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ABSTRACT
Introduction: Generalist trophic strategies and opportunistic feeding habits of nektonic fish species inhabiting 
oligotrophic streams in the Amazon Rainforest suggest that minor morphological and niche differences can 
mediate the occurrence of closely related species in sympatry, alleviating interspecific competition for resources.
Objective: To analyze the ecomorphology, diet composition, vertical and horizontal habitat use, and foraging 
behavior of four Characiform species in syntopy, to understand resource partitioning and species coexistence. 
Methods: From August to October 2011 (dry season), up to 30 specimens of each species were collected from 
each of eight sampled streams in the Adolpho Ducke Forest Reserve, Amazonas, Brazil, for ecomorphological 
analyses, with up to 10 of these used for stomach content analysis. Foraging behavior was quantified through 
underwater observation of vertical and horizontal space use and foraging frequency in the water column. The 
dietary importance of food items was determined using the Feeding Index (FIi), and ecomorphological attributes 
were used to characterize body shape and fin morphology. 
Results: Differences were detected in foraging behavior and habitat use. Hyphessobrycon. aff. melazonatus pre-
dominantly occupied the stream margins, and the other species utilized the channel. Additionally, only H. aff. 
melazonatus exhibited a difference in stomach content composition. Ecomorphological characteristics showed 
divergence among species, particularly in body shape, mouth size, and orientation. 
Conclusions: The combined analysis demonstrated that differences observed here may mediate syntopic coexis-
tence by alleviating interspecific competition through resource partitioning. The system’s sensitivity to anthropo-
genic impacts and climate change were highlighted on food availability and trophic relations of Amazon stream 
fishes and underscore the need for headwater stream conservation.
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INTRODUCTION

Understanding the feeding tactics and 
habitat use of sympatric fish species that are 
phylogenetically close and show similar habits 
is crucial for comprehending species coexis-
tence, interspecific ecological interactions and 
resource partitioning (Lowe-McConnell, 1999). 
Physical environmental factors can influence 
habitat use dynamics and feeding behavior 
among phylogenetically related species (Leitão 
et al., 2015; Peres-Neto, 2004). Resource parti-
tioning in these environments is an important 
ecological factor that tends to reduce interspe-
cific competition, thus facilitating coexistence 
(Aranha et al., 1998; Baldasso et al., 2019; 
Peres-Neto, 2004). However, there is no con-
sensus on the relative importance of these fac-
tors (both physical and intrinsic to the species) 
in the dynamics of resource partitioning that 
mediate the coexistence of sympatric species in 

species-rich Amazonian streams (Baldasso et 
al., 2024; Delariva & Neves, 2020).

The coexistence of species through resource 
partitioning can be reflected in patterns of 
body sizes and/or combinations of morpho-
logical traits within communities (Manna et 
al., 2020; Shukla & Bhat, 2022). Subtle morpho-
logical differences can allow the coexistence of 
closely related species from a same family. For 
instance, the relationship between body size 
and shape can indicate how space is utilized by 
stream fishes (Brejão et al., 2018; Santos et al., 
2019; Wolff et al., 2023). These studies empha-
size the fine tuning between fish body shape 
and functional groups with the characteristics 
of the aquatic environment, and how this can 
influence swimming performance, particularly 
regarding foraging behavior, space use, feeding 
behavior and the structure of fish assemblages. 
Body shape, fin morphology, and mouth orien-
tation reflect the use of different microhabitats 

RESUMEN
Diferencias ecomorfológicas y comportamentales que median la repartición de recursos 

