Cajas, sur de
los Andes de Ecuador.
Family Scientific name Species code Abundance
Asteraceae Baccharis tricuneata (L. f.) Pers. BATR 476
Chuquiraga jussieui J.F. Gmel. CHJU 660
Diplostephium oblanceolatum S.F. Blake DIOB 402
Diplostephium rupestre (Kunth) Wedd. DIRU 900
Diplostephium ericoides (Lam.) Cabrera DIER 178
Diplostephium glandulosum Hieron. DIGL 45
Gynoxys miniphylla Cuatrec. GYMI 789
Gynoxys cuicochensis Cuatrec. GYCU 188
Gynoxys baccharoides (Kunth) Cass. GYBA 19
Loricaria thuyoides (Lam.) Sch. Bip. LOTH 1 420
Monticalia arbutifolia (Kunth) C. Jeffrey MOAR 1 637
Monticalia vaccinioides (Kunth) C. Jeffrey MO VA 864
Monticalia andicola (Turcz.) C. Jeffrey MOAN 76
Monticalia empetroides (Cuatrec.) C. Jeffrey MOEM 137
Berberidaceae Berberis lutea Ruiz & Pav. BELU 101
Berberis rigida Hieron. BERI 43
Caprifoliaceae Valeriana microphylla Kunth VAMI 753
Valeriana hirtella Kunth VAHI 64
Ericaceae Pernettya prostrata (Cav.) Sleumer PEPR 41
Grossulariaceae Ribes lehmannii Jancz. RILE 73
Hypericaceae Hypericum aciculare Kunth HYAC 2 964
Hypericum quitense R. Keller HYQU 221
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
abundant species was Hypericum aciculare
Kunth (Hypericaceae) (22 %) followed by M.
arbutifolia (Asteraceae) (12 %), Loricaria thuy-
oides (Lam.) Sch. Bip. (Asteraceae) (11 %),
Diplostephium rupestre (Kunth) Wedd. (Astera-
ceae) (7 %) and Monticalia vaccinioides (Kunth)
C. Jeffrey (Asteraceae) (6 %) (Table 1). The
proportion of páramo grassland ranged from
30 % to 88 % (mean = 63 %) and the propor-
tion of disturbed areas ranged from 0 % to 45 %
(mean = 20 %) (Table 2).
The species accumulation curve reached
its asymptote (Fig. 3), indicating that the
sampling effort was sufficient and therefore,
Family Scientific name Species code Abundance
Melastomataceae Brachyotum jamesonii Triana BRJA 767
Miconia salicifolia Bonpl. ex Naudin MISA 267
Polygalaceae Monnina crassifolia (Bonpl.) Kunth MOCR 46
Rosaceae Hesperomeles obtusifolia (Pers.) Lindl. HEOB 21
Polylepis reticulata Hieron. PORE 111
Polylepis incana Kunth POIN 56
Rubiaceae Arcytophyllum vernicosum Standl. ARVE 58
Table 2
Locality name, transect code, average proportions (see methods) of páramo grassland as well as disturbed area and mean
elevation of the 36 transects located in the páramo landscape of the Macizo del Cajas Biosphere Reserve, Southern Andes of
Ecuador / Tabla 2. Nombre de la localidad, código de los transectos, el promedio de las proporciones (véase los métodos) de
páramo herbáceo así también de área alterada y la elevación media en los 36 transectos ubicados en el paisaje de páramo de
la Reserva de la Biósfera Macizo del Cajas, sur de los Andes de Ecuador.
Locality Transect code Páramo grassland (%) Disturbed area (%) Elevation (m)
Bermejos BER001 80.5 12.3 3 794
Bermejos BER002 74.4 14.05 3 842
Bermejos BER003 75.31 14.9 3 795
Burgay BUR001 63.3 17.9 3 627
Burgay BUR002 67.6 25.1 3 818
Burgay BUR003 62.2 20.4 3 754
Dublaicocha DUB001 30.05 27.85 3 840
Dublaicocha DUB002 38.6 30.25 3 876
Dublaicocha DUB003 46.35 30.75 3 842
Galgal GAL001 53.8 36.7 3 767
Galgal GAL002 44.6 44.95 3 730
Galgal GAL003 42.25 46 3 684
Miguir MIG001 30.43 30.67 3 803
Miguir MIG002 66.1 9.3 4 049
Miguir MIG003 64.8 13.02 3 929
Patococha PAT001 58.35 28.85 3 910
Patococha PAT002 66.3 18.35 3 803
Patococha PAT003 61.5 25.3 3 812
Rircay RIR001 67.7 11.4 3 759
Rircay RIR002 75.35 9.73 3 782
Rircay RIR003 74.4 11.3 3 685
Santa Ana SAN001 65.25 24.85 3 787
Santa Ana SAN002 62.6 13.9 3 704
Santa Ana SAN003 62.2 31.2 3 797
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
representative of the richness within the study
area. Furthermore, the observed richness was
the same as the estimated richness (observed
richness = 29; Chao 1 estimator = 29).
