1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
Diversity of centipedes and millipedes (Arthropoda: Myriapoda)
in tropical dry forest fragments in Bolívar, Colombia
Martín Carrillo-Pallares1; https://orcid.org/0000-0003-3406-1699
Wilder Zapata-M.1; https://orcid.org/0000-0003-2011-6943
Daniela Martínez-Torres2; https://orcid.org/0000-0001-8865-927X
Gabriel R. Navas-S.3*; https://orcid.org/0000-0001-9554-6345
Adriana Bermúdez-Tobón1; https://orcid.org/0000-0002-5247-4561
1. Grupo de Investigación en Biología Descriptiva y Aplicada, Programa de Biología, Universidad de Cartagena, Campus
San Pablo, Cartagena de Indias, Bolívar, Colombia; m-carrillo1996@hotmail.com; wilder214_@hotmail.com; abermu-
dezt@unicartagena.edu.co
2. Grupo de Investigación en Aracnología y Miriapodología, Instituto de Ciencias Naturales, Sede Bogotá, Universidad
Nacional de Colombia, Bogotá D.C., Colombia; sdmartinezt@unal.edu.co
3. Grupo de Investigación Hidrobiología, Programa de Biología, Universidad de Cartagena, Campus San Pablo,
Cartagena de Indias, Bolívar, Colombia; gnavass@unicartagena.edu.co (*Correspondencia).
Received 20-II-2025. Corrected 10-V-2025. Accepted 12-VIII-2025.
ABSTRACT
Introduction: Tropical dry forests are among the most endangered Neotropical ecosystems, characterized
by high biodiversity and endemism but increasingly threatened by anthropogenic activities. In Colombia,
particularly in the Caribbean region, these forests have been extensively fragmented. Despite their ecological
significance, studies on myriapod communities remain scarce. Myriapods play an essential role in soil dynamics
and nutrient cycling. However, their diversity and ecological associations in Bolívar’s tropical dry forests remain
poorly understood.
Objective: To assess the diversity and distribution of centipedes (Chilopoda) and millipedes (Diplopoda) in
four tropical dry forest fragments within Bolívar and examine their relationships with environmental variables.
Methods: Fieldwork was conducted in October and November 2020 across four forest fragments in Turbaco,
San Jacinto, Magangué, and El Carmen. Specimens were collected using free search, soil monoliths, pitfall traps,
and Winkler traps in 50 × 50 m plots. Taxonomic identifications and ecological analyses were performed to
assess the diversity and structure of the studied communities. Ecological indices were analyzed, and ANOSIM
was used to contrast differences between locations, NMDS was used to visualize patterns of dissimilarity, and
Canonical Correspondence Analysis (CCA) was used to evaluate the relationship between species and environ-
mental variables.
Results: A total of 1 106 individuals were recorded, comprising 8 orders, 15 families, and 32 morphospecies.
Diplopoda exhibited greater richness and abundance than Chilopoda. Polydesmida and Spirostreptida were the
dominant millipede orders, while Geophilomorpha was the most abundant centipede order. Species richness was
highest in San Jacinto and Turbaco, while Magangué and El Carmen exhibited lower diversity. The CCA revealed
that soil pH, temperature, and humidity influenced species distribution, reinforcing the role of myriapods as
bioindicators.
Conclusion: This study provides the first systematic assessment of myriapod diversity in Bolívar’s tropical dry
forests, emphasizing their ecological significance and the urgent need for conservation efforts.
Key words: Chilopoda; Diplopoda; ecology; environmental variables; Neotropic; sampling methods.
https://doi.org/10.15517/10.15517/9w79j526
TERRESTRIAL ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
INTRODUCTION
A Tropical Dry Forest are ecosystems dis-
tributed between 0 and 1 000 m in altitude,
characterized by temperatures ranging from
25 to 38 °C (Murphy & Lugo, 1986) and annu-
al precipitation between 250 and 2 000 mm.
These forests experience pronounced seasonal
droughts lasting between four and six months
(Grainger, 1996; Mayaux et al., 2005; Miles
et al., 2006; Pennington, 2006). Due to their
unique structural and ecological characteristics,
these forests exhibit high levels of alpha diver-
sity and endemism, with species displaying a
wide range of adaptive strategies to withstand
extreme drought conditions and seasonal cli-
matic fluctuations (Alvarado-Solano & Otero,
2015; Dryflor et al., 2016; Zapata et al., 2023).