entre especies de peces de arroyos sintópicos en la selva amazónica

Introducción: Las estrategias tróficas generalistas y los hábitos alimenticios oportunistas de las especies de peces 
nectónicos que habitan en arroyos oligotróficos de la selva amazónica sugieren que pequeñas diferencias morfo-
lógicas y de nicho pueden mediar la coexistencia de especies estrechamente relacionadas en simpatría, aliviando 
la competencia interespecífica por los recursos. 
Objetivo: Analizar la ecomorfología, la composición de la dieta, el uso vertical y horizontal del hábitat, y el 
comportamiento de forrajeo de cuatro especies de Characiformes en sintopía, para comprender la partición de 
recursos y la coexistencia de especies. 
Métodos: Entre agosto y octubre de 2011 (estación seca), se recolectaron hasta 30 especímenes de cada especie en 
cada uno de los ocho arroyos muestreados en la Reserva Forestal Adolpho Ducke, Amazonas, Brasil, para análisis 
ecomorfológicos. De estos, hasta 10 fueron utilizados para el análisis de contenido estomacal. El comportamiento 
de forrajeo se cuantificó mediante observaciones subacuáticas del uso del espacio vertical y horizontal, y la fre-
cuencia de forrajeo en la columna de agua. La importancia dietética de los ítems alimenticios se determinó uti-
lizando el Índice de Alimentación (FIi), y se caracterizaron atributos ecomorfológicos relacionados con la forma 
del cuerpo y la morfología de las aletas. 
Resultados: Se detectaron diferencias en el comportamiento de forrajeo y el uso del hábitat. Hyphessobrycon aff. 
melazonatus ocupó predominantemente las márgenes de los arroyos, mientras que las otras especies utilizaron el 
canal. Además, solo H. aff. melazonatus mostró una diferencia en la composición del contenido estomacal. Las 
características ecomorfológicas mostraron una divergencia entre las especies, particularmente en la forma del 
cuerpo, el tamaño y la orientación de la boca. 
Conclusiones: El análisis combinado demostró que las diferencias observadas pueden mediar la coexistencia 
sintópica al aliviar la competencia interespecífica mediante la partición de recursos. Se destacó la sensibilidad del 
sistema a impactos antropogénicos y al cambio climático en la disponibilidad de alimentos y las relaciones tróficas 
de los peces de arroyos amazónicos, subrayando la necesidad de conservar los arroyos de cabecera. 

Palabras clave: peces amazónicos; arroyos oligotróficos; uso del hábitat; morfología; co-ocurrencia.
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by fish, indicating adaptations to specific con-
ditions of water velocity, depth, and substrate 
type (Casatti & Castro, 2006; Lamouroux et 
al., 1999; Langerhans et al., 2003; Teresa et al., 
2021). Additionally, the relationship between 
mouth size and orientation can indicate the 
type and position of food relative to the fish 
and the water column stratum in which the fish 
forages (Casatti & Castro, 2006), as well as the 
origin (allochthonous or autochthonous) of the 
consumed food items (Mazzoni et al., 2010).

However, external morphology alone is not 
always a good predictor of trophic niche (Casa-
tti & Castro, 2006; Manna et al., 2017). In such 
cases, foraging behavior can provide impor-
tant complementary explanations for these 
differences (Ceneviva-Bastos & Casatti, 2007; 
Costa-Pereira & Severo-Neto, 2012). Direct 
behavioral observation is generally the most 
effective method for obtaining such informa-
tion. The use of diving techniques for direct fish 
observation is still uncommon in freshwater 
aquatic environments (Leite et al., 2023) but has 
proven highly effective in studies aiming to elu-
cidate habitat use and foraging characteristics 
of species (Brejão et al., 2013; Buck & Sazima, 
1995; Casatti, 2002; Nunes et al., 2020; Sabino & 
Castro, 1990; Sabino & Zuanon, 1998; Sazima, 
1986; Zuanon et al., 2006).

Amazonian streams, regionally known as 
igarapés, are small water courses characterized 
by the presence of discrete habitats and lim-
ited space availability, making them ideal for 
exploring hypotheses about ecological interac-
tions of fish with their environment. Among 
the species inhabiting these streams, the most 
diverse and abundant group is Characiformes, 
especially represented by nektonic fish species 
(Dagosta & de Pinna, 2019; Toledo-Piza et 
al., 2024), which have very active individuals, 
exhibiting pronounced exploratory behavior 
and diverse and opportunistic feeding strate-
gies (Barros et al., 2017; Carvalho et al., 2007; 
Lowe-McConnell, 1999; Sabino & Zuanon, 
1998; Sazima, 1986). Phylogenetically related 
species may exhibit more significant morpho-
logical similarities and conserved ecological 
niches (Casatti & Castro, 2006; Peres-Neto, 

2004; Wiens et al., 2010; Winemiller, 1991), 
which, in theory, increases niche overlap and 
the likelihood of interspecific competition, par-
ticularly in oligotrophic environments such as 
small streams in the Amazon Rainforest (Hen-
derson & Walker, 1986). In the Adolpho Ducke 
Forest Reserve, previous studies (Barros et al., 
2017; Espírito-Santo et al., 2009; Mendonça 
et al., 2005) have documented the syntopic 
occurrence (individuals of two or more spe-
cies sharing the same microhabitat) of various 
nektonic species in several of these streams, 
including Bryconops inpai Knöppel, Junk & 
Géry, 1968, Bryconops giacopinii (Fernández-
Yépez, 1950) and Iguanodectes geisleri Géry, 
1970 (Iguanodectidae), and Hyphessobrycon 
melazonatus Durbin, 1908 (Characidae). These 
species exhibit diurnal habits, are considered 
trophically opportunistic, and are frequently 
observed sharing the same stream stretch-
es, suggesting potential niche overlap among 
them. Additionally, the conservation of such 
streams and species is relevant due to the high 
sensitivity to anthropogenic pressures (where 
they can act as bioindicators), the interface of 
streams with the forest, the maintenance of the 
watershed integrity, and the potential for orna-
mental use of the species.