Community composition of woody plant
species: The NMDS analysis showed a ten-
dency to separate the woody plant community
in relation to the proportion of disturbed area
(2D solution, stress = 0.2, R2 = 0.33, p < 0.001)
(Fig. 4), while the proportion of páramo grass-
land (R2 = 0.07, p =0.32) and elevation (R2 =
0.10, p < 0.16) were not significant. Transects
with a higher proportion of disturbed area were
situated towards the central-bottom of the ordi-
nation, and were associated with a greater pres-
ence of D. ericoides, H. quitense, V. microphylla
and Valeriana hirtella Kunth., and transects
with a lower proportion of disturbed area were
located towards the central-top of the plot, and
were associated with a greater presence of M.
arbutifolia, G. miniphylla, M. vaccinioides and,
Hesperomeles obtusifolia (Pers.) Lindl. (Fig. 4).
However, we included elevation in the
ordination plot (via contour lines) as it fol-
lowed the same tendency as disturbed area
Locality Transect code Paramo grassland (%) Disturbed area (%) Elevation (m)
Taitachugo TAI001 62.5 13.1 4 032
Taitachugo TAI002 57.9 16.2 3 941
Taitachugo TAI003 81.8 9.3 3 919
Tarqui TAR001 84.6 11.75 3 998
Tarqui TAR002 60.6 17.1 3 646
Tarqui TAR003 82.9 0 3 789
Tomebamba TOM001 71.78 10.5 3 809
Tomebamba TOM002 87.83 2.8 3 909
Tomebamba TOM003 50.25 23.7 3 733
Ventanas VEN001 53.3 25.35 3 841
Ventanas VEN002 62.85 7.74 3 865
Ventanas VEN003 63.75 23.5 3 898
Fig. 3. Species-accumulation curve of woody plant species recorded in 36 transects located in the páramo landscape of the
Macizo de Cajas Biosphere Reserve, Southern Andes of Ecuador. The solid line represents the accumulation of observed
species via rarefaction. The dashed line shows the Chao 1 estimation. / Fig. 3. Curva de acumulación de especies de plantas
leñosas registradas en 36 transectos ubicados en el paisaje de páramo de la Reserva de la Biósfera Macizo de Cajas, sur de
los Andes de Ecuador. La línea continua representa la acumulación de especies observadas a través de rarefacción. La línea
discontinua muestra la estimación Chao 1.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
(i.e., from the central-top to the central-bottom
of the ordination) (Fig. 4). This facilitates the
interpretation of the spatial distribution of
the transects and the description of woody
plant species associations in relation to eleva-
tion. Thus, from ~3 800 m to ~4 000 m (in the
central-top of the ordination) there is greater
prevalence of Diplostephium oblanceolatum M.
arbutifolia, M. vaccinioides, H. obtusifolia and
Monticalia andicola (Turcz.) C. Jeffrey., while
at lower elevations (i.e., from ~3 600 to 3 800
m) (in the central-bottom of the ordination)
the woody plant community is associated with
more presence of D. ericoides, V. microphylla, H.
quitense and V. hirtella (Fig. 4).
DISCUSSION
Our findings showed significant changes in
the composition of the woody plant community
along the increasing proportion of disturbed
areas in the monitored transects. The propor-
tion of páramo grassland and elevation did not
affect the plant composition. Dense shrub spe-
cies such as V. microphylla, H. quitense and V.
hirtella were more dominant in transects with
Fig. 4. Non-metric multidimensional scaling (NMDS) of the community of woody plant species recorded across 36 transects
(green circles) located in the páramo landscape of the Macizo del Cajas Biosphere Reserve, Southern Andes of Ecuador.
The red arrow represents the proportion of disturbed area (DA) as the environmental variable significantly influencing the
ordination (p < 0.001). The elevation (contour lines) is also shown, although it is not significant (p > 0.05). The four-letter
codes are the scientific names of the woody plant species (see Table 1). / Fig. 4. Escalamiento multidimensonal no métrico
(NMDS) para la comunidad de plantas leñosas registradas a través de 36 transectos (círculos verdes) ubicados en el paisaje
de páramo de la Reserva de la Biósfera del Macizo del Cajas, sur de los Andes del Ecuador. La flecha roja representa la
proporción del área alterada (DA) como una variable ambiental que influye significativamente en la ordenación (p < 0.001).