In Colombia, the original extent of Tropical
Dry Forest was estimated to be approximately
80000 km² (Etter, 1993). Later assessments
by Instituto de Hidrología, Meteorología y
Estudios Ambientales et al., (2007) estimated
a current coverage of 76 581 km², primarily
distributed across six major regions: The Carib-
bean, the inter-Andean valleys of the Cauca and
Magdalena rivers, the North Andean region
(Santander and Norte de Santander), the Patía
Valley, and the Llanos (Arauca and Vichada).
This represents roughly 7 % of the national ter-
ritory (Díaz, 2006). However, these forests have
been extensively fragmented by anthropogenic
pressures, with 97 % of their original coverage
impacted by activities such as livestock farm-
ing, mining, deforestation, and monoculture
agriculture, accelerating the rate of habitat deg-
radation (Álvarez Hincapié et al., 2021; García-
Herrera et al., 2019; Miles et al., 2006).
Among Colombias remaining Tropical
Dry Forests, the Caribbean region contains the
largest remnants, covering 1 355 km² (Rodrí-
guez et al., 2012). However, most of these
RESUMEN
Diversidad de ciempiés y milpiés (Arthropoda: Myriapoda) en
fragmentos de bosque seco tropical en Bolívar, Colombia
Introducción: Los bosques secos tropicales se encuentran entre los ecosistemas neotropicales más amenazados,
caracterizados por una gran biodiversidad y endemismo, pero cada vez más amenazados por las actividades
antropogénicas. En Colombia, particularmente en la región del Caribe, estos bosques se han fragmentado amplia-
mente. A pesar de su importancia ecológica, los estudios sobre las comunidades de miriápodos siguen siendo
escasos. Los miriápodos desempeñan un papel esencial en la dinámica del suelo y el ciclo de los nutrientes. Sin
embargo, su diversidad y sus asociaciones ecológicas en los bosques secos tropicales de Bolívar siguen siendo
poco conocidas.
Objetivo: Evaluar la diversidad y distribución de ciempiés (Chilopoda) y milpiés (Diplopoda) en fragmentos de
cuatro bosques secos tropicales de Bolívar y examinar su relación con variables ambientales.
Métodos: El trabajo de campo se llevó a cabo en octubre y noviembre de 2020 en cuatro fragmentos de bosques
en Turbaco, San Jacinto, Magangué y El Carmen. Las muestras se recolectaron mediante búsqueda libre, mono-
litos de suelo, trampas de caída y trampas Winkler, en parcelas de 50 × 50 m. Se analizaron índices ecológicos y
se utilizó ANOSIM para contrastar diferencias entre localidades, NMDS para visualizar patrones de disimilitud
y análisis canónico de correspondencias (CCA) para evaluar la relación entre especies y variables ambientales.
Resultados: Se registraron en total 1 106 individuos, que comprendían 8 órdenes, 15 familias y 32 morfoespecies.
Los diplópodos exhibieron mayor riqueza y abundancia que los quilópodos. Polydesmida y Spirostreptida fueron
los órdenes de milpiés dominantes, mientras que Geophilomorpha fue el orden de ciempiés más abundante. La
riqueza de especies fue mayor en San Jacinto y Turbaco, mientras que Magangué y El Carmen mostraron una
menor diversidad. El CCA reveló que el pH, la temperatura y la humedad del suelo influyeron en la distribución
de las especies, lo que refuerza el papel de los miriápodos como bioindicadores.
Conclusión: Este estudio proporciona la primera evaluación sistemática de la diversidad de miriápodos en los
bosques secos tropicales de Bolívar, enfatizando su importancia ecológica y la urgente necesidad de esfuerzos de
conservación.
Palabras clave: Chilopoda; Diplopoda; ecología, variables ambientales, neotrópico; métodos de muestreo
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
forests exist as highly fragmented and heavily
altered patches (Díaz, 2006). The Department
of Bolívar is a key area for forest conservation,
comprising 4.1 % of the national territory and
ranking third in Tropical Dry Forest coverage,
following Atlántico (5.7 %) and Cesar (4.9 %)
(Pizano et al., 2014). Given the ecological sig-
nificance of these relictual forests, it is essential
to investigate arthropod diversity to better
understand ecosystem dynamics and inform
future conservation and restoration strategies
(Bello et al., 2014; Ramírez, 2018).