Considering these ecological aspects of oli-
gotrophic streams, this study aimed to analyze 
ecomorphological characteristics, diet, forag-
ing behaviour, and space use of four phyloge-
netically close and syntopic nektonic species, 
investigating whether resource partitioning and 
morphological dissimilarity act as mediators of 
their coexistence in Amazonian streams.

MATERIALS AND METHODS

Study area: The study was conducted at 
the Reserva Florestal Adolpho Ducke (RFAD), 
a 10 000-ha area of primary lowland tropical 
rainforest located North of Manaus, Amazonas 
State, Brazil (02º 55’ and 02º 53’S & 59º 58’W). 
The study was conducted in the Acará (AC) 
and Bolivia (BO) sub-basins, both of which 
draining to the Tarumã-Açu River Basin, a trib-
utary on the left bank of the Negro River. Fish 
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were observed and collected from a 50-meter 
stretch along the stream banks. Three of these 
streams were first-order (AC13, BO12, and 
BO13), four were second-order (AC23, BO20, 
BO21, and BO22), and one was a third-order 
stream (AC30), following the Horton-Strahler 
classification system (Petts, 1994), resulting in 
a total of 8 sampled streams (SMF 1).

Upland streams (regionally known as 
“terra firme”) exhibit a meandering streambed 
and a high interface with the riparian forest. 
The streambed alternates between riffles, char-
acterized by high water flow, shallow depth, and 
a substrate predominantly consisting of sand, 
gravel, and small rocks, and pools, which are 
deeper and have a substrate mainly composed 
of coarse particulate organic matter (leaf litter), 
fine particulate organic matter, small branches, 
and sand (Fittkau, 1967). The banks are abun-
dant with shrubby plants, leaves, and roots 
from the riparian vegetation, and submerged 
trunks create natural barriers that contribute 
to longitudinal heterogeneity. The water has 
a pH of approximately 4.5 due to the pres-
ence of fulvic and humic acids resulting from 
the decomposition of plant organic matter. 
The average water temperature is 25 °C with 
minimal variation throughout the year. These 
are oligotrophic streams, where the primary 
autotrophic productivity is very low, associated 
with the scarcity of inorganic compounds in 
the water and dense shading from the riparian 
forest canopy (Junk & Furch, 1985; Walker, 
1995). The studied streams are deeply insert-
ed in the Reserve and are free from direct 
anthropogenic disturbances.

The streams and species Bryconops giacopi-
nii (GIA), Bryconops inpai (INP), Iguanodectes 
geisleri (GEI) and Hyphessobrycon aff. mela-
zonatus (MEL) were selected based on records 
of species abundance and composition previ-
ously conducted by Espírito-Santo et al. (2009) 
and Mendonça et al. (2005), which provided 
information on different combinations of spe-
cies co-occurrence in these streams (SMT 1).

First, a search was carried out in the col-
lection database, and the streams in which the 
most abundant nektonic species co-occurred 

were identified. After this step, we returned 
to these streams to double-check for the pres-
ence of the species, to carry out the collec-
tions and to make underwater observations of 
their behavior. 

Naturalistic observations: Behavioral data 
were recorded through direct observation of 
fish during snorkeling sessions (Sabino, 1999), 
using a visual scanning method (Altmann, 
1974). In this method, a single observation 
session involved recording the frequency of 
occurrence (FO %) of foraging events of an 
individual or a group of the same species over 3 
min. The observations included the horizontal 
space use, distinguishing between the Excava-
tional Margin (EM), identified by bank exca-
vation caused by water flow and velocity; the 
Depositional Margin (DM), where sediments 
are deposited due to water flow eddies; and the 
Channel (C), the central position relative to the 
stream banks. Vertical space use was catego-
rized into the Upper Third (UT), Middle (MT), 
and Lower Third (LT) of the water column. 
Each of these horizontal and vertical segments 
was considered a distinct microhabitat due to 
their unique characteristics of water velocity, 
food availability, and depth, which significantly 
influence local fish composition and abun-
dance (Barili et al., 2011; Brejão et al., 2013; 
Leitão et al., 2015).