La elevación (curvas de nivel) también se muestra, aunque no influye significativamente (p > 0.05). Los códigos de cuatro
letras son los nombres científicos de las especies de plantas leñosas (véase Tabla 1).
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
higher proportions of disturbed areas. Smaller
shrub species such as M. arbutifolia, M. vaccini-
oides and H. obtusifolia are associated with tran-
sects with less disturbance. These changes in
the plant composition of the páramo ecosystem
suggests that the greater prevalence of some
dense and fast-growing woody plant species
is a response to human disturbance and could
indicate that the native herbaceous species are
gradually replaced by woody encroachment,
particularly in human-accessible páramos.
Our approximation of the distribution of
the woody plant community reveals that dense
shrubs (e.g., H. quitense) are frequently observed
in groups characterized as dwarf scrub and are
adapted to rocky outcrops and hills where the
evidence of human disturbance is higher. In
fact, some Hypericum species are reported as
opportunistic species that recover quickly after
human disturbance such as fires (Matson &
Bart, 2014). Their presence here may be related
to an increasing cover of shrubs and a reduc-
tion in the cover of native grasses (e.g., Renison
et al., 2006) due to human disturbance reduc-
ing the dominance of the tussock grasses and
providing more opportunity for fast-growing
woody plants (Sylvester et al., 2017).
In general, across the small valleys in the
study region, páramo grassland is often asso-
ciated with shrubby plants (Hofstede et al.,
2002; Minga et al., 2016) creating a botanically
and structurally diverse páramo (Gareca et al.,
2010; Hofstede et al., 2002). However, woody
encroachment is a common effect in disturbed
grassland systems, including high elevation
grasslands such as páramo (Matson & Bart,
2014). Our results, controlling for the propor-
tion of the disturbed area, highlight that some
transects are still characterized by a greater
presence of woody plants such as H. quitense,
V. hirtella and V. microphylla. Besides, more
human accessible páramos (e.g., close to roads,
lower elevations, outside of protected areas) are
more prone to habitat disturbance such as fires
and livestock grazing leading to less availability
of native tussock grasses as well as cushion and
bog plants. Consequently, in unprotected pára-
mos of the study region, the native grasses are
more sensitive to human disturbance (Astudillo
et al., 2017; Hofstede & Llambí, 2020). Here,
our findings suggest that fast-growing woody
plant species are fostering changes in the plant
community leading to more complex páramos
(e.g., height profile vegetation) but with less
availability of open habitats such as tussock
grasses and cushion bogs.
A potential explanation for the pattern of
woody plant species dispersal into the páramo
grassland is the proximity to the tree line of
Andean forests (Matson & Bart, 2013) across
the lower páramo. In the study region, large
and dense shrubs such as V. hirtella and V.
microphylla are commonly found in the tree
line of Andean forests and Polylepis woodlands
(Minga et al., 2016). The frequent association
of forest plants with herbaceous flora of pára-
mo ecosystems has been reported previously
(Domic & Capriles, 2021; Montalvo et al., 2018;
Quispe-Melgar et al., 2020) and indeed, some
native shrubs have been found to be positively
associated with greater habitat complexity of
páramos surrounding Polylepis forest within
the Cajas National Park (Astudillo et al., 2019;
Astudillo et al., 2020). However, as with other
disturbance scenarios found outside the limit
of protected areas (Caballero-Villalobos et al.,
2021; Toivonen et al., 2011), our results high-
light that some woody plant species are becom-
ing more dominant. Within this framework,
conservation and restoration efforts across the
páramo should consider the dynamics between
shrubs and other fast-growing plants with
native grasses.
Conservation implications: In the high
Andes, the restoration of disturbed habitats
has been based on the importance of woody
plant species for important pollinators (i.e.,
hummingbirds) (Cárdenas-Calle et al., 2020;
Crespo et al., 2022; Hazlehurst et al., 2016) with
a few shrubby plant species being identified as
central for the restoration of high Andean eco-
systems (Crespo et al., 2022). However, some of
these identified woody plant species are char-
acterized by faster growing strategies (i.e., year-
round flowering) (e.g., Cárdenas-Calle et al.,
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
2020; Hazlehurst et al., 2016) and are already
widely distributed between the limit of Andean
forests and the páramo ecosystem (Minga et al.,
2016; Suárez et al., 2022). Furthermore, mutual-
istic interactions in disturbed páramos, such as
seed dispersal by birds, are seen as a mechanism
that facilitates increasing cover of shrubby plant
species and subsequent woody encroachment
(Matson & Bart, 2013; Matson & Bart, 2014).