Among arthropods, Myriapods (subphy-
lum Myriapoda) are particularly relevant as
soil ecosystem engineers. This group comprises
four classes: Chilopoda (centipedes), Diplop-
oda (millipedes), Symphyla, and Pauropoda
(Edgecombe, 2011; Shelley, 2002). Myriapods
contribute significantly to soil health by increas-
ing porosity and water retention, promoting
nutrient cycling, and accelerating decomposi-
tion processes (Bueno-Villegas, 2012). Due
to their close association with microhabitat
conditions, myriapods are often used as bio-
indicators for evaluating soil quality, environ-
mental change, and ecosystem integrity (Adis
et al., 1996; Druce et al., 2004). Additionally,
centipedes serve as biological control agents,
preying on soil mesofauna, macroinvertebrates,
and occasionally small vertebrates (Lewis, 1981;
Molinari et al., 2005). They also represent an
important food source for birds, mammals,
reptiles, insects, and arachnids (Cantú-Salazar
et al., 2005; Cupul-Magaña, 2014).
Despite their ecological importance, myr-
iapod diversity in Colombian Tropical Dry
Forests remains poorly studied. Most research
has focused on the Andean region, where four
orders, seven families, twelve genera, and forty
species of Chilopoda (Chagas-Jr et al., 2014;
Prado-Sepúlveda et al., 2016), and seven orders,
20 families, 76 genera, and approximately 215
species of Diplopoda have been documented
(Castillo-Ávila et al., 2015; Martínez-Torres &
Flórez, 2015). In the Caribbean region, early
contributions were made by Carl (1914) and
Chamberlin (1921), who described several
myriapod species in Magdalena and Atlántico.
However, in Bolívar, myriapod records remain
scarce, with only a few inventories present-
ed at scientific meetings. These inventories
report four orders, six families, and nine mor-
phospecies of Chilopoda, along with seven
orders, eleven families, and over 20 morpho-
species of Diplopoda (Carrillo-Pallares et al.,
2019; Sociedad Colombiana de Entomología
[SOCOLEN], 2016).
Given these knowledge gaps, this study
aimed to assess the diversity of centipedes
and millipedes in various Tropical Dry Forest
fragments within the Department of Bolívar.
Additionally, we investigate how species from
Chilopoda and Diplopoda correlate with envi-
ronmental variables, including ambient humid-
ity, ambient temperature, soil temperature,
and soil pH. Our findings contribute to the
taxonomic and ecological understanding of
myriapods in Bolívar and Colombia, provid-
ing baseline data for biodiversity conservation
and management.
MATERIALS AND METHODS
Study Area: The Department of Bolívar
is located in Northern Colombia, within the
Caribbean plain region (Fig. 1). It covers 25 978
km², with altitudes ranging from sea level to
2 700 m above sea level (MASL). Bolívar is
positioned between 07º00’03’’-10º48’37’’ N &
73º45’15’’-75º42’18’’ W, sharing borders with
the Caribbean Sea and the Department of
Atlántico to the North, the Magdalena River
to the East, the departments of Santander and
Antioquia to the South, and the departments of
Antioquia, Córdoba, Sucre, and the Caribbean
Sea to the West. The department accounts for
approximately 20 % of the Caribbean regions
total area and 2.3 % of Colombias national ter-
ritory (Galvis, 2009). The region experiences an
average temperature ranging from 19 to 30 °C,
with annual precipitation between 911 and
1 157 mm. Bolívar comprises 45 municipalities
and 348 townships, with a mosaic of land uses,
including Tropical Dry Forest fragments at dif-
ferent successional stages, shrublands, gallery
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
forests, and deforested areas due to livestock
and agricultural expansion (Pizano et al., 2014).
Field Sampling: Was conducted between
October and November 2020 at four sites: Tur-
baco, San Jacinto, Magangué, and El Carmen
(Table 1). Each location contained remnants of
these forests at varying degrees of conservation
(Fig. 2). The sampling design followed the
COBRA (Conservation-Oriented Rapid Biodi-
versity Assessment) protocol (Cardoso et al.,
2009; Malumbres-Olarte et al., 2017), incor-
porating modifications by Morales (2019) and
Galvis (2019).