The underwater observations were con-
ducted in the same streams where the speci-
mens were subsequently collected. The diver 
surveyed a 50-meter stretch of the stream for 
two hours (between 11:00 AM and 1:00 PM), a 
time when the species are more active (Sabino & 
Castro, 1990; Sabino & Zuanon, 1998; Sazima, 
1986). After a 10-minute acclimation period at 
each site, observation sessions began, consist-
ing of 3 min of recording foraging events and 
habitat use of individuals (or groups) present 
at the EM, DM and C, one species at a time, at 
five observation sites (evenly spaced along the 
50-meter stretch of the stream). A single forag-
ing event was defined as any behavior directed 
to a food item, whether or not followed by 
manipulation or ingestion of the item. During 
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the direct observation sessions, the following 
foraging event types were recorded: i) surface 
food picking (Keenleyside, 1979); ii) drift food 
picking in the water column (Grant & Noakes, 
1987); and iii) bottom substrate food picking 
(Sazima, 1986).

Stomach contents: Each 50-meter section 
of the stream was sampled in a standardized 
manner over two hours by two collectors using 
a small hand-held seine net (mesh size 5 mm 
between opposite knots) and dip nets. Block 
nets were installed at the beginning and end of 
the section to prevent fish escape and optimize 
capture (Mendonça et al., 2005). After capture, 
individuals were immersed in an anesthetic 
solution, one liter of water and five drops of 
Eugenol (clove oil). When opercular move-
ment ceased, specimens were fixed in 10 % 
formalin and subsequently preserved in 70 % 
ethanol. INPA’s Institutional Ethics Committee 
for Animal Use in Research authorized field 
and laboratory protocols (permit # 043 / 2012 
granted to GGB).

Stomach content analysis was performed 
on ten specimens of each species from each 
of the eight streams (10 stomachs/stream/spe-
cies). Following stomach dissection, the degree 
of fullness (FD) was determined according to 
Goulding et al. (1988).

For each species, the frequency of occur-
rence (Fi) (Hyslop, 1980) of each food item 
in the stomachs was calculated relative to the 
total number of stomachs containing food. 
The relative volume (Vi) of each food item was 
estimated visually, as the percentage of the total 
volume of each item in the stomach, with the 
total volume considered as 100 % (cf. Hynes, 
1950, modified by Soares, 1979). The values 
of Vi were multiplied by their respective FD to 
correct the relative volumes of different food 
items present in the stomachs. Food items were 
identified to the Taxonomical Order (Merritt & 
Cummins, 1996; Passos et al., 2007; Pes et al., 
2005; Salles et al., 2004).

To evaluate the importance of each ingest-
ed item for the species, the Food Index (FIi) 

(Kawakami & Vazzoler, 1980) was applied using 
the following formula:

FIi = FiVi / [Σ (FiVi)]-1

where FIi = food index, Fi = frequency of occur-
rence of item i, and Vi is the relative volume of 
item i.

Food items were also classified according to 
their origin (autochthonous or allochthonous). 
Data analysis was performed for each species, 
and comparisons among them were made using 
Pearson’s Chi-square test (Pearson, 1900).

Morphological measurements: Morpho-
metric analyses were conducted on 22 speci-
mens of each species from the eight sampled 
streams, with the following size ranges: GIA 
(20.6-97.0 mm); MEL (22.7-39.0 mm); INP 
(36.0-90.6 mm); and GEI (27.8-50.8 mm).

Seventeen linear morphometric measure-
ments based on Gatz (1979) and Watson & 
Balon (1984) were taken point-to-point using 
a digital caliper (0.1 mm precision) and related 
to standard length (SL). Five body and fin area 
measurements, excluding the anal fin (adapted 
from Beaumord & Petrere, 1994), were made 
for each specimen using the projected image 
on graph paper. Fins were extended on the 
paper and outlined with a pencil. The fin areas 
were then related to body area to maintain pro-
portionality, regardless of size variation among 
specimens. The outlines were scanned, and the 
pixels representing morphological structures 
were converted to cm² using a known area scale 
(273 px = 1 cm²) with ImageJ.

The morphometric measurements and 
areas were used to calculate 18 ecomorpho-
logical attributes that potentially reflect habi-
tat use and feeding behavior aspects of the 
species (Gatz, 1979; Watson & Balon, 1984): 
body compression index (BCI), relative body 
height (RBH), relative caudal peduncle length 
(RCPL), caudal peduncle compression index 
(CPCI), ventral flattening index (VFI), relative 
dorsal fin area (RDFA), relative pectoral fin 
area (RPFA), relative pelvic fin area (RPvA), 
relative caudal fin area (RCFA), pectoral fin 
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configuration ratio (PFCR), caudal fin con-
figuration ratio (CFCR), relative head length 
(RHL), relative eye position (REP), relative eye 
size (RES), relative mouth width (RMW), rela-
tive mouth height (RMH), mouth configuration 
ratio (MCR), and mouth orientation (MO).