In consequence, habitat restoration focused on
fast-growing plants may promote an accelera-
tion of woody encroachment in human-acces-
sible páramos with evident negative effects on
native grasses and organisms that depend on
more open páramo grassland habitats. Further
studies are needed in order to generate conser-
vation strategies more compatible to the pára-
mo region. For instance, in open páramos of
the study region, small, endemic rodents (e.g.,
Phyllotis haggardi) have been observed foraging
on flowers of herbaceous species (i.e., Taraxa-
cum officinale (Weber), Xenophyllum humile
(Kunth) V.A. Funk and Eryngium humile Cav.)
and are considered as potential pollinators
(Nivelo-Villavicencio et al., 2021). Our findings
indicate that the availability of páramo grass-
land habitats is declining in disturbed areas,
while the presence of fast-growing shrubs is
increasing. This ecological information could
be crucial for improving restoration and con-
servation efforts aimed at enhancing the avail-
ability of páramo grasslands.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
We are grateful for the constant sup-
port of our research by Raffaella Ansaloni,
Andrés López and Francisco Salgado of the
Universidad del Azuay. We thank Boris Landá-
zuri for his field support. We also acknowl-
edge Guillermo Salgado, Vicente Jaramillo, and
Ramiro Jiménez from Dundee Precious Met-
als Ecuador (DPMECUADOR S.A.) for their
continued support of our research. Logistical
support came from Hari González, park man-
agement, and staff of Cajas National Park and
Quimsacocha National Recreation Area, as well
as Empresa Pública de Telecomunicaciones,
Agua Potable, and Alcantarillado y Saneamien-
to de Cuenca (ETAPA-EP). PXA was funded
by DPMECUADOR S.A., ETAPA-EP (Grant
No. 78010200001) and the Vicerrectorado de
Investigaciones of the Universidad del Azuay
(2018-0003; 2019-0090; 2021-0167). All activi-
ties were conducted under permits 196-2019-
DPAA/MA and 183-2018-DPAA/MA issued
by the Ecuadorian Ministry of Environment,
Water and Ecological Transition.
REFERENCIAS
Ansaloni, R., Izco, J., Amigo, J., & Minga, D. (2022).
Analysis of the páramo vascular flora in the Cajas
National Park (Central Andes, Ecuador). Medite-
rranean Botany, 43, e76491. https://doi.org/10.5209/
mbot.76491
Astudillo, P. X., Barros, S., Mejía, D., Villegas, F. R., Siddons,
D. C., & Latta, S. C. (2024). Using surrogate species
and MaxEnt modeling to prioritize areas for con-
servation of a páramo bird community in a tropical
high Andean biosphere reserve.Arctic, Antarctic, and
Alpine Research,56(1).https://doi.org/10.1080/15230
430.2023.2299362
Astudillo, P. X., Barros, S., Siddons, D. C., & Zárate, E.
(2017). Influence of habitat modification by livestock
on páramo bird abundance in southern Andes of
Ecuador. Studies on Neotropical Fauna and Environ-
ment, 53(1), 29–37. https://doi.org/10.1080/0165052
1.2017.1382122
Astudillo, P. X., Grass, I., Siddons, D. C., Schabo, D. G.,
& Farwig, N. (2020). Centrality in species-habitat
networks reveals the importance of habitat quali-
ty for high-andean birds in Polylepis woodlands.
Ardeola, 67(2), 307–324. https://doi.org/10.13157/
arla.67.2.2020.ra5
Astudillo, P. X., Schabo, D. G., Siddons, D. C., & Farwig,
N. (2019). Patch-matrix movements of birds in the
páramo landscape of the southern Andes of Ecuador.
Emu, 119(1), 53–60. https://doi.org/10.1080/0158419
7.2018.1512371
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
Bagchi, R., Brown, L. M., Elphick, C. S., Wagner, D. L., &
Singer, M. S. (2018). Anthropogenic fragmentation
of landscapes: mechanisms for eroding the specificity
of plant–herbivore interactions. Oecologia, 187(2),
521–533. https://doi.org/10.1007/s00442-018-4115-5
Ballari, D., Giraldo, R., Campozano, L., & Samaniego, E.
