
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61916, enero-diciembre 2025 (Publicado Jun. 10, 2025)
He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key
driver of Earth’s biodiversity. Biological Reviews, 94(6),
1983–2010. https://doi.org/10.1111/brv.12544
Hofstede, R. G. M., Coppus, R., Mena-Vásconez, P., Segarra,
P., Wolf, J. H. D., & Sevink, J. (2002). El estado de con-
servación de los páramos de Pajonal en el Ecuador.
Ecotropicos, 15(1), 3–18.
Hofstede, R. G. M., Groenendijk, J. P., Coppus, R., Fehse, J. C.,
& Sevink, J. (2002). Impact of pine plantations on soils
and vegetation in the Ecuadorian high Andes. Moun-
tain Research and Development, 22(2), 159–167. https://
doi.org/10.1659/0276-4741(2002)022[0159:IOPPOS]
2.0.CO;2
Hofstede, R. G., & Llambí, L. D. (2020). Plant diversi-
ty in Páramo-Neotropical high mountain humid
grasslands. In M. I. Goldstein, & D. A. DellaSala
(Eds.), Encyclopedia of the World’s Biomes (vol. 1–5,
pp. 362–372). Elsevier. http://dx.doi.org/10.1016/
B978-0-12-409548-9.11858-5
Hudson, L. N., Newbold, T., Contu, S., Hill, S. L., Lysenko,
I., De Palma, A., Phillips, H. R. P., Senior, R. A.,
Bennett, D. J., Booth, H., Choimes, A., Correia, D.
L. P., Day, J., Echeverría-Londoño, S., Garon, M.,
Harrison, M. L. K., Ingram, D. J., Jung, M., Kemp, V.,
... & Purvis, A. (2014). The predicts database: a global
database of how local terrestrial biodiversity responds
to human impacts. Ecology and Evolution, 4(24),
4701–4735. https://doi.org/10.1002/ece3.1303
Jantz, N., & Behling, H. (2012). A Holocene environmental
record reflecting vegetation, climate, and fire varia-
bility at the páramo of Quimsacocha, southwestern
Ecuadorian Andes. Vegetation History and Archaeo-
botany, 21(3), 169–185. https://doi.org/10.1007/
s00334-011-0327-x
Jiménez-Rivillas, C., García, J. J., Quijano-Abril, M. A.,
Daza, J. M., & Morrone, J. J. (2018). A new biogeo-
graphical regionalisation of the Páramo biogeogra-
phic province. Australian Systematic Botany, 31(4),
296–310. https://doi.org/10.1071/SB18008
Jørgensen, P. M., Ulloa, C., León, B., Leon-Yánez, S., Beck,
S. G., Nee, M., Zarucchi, J. L., Celis, M., Bernal, R.,
& Gradstein, R. (2011). Regional patterns of vascular
plant diversity and endemism. In S. K. Herzog, R.
Martínez, P. M. Jørgensen, & H. Tiessen (Eds.), Cli-
mate change and diodiversity in the Tropical Andes (pp.
192–203). IAI and SCOPE.
Llambí, L. D., Soto-W, A., Celleri, R., De Bievre, B., Ochoa,
B., & Borja, P. (2012). Ecología, hidrología y suelos de
páramos (1a ed.). Proyecto Páramo Andino; CONDE-
SAN; GEF-UNEP.
Loughlin, N. J. D., Gosling, W. D., Mothes, P., & Montoya, E.
(2018). Ecological consequences of post-Columbian
indigenous depopulation in the Andean–Amazonian
corridor. Nature Ecology & Evolution, 2(8), 1233–
1236. https://doi.org/10.1038/s41559-018-0602-7
Madriñán, S., Cortés, A. J., & Richardson, J. E. (2013).
Páramo is the world’s fastest evolving and coolest bio-
diversity hotspot. Frontiers in Genetics, 4, 1–7. https://
doi.org/10.3389/fgene.2013.00192
Matson, E., & Bart, D. J. (2013). Interactions among
fire legacies, grazing and topography predict shrub
encroachment in post-agricultural páramo. Landsca-
pe Ecology, 28(9), 1829–1840. https://doi.org/10.1007/
s10980-013-9926-5
Matson, E., & Bart, D. J. (2014). Plant-community respon-
ses to shrub cover in a páramo grassland released
from grazing and burning. Austral Ecology, 39(8),
918–928. https://doi.org/10.1111/aec.12157
McKinney, M. L., & Lockwood, J. L. (1999). Biotic homo-
genization: a few winners replacing many losers
in the next mass extinction. Trends in Ecology &
Evolution, 14(11), 450–453. https://doi.org/10.1016/
S0169-5347(99)01679-1
Minga, D., Ansaloni, R., Verdugo, A., & Ulloa-Ulloa, C.
(2016). Flora del páramo del Cajas, Ecuador. Univer-
sidad del Azuay. Editorial Don Bosco-Centro Grá-
fico Salesiano. http://dspace.uazuay.edu.ec/handle/
datos/8786
Montalvo, J., Minga, D., Verdugo, A., López, J., Guazhambo,
D., Pacheco, D., Siddons, D., Crespo, A., & Zárate,
E. (2018). Características morfológico-funcionales,
diversidad arbórea, tasa de crecimiento y de secuestro
de carbono en especies y ecosistemas de Polylepis del
sur de Ecuador. Ecología Austral, 28(1-bis), 249–261.
https://doi.org/10.25260/EA.18.28.1.1.557
Montané, F., Rovira, P., & Casals, P. (2007). Shrub enroach-
ment into mesic mountain grasslands in the Iberian
Peninsula: effects of plant and quality and temperature
on soil C and N stocks. Global Biogeochemical Cycles,
21(4), 1–10. https://doi.org/10.1029/2006GB002853
Montaño-Centellas, F., Fuentes, A. F., Cayola, L., Macía,
M. J., Arellano, G., Loza, M. I., Nieto-Ariza, B.,
Tello, J. S. (2024). Elevational range sizes of woody
plants increase with climate variability in the Tropi-
cal Andes. Journal of Biogeography, 51(5), 814–826.
https://doi.org/10.1111/jbi.14783
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da
Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hots-
pots for conservation priorities. Nature, 403(6772),
853–858. https://doi.org/10.1038/35002501
Neill, D. A. (1999). Vegetación. In P. M. Jørgensen & S.
León-Yánez (Eds.), Catalogue of the vascular plants
of Ecuador (pp. 13–25). Monographs in Systematic
Botany from the Missouri Botanical Garden.
Nivelo-Villavicencio, C., Timbe, B., & Astudillo, P. X.
(2021). Observaciones de forrajeo en recursos florales
por Phyllotis haggardi (Rodentia: Cricetidae) en un
ecosistema de páramo al sur del Ecuador. Neotropical