Data analysis: The Frequency of Occur-
rence (FO %) data for horizontal and vertical 
space use were transformed into proportions 
and tested for differences between strata among 
species (e.g., 4 species X Channel), and for each 
species among strata (e.g., GIA X DM/EM/C) 
using a two-way ANOVA with post-hoc Tukey’s 
test at a significance level of α = 0.05. FO % data 
for foraging events were also tested with a two-
way ANOVA, comparing strata among spe-
cies (e.g., 4 species X mid-water) and for each 
species among strata (e.g., GIA X mid-water/
surface). These analyses were conducted using 
Statistica 6.0 (Statsoft, 2001).

A non-parametric MANOVA was per-
formed with the Bray-Curtis similarity index 
using the Vi values for each food item to test the 
significance of differences in stomach content 
among species. To compare these differences 
between species pairs, a MANOVA with the 
same similarity index was performed, including 
Holm’s correction (Holm, 1979) (as cited in R 
Development Core Team, 2011), with adjusted 
significance level (p < 0.006) due to multiple 
pairwise comparisons.

To order the species in the ecomorpho-
logical space, a Principal Component Analy-
sis (PCA) was performed using the values of 
the 18 attributes. The axes with eigenvalues 
greater than one were retained for interpreta-
tion (Motta et al., 1995). This analysis was 
conducted using the R statistical software (R 
Development Core Team, 2011).

To test the significance of morphological 
differences among species, using the eight prin-
cipal components with the highest eigenvalues 
from the PCA, a non-parametric MANOVA was 
applied with the Bray-Curtis similarity index, 
including Holm’s correction (Holm, 1979) for 
pairwise comparisons (as cited in R Develop-
ment Core Team, 2011).

RESULTS

Behavior and habitat use: A total of 711 
observation sessions of fish behavior and habi-
tat use were conducted, comprising 341 sessions 
for MEL (2 356 individuals), 218 for GIA (1 998 
individuals), 88 for INP (243 individuals), and 
64 for GEI (95 individuals), resulting in a total 
observation time of 35 hours and 55 min.

Bryconops giacopinii, INP, and GEI pre-
dominantly used the stream channel, with per-
centages of 80, 87, and 75 % respectively, while 
MEL more frequently utilized EM and DM, 
with individuals observed in 43 % and 24 % of 
the underwater sessions, respectively (ANOVA, 
F = 24.5, d.f. = 3 / 707, p < 0.001 (SMF 2A).

A similar pattern of vertical use of the 
water column was observed between the spe-
cies (ANOVA, F = 0.617, d.f. = 3 / 768, p = 
0.415). However, a higher FO % was observed 
for GEI in the lower third (22 %) compared 
to INP (14 %), MEL (12 %), and GIA (9 %) 
(SMF 2B).

Regarding foraging frequency, similar for-
aging was observed in the water column: sur-
face (52 %) and mid-water (47 %) for GIA 
(ANOVA, F = 0.625; d.f. = 2 / 180, p = 0.429), 
as well as for MEL (ANOVA, F = 0.341; d.f. 
= 2 / 206, p = 0.559) with 51 % and 48 %, 
respectively. On the other hand, INP exhibited 
a higher FO % at the surface (66 %) compared 
to mid-water (34 %) (ANOVA, F = 14.37; d.f. 
= 2 / 78, p < 0.001), while GEI showed a more 
frequent foraging in mid-water (65 %) than at 
the surface (35 %) (ANOVA, F = 5.079; d.f. = 2 / 
56, p = 0.026; SMF 2C). Foraging events on the 
substrate were rarely observed (less than 1 % 
of observations for each species) and thus were 
not included in the analyses.

Stomach Content Analysis: A total of 170 
stomachs were examined, consisting of 70 from 
MEL (18.6-38.4 mm Standard Length, SL), 60 
from GIA (18.5-103.3 mm SL), 30 from GEI 
(31.1-50.5 mm SL), and 10 from INP (37.7-87.7 
mm SL). The degree of stomach fullness indi-
cated that 87.6 % of the examined stomachs (n 
= 149) were full.
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The species exhibited a broad dietary spec-
trum, with 31 different food categories identi-
fied from the stomach contents of the four 
species. The diet was predominantly composed 
of items of animal origin, although there was a 
minor but significant presence of plant-origin 
items (SMT 2). The analysis revealed that the 
food categories Insect Fragments, Hymenop-
tera, Ephemeroptera Larvae, and Plant Frag-
ments were the most important components 
of the stomach contents across the four fish 
species, though with varying proportions, and 
Ephemeroptera Larvae made an important con-
tribution to the difference in the diet between 
species (SMF 3).