(2018). Spatial functional data analysis for regionali-
zing precipitation seasonality and intensity in a spar-
sely monitored region: unveiling the spatio-temporal
dependencies of precipitation in Ecuador. Internatio-
nal Journal of Climatology, 38(8), 3337–3354. https://
doi.org/10.1002/joc.5504
Baquero, F., Sierra, R., Ordoñez, L., Tipán, M., Espinosa, L.,
Rivera, M. B., & Soria, P. (2004). La vegetación de los
Andes del Ecuador: Memoria explicativa de los mapas
de vegetación, potencial y remanente a escala 1:250 000
y del modelamiento predictivo con especies indicadoras
(1a ed.). EcoCiencia; EcoPar; MAG SIGAGRO; CDC-
Jatun Sacha; División Geográfica-IGM.
Barros, S., Astudillo, P. X., Landázuri, B. O., Porras, P.,
Siddons, D. C., & Latta, S. C. (2020). Habitat hete-
rogeneity rather than the limits of protected areas
influence bird communities in an Andean biosphere
reserve. Ecología Austral, 30(3), 454–464. https://doi.
org/10.25260/ea.20.30.3.0.1068
Beltrán, K., Salgado, S., Cuesta, F., León-Yánez, S., Romo-
leroux, K., Ortiz, E., Cárdenas, A., & Velástegui, A.
(2009). Distribución espacial, sistemas ecológicos y
caracterización florística de los páramos en el Ecua-
dor. EcoCiencia; Proyecto Páramo Andino; Her-
bario QCA. https://biblio.flacsoandes.edu.ec/libros/
digital/43576.pdf
Brandt, J. S., Haynes, M. A., Kuemmerle, T., Waller, D.
M., & Radeloff, V. C. (2013). Regime shift on the
roof of the world: alpine meadows converting to
shrublands in the southern Himalayas. Biological
Conservation, 158, 116–127. https://doi.org/10.1016/j.
biocon.2012.07.026
Caballero-Villalobos, L., Fajardo-Gutiérrez, F., Calbi, M.,
& Silva-Arias, G. A. (2021). Climate change can
drive a significant loss of suitable habitat for Polylepis
quadrijuga, a treeline species in the sky islands of the
northern Andes. Frontiers in Ecology and Evolution,
9, 661550. https://doi.org/10.3389/fevo.2021.661550
Cárdenas-Calle, S., Cárdenas, J. D., Landázuri, B. O., Mogro-
vejo, G., Crespo, A. M., Breitbach, N., Schleuning, M.,
& Tinoco, B. A. (2020). Pollinator effectiveness in the
mixed-pollination system of a Neotropical Proteaceae,
Oreocallis grandiflora. Journal of Pollination Ecology,
26. https://doi.org/10.26786/1920-7603(2020)601
Carrillo-Rojas, G., Silva, B., Rollenbeck, R., Celleri, R.,
& Bendix, J. (2019). The breathing of the Andean
highlands: net ecosystem exchange and evapotranspi-
ration over the páramo of southern Ecuador. Agricul-
tural and Forest Meteorology, 265, 30–47. https://doi.
org/10.1016/j.agrformet.2018.11.006
Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007).
Space-time rainfall variability in the Paute basin,
Ecuadorian Andes. Hydrological Processes, 21(24),
3316–3327. https://doi.org/10.1002/hyp.6575
Chao, A. (1984). Nonparametric restimation of the number
of classes in a population. Scandinavian Journal of
Statistics, 11(4), 265–270.
Chao, A., Ma, K. H., & Hsieh, T. C. (2024). iNEXT: Interpo-
lation and Extrapolation for Species Diversity, version
3.0.1 [Software]. Anne Chaos website. http://chao.
stat.nthu.edu.tw/wordpress/software_download/
Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C.
X., Chazdon, R. L., & Longino, J. T. (2012). Models
and estimators linking individual-based and sample-
based rarefaction, extrapolation and comparison of
assemblages. Journal of Plant Ecology, 5(1), 3–21.
https://doi.org/10.1093/jpe/rtr044
Crespo, A., Aguilar, J. M., Pintado, K., & Tinoco, B. A.
(2022). Key plant species to restore plant–humming-
bird pollinator communities in the southern Andes of
Ecuador. Restoration Ecology, 30(4), e13557. https://
doi.org/10.1111/rec.13557
Domic, A. I., & Capriles, J. M. (2021). Distribution shifts
in habitat suitability and hotspot refugia of Andean
tree species from the last glacial maximum to the
Anthropocene. Neotropical Biodiversity, 7(1), 297–
309. https://doi.org/10.1080/23766808.2021.1957652
Foster, P. (2001). The potential negative impacts of global
climate change on tropical montane cloud forests.
Earth-Science Reviews, 55(1–2), 73–106. https://doi.
org/10.1016/S0012-8252(01)00056-3
García, V. J., Márquez, C. O., Rodríguez, M. V., Orozco, J. J.,
Aguilar, C. D., & Ríos, A. C. (2020). Páramo ecosys-
tems in Ecuador’s southern region: conservation state
and restoration. Agronomy, 10(12), 1922. https://doi.
org/10.3390/agronomy10121922
Gareca, E. E., Hermy, M., Fjeldså, J., & Honnay, O. (2010).
Polylepis woodland remnants as biodiversity islands
in the Bolivian high Andes. Biodiversity and Con-
servation, 19, 3327–3346. https://doi.org/10.1007/
s10531-010-9895-9
González, A., Chase, J. M., & OConnor, M. I. (2023). A
framework for the detection and attribution of bio-
diversity change. Philosophical Transactions of the
Royal Society B, 378(1881), 20220182. https://doi.
org/10.1098/rstb.2022.0182
Hazlehurst, J., Cardenas, S., Tinoco, B., & Karubian, J.
(2016). Pollination ecology of Oreocallis grandiflora
(Proteaceae) at the northern and southern ends of its
geographic range. Journal of Pollination Ecology, 19,
71–80. https://doi.org/10.26786/1920-7603(2016)4
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key
driver of Earths biodiversity. Biological Reviews, 94(6),
1983–2010. https://doi.org/10.1111/brv.12544
Hofstede, R. G. M., Coppus, R., Mena-Vásconez, P., Segarra,
P., Wolf, J. H. D., & Sevink, J. (2002). El estado de con-
servación de los páramos de Pajonal en el Ecuador.
Ecotropicos, 15(1), 3–18.
Hofstede, R. G. M., Groenendijk, J. P., Coppus, R., Fehse, J. C.,
& Sevink, J. (2002). Impact of pine plantations on soils
and vegetation in the Ecuadorian high Andes. Moun-
tain Research and Development, 22(2), 159–167. https://
doi.org/10.1659/0276-4741(2002)022[0159:IOPPOS]
2.0.CO;2
Hofstede, R. G., & Llambí, L. D. (2020). Plant diversi-
ty in Páramo-Neotropical high mountain humid
grasslands. In M. I. Goldstein, & D. A. DellaSala
(Eds.), Encyclopedia of the Worlds Biomes (vol. 1–5,
pp. 362–372). Elsevier. http://dx.doi.org/10.1016/
B978-0-12-409548-9.11858-5
Hudson, L. N., Newbold, T., Contu, S., Hill, S. L., Lysenko,
I., De Palma, A., Phillips, H. R. P., Senior, R. A.,
Bennett, D. J., Booth, H., Choimes, A., Correia, D.
L. P., Day, J., Echeverría-Londoño, S., Garon, M.,
Harrison, M. L. K., Ingram, D. J., Jung, M., Kemp, V.,
... & Purvis, A. (2014). The predicts database: a global
database of how local terrestrial biodiversity responds
to human impacts. Ecology and Evolution, 4(24),
4701–4735. https://doi.org/10.1002/ece3.1303
Jantz, N., & Behling, H. (2012). A Holocene environmental
record reflecting vegetation, climate, and fire varia-
bility at the páramo of Quimsacocha, southwestern
Ecuadorian Andes. Vegetation History and Archaeo-
botany, 21(3), 169–185. https://doi.org/10.1007/
s00334-011-0327-x
Jiménez-Rivillas, C., García, J. J., Quijano-Abril, M. A.,
Daza, J. M., & Morrone, J. J. (2018). A new biogeo-
graphical regionalisation of the Páramo biogeogra-
phic province. Australian Systematic Botany, 31(4),
296–310. https://doi.org/10.1071/SB18008
rgensen, P. M., Ulloa, C., León, B., Leon-Yánez, S., Beck,
S. G., Nee, M., Zarucchi, J. L., Celis, M., Bernal, R.,
& Gradstein, R. (2011). Regional patterns of vascular
plant diversity and endemism. In S. K. Herzog, R.
Martínez, P. M. Jørgensen, & H. Tiessen (Eds.), Cli-
mate change and diodiversity in the Tropical Andes (pp.
192–203). IAI and SCOPE.