No significant difference was detected 
among the stomach contents of the four spe-
cies overall (MANOVA, F = 3.723; r² = 0.06; 
p = 0.086). However, pairwise comparisons 
revealed significant differences between MEL 
and GIA, MEL and INP, as well as MEL and 
GEI (SMT 3). In addition to the high impor-
tance of Ephemeroptera Larvae in the diet of 
MEL, significantly higher values for Diptera 
Larvae, Coleoptera, and Diptera Pupae were 
also observed compared to the other species.

The contribution of allochthonous items 
(χ² = 4.941; p = 0.176) and autochthonous items 
(χ² = 5.396; p = 0.144) to the stomach contents 
was not significantly different among the four 
species. Of the four species, only INP exhibited 
a higher frequency of occurrence (FO %) of 
allochthonous items compared to autochtho-
nous items (χ² = 8.100; p = 0.004).

Ecomorphology: Principal Component 
Analysis (PCA) revealed a distinct morpho-
logical pattern among the analyzed species. 
The first eight PCA axes, with eigenvalues 
greater than 1, accounted for 70.5 % of the 
cumulative variance.

The first two components (PC1 and PC2) 
explained 56.9 % of the total ecomorphological 
variation. PC1 (33.2 % variance) was mostly 
influenced by attributes such as BCI, RBH, 
CPCI, RHL, RES, and RMW. This component 
effectively differentiated between GIA, INP, 
and MEL, which possess a higher and more 

laterally compressed body, a less compressed 
caudal peduncle, a longer head, larger eyes, 
and a broader, more terminal mouth compared 
to GEI. The latter species, in contrast, has a 
more terminal mouth position, a lower and 
less compressed body, a more fusiform shape, 
and relatively smaller eyes and head relative to 
its body size, with a more compressed caudal 
peduncle (SMF 4).

In the formation of PC2 (23.7 % of vari-
ance), the most important attributes were 
RCPL, RDFA, RMH, and MCR, which con-
tributed to the discrimination of INP, GIA, and 
GEI, which share shorter caudal peduncles, 
smaller dorsal fin areas, narrower mouths with 
larger openings, from MEL, which has a rela-
tively longer caudal peduncle, larger relative 
dorsal fin area, and a wider mouth with a 
smaller opening (SMF 4).

The PC3 of the ordination, representing 
13.6 % of the variance, highlighted the impor-
tance of the RPFA and RPvA, contributing to 
the morphological divergence between GIA 
and its congener INP, as GIA has relatively 
smaller pectoral and pelvic fins (SMF 5).

Significant morphological differences were 
detected among the studied species (MANOVA, 
F = 45.172, r² = 0.61, p < 0.001). For pairwise 
comparisons, the smallest significant morpho-
logical difference was found between MEL and 
INP, followed by GIA and INP. The pairs with 
the most significant differences were INP and 
GEI, followed by MEL and GEI (SMT 4).

DISCUSSION

Even though the fact that the nektonic 
stream fish species are similar in terms of their 
overall ecology and body shape, the results 
indicated that there are ecomorphological, 
stomach contents, and behavioral differences 
that can act as mediators of the coexistence of 
individuals of the four syntopic characiform 
fish species through the sharing of food and 
spatial resources.

Ecomorphology and habitat use: 
Despite the overall morphological similarity, 
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opportunistic habits, trophic niche overlap, and 
phylogenetic proximity among them (Barros 
et al., 2017; Brejão et al., 2013; Dagosta & de 
Pinna, 2019; Sabino & Zuanon, 1998; Sabino & 
Sazima, 1999; Sazima, 1986), interspecific eco-
morphological differences appear to be associ-
ated with the use of specific microhabitats, as 
well as the consumption of different combi-
nations of food items and employing slightly 
different foraging behaviors, which tend to 
alleviate the potential interspecific competi-
tion. The relationship between the observed 
morphological divergences and ecological pat-
terns supports the ecomorphological hypoth-
esis (Casatti & Castro, 2006; Winemiller, 1992), 
which posits that morphological characteristics 
reflect important aspects of the individuals’ 
ecology and, therefore, indicate modes of life 
and adaptations to different habitats and food 
resource availability.