Llambí, L. D., Soto-W, A., Celleri, R., De Bievre, B., Ochoa,
B., & Borja, P. (2012). Ecología, hidrología y suelos de
páramos (1a ed.). Proyecto Páramo Andino; CONDE-
SAN; GEF-UNEP.
Loughlin, N. J. D., Gosling, W. D., Mothes, P., & Montoya, E.
(2018). Ecological consequences of post-Columbian
indigenous depopulation in the Andean–Amazonian
corridor. Nature Ecology & Evolution, 2(8), 1233–
1236. https://doi.org/10.1038/s41559-018-0602-7
Madriñán, S., Cortés, A. J., & Richardson, J. E. (2013).
Páramo is the worlds fastest evolving and coolest bio-
diversity hotspot. Frontiers in Genetics, 4, 1–7. https://
doi.org/10.3389/fgene.2013.00192
Matson, E., & Bart, D. J. (2013). Interactions among
fire legacies, grazing and topography predict shrub
encroachment in post-agricultural páramo. Landsca-
pe Ecology, 28(9), 1829–1840. https://doi.org/10.1007/
s10980-013-9926-5
Matson, E., & Bart, D. J. (2014). Plant-community respon-
ses to shrub cover in a páramo grassland released
from grazing and burning. Austral Ecology, 39(8),
918–928. https://doi.org/10.1111/aec.12157
McKinney, M. L., & Lockwood, J. L. (1999). Biotic homo-
genization: a few winners replacing many losers
in the next mass extinction. Trends in Ecology &
Evolution, 14(11), 450–453. https://doi.org/10.1016/
S0169-5347(99)01679-1
Minga, D., Ansaloni, R., Verdugo, A., & Ulloa-Ulloa, C.
(2016). Flora del páramo del Cajas, Ecuador. Univer-
sidad del Azuay. Editorial Don Bosco-Centro Grá-
fico Salesiano. http://dspace.uazuay.edu.ec/handle/
datos/8786
Montalvo, J., Minga, D., Verdugo, A., López, J., Guazhambo,
D., Pacheco, D., Siddons, D., Crespo, A., & Zárate,
E. (2018). Características morfológico-funcionales,
diversidad arbórea, tasa de crecimiento y de secuestro
de carbono en especies y ecosistemas de Polylepis del
sur de Ecuador. Ecología Austral, 28(1-bis), 249–261.
https://doi.org/10.25260/EA.18.28.1.1.557
Montané, F., Rovira, P., & Casals, P. (2007). Shrub enroach-
ment into mesic mountain grasslands in the Iberian
Peninsula: effects of plant and quality and temperature
on soil C and N stocks. Global Biogeochemical Cycles,
21(4), 1–10. https://doi.org/10.1029/2006GB002853
Montaño-Centellas, F., Fuentes, A. F., Cayola, L., Macía,
M. J., Arellano, G., Loza, M. I., Nieto-Ariza, B.,
Tello, J. S. (2024). Elevational range sizes of woody
plants increase with climate variability in the Tropi-
cal Andes. Journal of Biogeography, 51(5), 814–826.
https://doi.org/10.1111/jbi.14783
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da
Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hots-
pots for conservation priorities. Nature, 403(6772),
853–858. https://doi.org/10.1038/35002501
Neill, D. A. (1999). Vegetación. In P. M. Jørgensen & S.
León-Yánez (Eds.), Catalogue of the vascular plants
of Ecuador (pp. 13–25). Monographs in Systematic
Botany from the Missouri Botanical Garden.
Nivelo-Villavicencio, C., Timbe, B., & Astudillo, P. X.
(2021). Observaciones de forrajeo en recursos florales
por Phyllotis haggardi (Rodentia: Cricetidae) en un
ecosistema de páramo al sur del Ecuador. Neotropical
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
Biodiversity, 7(1), 376–378. https://doi.org/10.1080/23
766808.2021.1964912
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre,
P., Minchin, P., O’Hara, R. B., Solymos, P., Stevens, M.
H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward,
M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M.,
De Caceres, M., Durand, S., ... & Borman, T. (2024).
Vegan: community ecology package, R package, version
2.6-6.1 [Software]. CRAN. https://doi.org/10.32614/
CRAN.package.vegan
Pinos, J. (2020). Challenges and conservation implications
of woodlands in the Andean region: defining actions
for sustainable management. Hacquetia, 19(2), 143–
153. https://doi.org/10.2478/hacq-2020-0001
Quispe-Melgar, H. R., Sevillano-Ríos, C. S., Navarro-Romo,
W. C., Ames-Martínez, F. N., Camel, V., Fjeldså, J., &
Kessler, M. (2020). The Central Andes of Peru: a key
area for the conservation of Polylepis forest biodiver-
sity. Journal of Ornithology, 161(1), 217–228. https://
doi.org/10.1007/s10336-019-01703-5
R Core Team. (2024). A Language and Environment for
Statistical Computing, version 4.4.1 [Software]. R
Foundation for Statistical Computing. https://www.r-
project.org/
Renison, D., Hensen, I., Suárez, R., & Cingolani, A. M.
(2006). Cover and growth habit of Polylepis wood-
lands and shrublands in the mountains of central
Argentina: human or environmental influence?
Journal of Biogeography, 33(5), 876–887. https://doi.
org/10.1111/j.1365-2699.2006.01455.x
Rodríguez, S., Rodas, F., Schubert, A., & Vasco, S. (2014).
Área de biosfera macizo del Cajas, experiencias de
desarrollo sostenible para el buen vivir/ GAD Cuenca,
ETAPA EP, SENPLADES zona 6, MAE (Ministerio
del Ambiente de Ecuador), zona 6, Cooperación
Alemana GIZ (1a ed.). Gobierno Autónomo Descen-
tralizado Municipal de Cuenca.
Sarango-Cobos, J., Muñoz, J., Muñoz, L., & Aguirre, Z.
(2019). Impacto ecológico de un incendio forestal en
la flora del páramo antrópico del Parque Universitario
“Francisco Vivar Castro, Loja, Ecuador. Bosques Lati-
tud Cero, 9(2), 101–114.
Sarmiento, F. O. (2000). Breaking mountain paradigms:
ecological effects on human impacts in man-aged
tropandean landscapes. AMBIO: A Journal of the
Human Environment, 29(7), 423–431. https://doi.
org/10.1579/0044-7447-29.7.423
Sklenár, P., & Ramsay, P. M. (2001). Diversity of zonal
páramo plant communities in Ecuador. Diver-
sity and Distributions, 7(3), 113–124. https://doi.
org/10.1046/j.1472-4642.2001.00101.x
Sklenár, P., Luteyn, J., Ulloa-Ulloa, C., Jørgensen, P. M., &
Dillon, M. O. (2005). Flora genérica de los Páramos:
guía ilustrada de las Plantas vasculares (Memoirs of
the New York Botanical Garden, 92). The New York
Botanical Garden Press. https://academic.oup.com/
botlinnean/article/154/4/609/2420189
Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G.,
Maskell, L. C., & Firbank, L. G. (2006). Biotic homo-
genization and changes in species diversity across
human-modified ecosystems. Proceedings of the Royal
Society B: Biological Sciences, 273(1601), 2659–2665.
https://doi.org/10.1098/rspb.2006.3630
Suárez, E., & Medina, G. (2001). Vegetation structure and
soil properties in Ecuadorian páramo grasslands
with different histories of burning and grazing. Arc-
tic, Antarctic, and Alpine Research, 33(2), 158–164.
https://doi.org/10.2307/1552216
Suárez, E., Chimbolema, S., Jaramillo, R., Zurita-Arthos,
L., Arellano, P., Chimner, R. A., Stanovick, J. S., &
Lilleskov, E. A. (2022). Challenges and opportunities
for restoration of high-elevation Andean peatlands
in Ecuador. Mitigation and Adaptation Strategies for
Global Change, 27(4), 1–17. https://doi.org/10.1007/
s11027-022-10006-9
Sylvester, S. P., Heitkamp, F., Sylvester, M. D. P. V., Jun-
gkunst, H. F., Sipman, H. J. M., Toivonen, J. M.,
Gonzáles-Inca, C. A., Ospina, J. C., & Kessler, M.
(2017). Relict high-Andean ecosystems challenge
our concepts of naturalness and human impact.
Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/
s41598-017-03500-7
Toivonen, J. M., Kessler, M., Ruokolainen, K., & Hertel,
D. (2011). Accessibility predicts structural variation
of Andean Polylepis forests. Biodiversity and Con-
servation, 20(8), 1789–1802. https://doi.org/10.1007/
s10531-011-0061-9
Vargas-Ríos, O., & Ávila-Rodríguez, L. A. (2021). Dinámica
de la vegetación de los páramos. In O. Vargas-Ríos
(Ed.), Bases ecológicas y sociales para la restauración
de los páramos (1a ed., pp. 87–141). Facultad de Cien-
cias, Universidad Nacional de Colombia.