The three distinct clusters formed along the 
first axis of the ecomorphological ordination 
reflect differences in swimming performance 
and occupation of distinct microhabitats, as 
well as preferences for prey size and type, forag-
ing location, and the position of the food rela-
tive to the fish (Langerhans et al., 2003; Portella 
et al., 2017). As a function of movement phys-
ics, body shape strongly influences swimming 
performance, microhabitat preference, foraging 
frequency, and space sharing (Barros et al., 
2019; Dala-Corte & De Fries, 2018; Souza & 
Pompeu, 2020). Therefore, significantly distinct 
ecomorphological characteristics are related to 
the detected horizontal space segregation, evi-
denced by the higher occurrence of MEL close 
to the stream margins. This species has a rela-
tively shorter, higher, and laterally compressed 
body, which possibly provides greater swim-
ming performance in low-flow water environ-
ments, such as backwaters or among roots and 
holes in the margins (Barros et al., 2019). Sev-
eral species of the same functional group have 
shown similar space use (Brejão et al., 2013; 
Teresa et al., 2021), even extending beyond 
the margins and colonizing temporary pools 
along the stream margins (Espírito-Santo et al., 
2017). The other three species, GIA, INP, and 

GEI, showed a clear preference for the stream 
channel, where the water flow is greater and the 
fusiform body shape of these species is better 
adapted, being energetically more favorable for 
maintaining the body in this microhabitat (Bar-
ros et al., 2019; Brejão et al., 2013; Langerhans, 
2008; Neves & Monteiro, 2003).

Ecomorphological attributes associated 
with PC2 mainly contributed to the differen-
tiation of MEL. This species had a dorsal fin 
with a larger relative area, typical of species 
adapted to lentic or low-flow water environ-
ments, where a larger fin can function more 
effectively (Gosline, 1971; Langerhans et al., 
2003), aiding the fish in making short move-
ments and maneuverability.

Bryconops giacopinii had relatively larger 
pectoral and pelvic fin areas compared to INP. 
Although GIA showed body shape characteris-
tics that confer greater adaptability to the main 
channel environment, fish with large pectoral 
fins are potentially more efficient at maneuver-
ing (Howe et al., 2021). Large pelvic fins are 
associated with demersal habits (Gatz, 1979), 
and these characteristics may also make GIA 
efficient in other microhabitats, such as back-
waters and margins. These characteristics help 
explain the broad distribution of this species in 
small streams of various hydrographic basins in 
the Amazon (Dagosta & de Pinna, 2019), sug-
gesting high environmental adaptability.

Foraging: Mouth orientation data are quite 
revealing regarding the water column stratum 
in which the fish forages, the origin of the 
ingested food, and the fish’s position relative 
to the food (Motta et al., 1995; Portella et al., 
2017). For example, Bryconamericus stramin-
eus Eigenmann, 1908 was observed capturing 
items at the water surface, explained by the 
predominance of terrestrial insects in its diet 
(Casatti & Castro, 1998), as was Astyanax altip-
aranae Garutti & Britski, 2000 (Casatti et al., 
2003). Individuals of Hemigrammus marginatus 
Ellis, 1911 are insectivorous but prefer aquatic 
insects, evidenced by foraging in the mid-water 
column (Casatti et al., 2003). In the present 
study, GEI had a terminal mouth position and 
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a higher frequency of observed foraging events 
at mid-water, collecting items carried down-
stream. Bryconops inpai had a slightly upward 
positioned mouth compared to the others and 
foraged mostly at the water surface, which was 
associated with a higher proportion of alloch-
thonous items found in the stomach. Regarding 
GIA and MEL, which had intermediate mouth 
positions compared to GEI and INP, there was 
no preference for foraging location (surface 
or mid-water), as well as a similar proportion 
of allochthonous and autochthonous items in 
the stomach. The lack of preference for one 
of the foraging strata can be attributed to 
opportunistic life history strategies and greater 
feeding behavioral plasticity in individuals of 
these species (Aranha et al., 1998; Barros et al., 
2017; Brejão et al., 2013; Sabino, 1999; Sabino 
& Zuanon, 1998; Sazima, 1986). Although less 
specialization in foraging stratum in the water 
column may result in lower competitive ability 
of these species compared to more specialized 
fish, the use of a greater variety of microhabi-
tats for feeding, on the other hand, increases 
their versatility and competitive advantage for 
available trophic resources, allowing them to 
explore other foraging locations and alternative 
food items of lower energetic value (but more 
abundant). These conditions are typical of oli-
gotrophic streams with low carrying capacity, 
like those studied here, where fish heavily rely 
on allochthonous resources and are adapted to 
opportunistically handle high unpredictability 
in food availability (Barili et al., 2011; Hender-
son & Walker, 1986; Walker, 1995).

Stomach contents: Greater similarity in 
ingested food items was observed between 
GEI, GIA, and INP compared to MEL, as well 
as similar horizontal space use (GEI, GIA, and 
INP in the Channel and MEL in the margins). 
The lower number of analyzed stomachs for 
INP may have blurred the true diversity of 
food items ingested by this species because of 
the lower probability of detecting some rare 
items in its diet; however, the use of somewhat 
broad food categories in this study probably 
attenuated such problem. Moreover, the main 

differences in the diet of the four species were 
mainly related to MEL, which also reduces the 
risk of misinterpretation of the results pre-
sented herein.

Dietary differences among ecologically and 
morphologically similar species are commonly 
associated with differences in body and mouth 
shape, size, and feeding behavior among spe-
cies (Aranha et al., 1998; Barros et al., 2017; 
Brejão et al., 2013; Esteves et al., 2021; Portella 
et al., 2017). Gorman & Karr (1978) proposed 
that food item selection among related species 
is primarily a consequence of the habitat in 
which individuals are found, and where they 
select among available food items. Dala-Corte 
& De Fries (2018) and Montaña & Winemiller 
(2010) observed that body size, and to a lesser 
extent habitat use, are the main factors causing 
dietary segregation among syntopic congeneric 
species. In MEL, a higher proportion of Cole-
optera, Diptera, and especially Ephemeroptera 
larvae were detected in the stomach contents, 
which significantly contributed to the trophic 
divergence between species. The selection of 
different food items by MEL compared to other 
species relates to different patterns of use of 
margin and channel microhabitats, but also 
to its smaller body size relative to the others. 
Barros et al. (2017) attributed the proportional 
use of different feeding tactics and space use 
to the narrowing of the feeding niche in MEL 
when syntopically co-occurring with the same 
species studied here. The authors suggested 
this occurred i) due to changes or differences in 
items collected at the surface or mid-water; ii) 
through the ingestion of food items of different 
sizes and origins, mediated by mouth morphol-
ogy (e.g., mouth size, mouth orientation) and 
specific behaviors (e.g., ability to locate small 
food items); iii) and through the use of different 
microhabitats for foraging (e.g., central channel 
vs. margins). The results found here support 
and complement such hypotheses, adequately 
explaining the margin use segregation by MEL, 
correlated with functions of specific morpho-
logical structures (mouth configuration and 
size), different feeding tactics employed, and 
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local conditions of microhabitats (low water 
speed and shelter among roots).

 Resource partitioning and competition: 
Ecological interactions associated with micro-
habitat heterogeneity can mediate variations in 
feeding tactics and space use by opportunistic 
species (Brejão et al., 2013; Casatti & Castro, 
1998; Ceneviva-Bastos et al., 2010), and verti-
cal and horizontal partitioning of the water 
column plays an important role in microhabitat 
occupation patterns (Leitão et al., 2015; Peres-
Neto, 2004; Portella et al., 2017). The high over-
lap in the use of the middle third of the water 
column by the four species suggests a reflection 
of the evolutionary history of this phyloge-
netically related group, which has retained a 
generalized body morphology, allowing it to 
perform similar ecological functions, resulting 
in similar patterns of vertical water column use. 
On the other hand, the pressure for channel 
microhabitat uses by GIA, INP and GEI may be 
alleviated by the apparent segregation of MEL 
in the margins, potentially resulting in reduced 
interspecific competition. Individuals of MEL 
were only observed continuously occupying 
the channel in the absence of the other syntopic 
species in the BO13 stream (channel 56 %, ME 
21 %, and MD 23 %). This pattern of space use 
by MEL and other species suggests the evi-
dence of interference competition (Schoener, 
1974), associated with a dynamic mechanism 
of resource partitioning, where ecomorphologi-
cal and dietary differences, foraging behavior 
and space use segregation plays a mediating 
role, facilitating coexistence (Baldasso et al., 
2019; Dala-Corte & De Fries, 2018; da Silva et 
al., 2017; Delariva & Neves, 2020; Leitão et al., 
2015; Manna et al., 2017; Portella et al., 2017; 
Souza & Pompeu, 2020).

These amazonian nektonic stream fish-
es here studied are phylogenetically related, 
morphologically similar, trophic opportunist, 
with high niche overlap. Several studies have 
reported minimal niche differentiation in tropi-
cal stream fish assemblages (Aranha et al., 
1998; Barros et al., 2017; Esteves et al., 2021; 
Goulding et al., 1988; Herder & Freyhof, 2006; 

Kliemann et al., 2021; Peres-Neto, 2004; Sabino 
& Zuanon, 1998), suggesting that the composi-
tion of these tropical stream fish assemblages 
may reflect stochastic processes. However, the 
combined analysis of direct observation of 
behavior (foraging and habitat use), stomach 
contents, and ecomorphological characteristics 
demonstrated that, despite being seemingly 
subtle, the significant differences observed here 
suggest they act as a mechanism for reduc-
ing interspecific competition, emphasizing the 
mediating role of resource sharing and spatial 
partitioning in the coexistence of these syntopic 
species in small, oligotrophic upland streams in 
the Amazon Rainforest.
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