At each site, a 50 × 50 m plot was estab-
lished, where myriapod specimens were
Fig. 1. Sampling locations in the department of Bolívar, Colombia.
Tabl e 1
General characteristics of the conserved patches of tropical dry forest sampled for myriapods in the Bolívar department,
Colombia.
Locality,
Municipality
Coordinates Elevation
(MASL)
Description
Cañaveral,
Turbaco
10°22’07.1” N-75°21’30.1” W 104 It is located near a water source and remains minimally
disturbed by anthropogenic activities.
Brasilar,
San Jacinto
9°54’33.1” N-75°11’06.1” W 435 It is surrounded by mountainous areas and located near a
water source.
Henequén,
Magangué
9°12’29.9” N-74°53’45.9” W 56 In the vicinity of the flood zone, surrounding areas are
disturbed by anthropogenic activities such as livestock
farming, access roads, monocultures, and semi-urban areas.
Tolemaida,
El Carmen
9°38’07.4” N-75°07’29.3” W 253 Surrounding areas, affected by anthropogenic activities such
as armed conflict, monocultures, and livestock, are in a state
of succession within mountainous areas. There are no nearby
water sources.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
collected using the following techniques: Free
Search: Four researchers conducted active
manual searches for one hour during both day-
time and nighttime shifts. Searches focused on
decaying logs, tree trunks, leaf litter, and other
microhabitats known to harbor myriapods.
Soil Monolith Extraction: A metal sampling
frame (25 cm × 25 cm × 10 cm) was used to
extract ten soil monoliths per sampling day.
These were randomly selected within the plot.
The extracted soil was spread on a white cloth
and examined under artificial light to locate
specimens. Winkler Traps: Twelve 1 m² leaf
litter samples were randomly collected within
each plot. The samples were processed using
Winkler extractors, placed in Winkler bags, and
left at room temperature for three days before
analysis. Pitfall Traps: A total of 48 pitfall traps
Fig. 2. Locations where myriapods were captured in the department of Bolívar, Colombia. a. Turbaco. b. San Jacinto. c.
Magangué. d. El Carmen.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
(disposable 10 cm diameter plastic cups) were
placed in groups of four, evenly distributed
along the perimeter of each quadrant. Traps
were covered with disposable plates positioned
5 cm above ground level to prevent rainwater
ingress. The traps were filled with propylene
glycol and remained in place for 15 days before
specimen retrieval.
To assess habitat conditions, we recorded
four environmental variables at each sampling
site: Relative humidity (%) and ambient tem-
perature (°C) were measured using a UNI-T
UT333 digital meter. Soil temperature (°C) was
recorded every three hours using a digital soil
thermometer. Soil pH was measured with a
portable pH meter.
Laboratory Processing and Taxonomic
Identification: Collected specimens were fixed
and preserved in 70 % ethanol, labeled, and
transported to the University of Cartagena
laboratories. Taxonomic identification was per-
formed to the lowest possible level, based on
morphological traits. Identification followed
standard taxonomic keys, including those by
Hoffman et al. (2002), Cupul-Magaña (2012),
Chagas-Jr et al. (2014), and Prado-Sepúlveda
et al. (2016). Additionally, expert taxonomists
provided verification.
For species confirmation, collected speci-
mens were compared with reference collections
housed at the Institute of Natural Sciences
(ICN), National University of Colombia. The
studied specimens are currently stored at the
University of Cartagena research laboratories
and the ICN collections.
For ecological analyses, individuals were
categorized into morphospecies, ensuring that
each morphospecies included at least one adult
individual. Sex differentiation was not consid-
ered in abundance estimates.
Data Analysis: To evaluate sampling
effectiveness, we generated species accumula-
tion curves using non-parametric estimators
(Chao1 and ACE) based on abundance data.
These models incorporated: Singletons (spe-
cies represented by a single individual) and
Doubletons (species represented by two indi-
viduals). Species accumulation curves were
constructed using R Studio and EstimateS v. 9.1
software (Colwell et al., 2012; Colwell, 2013).
To compare alpha diversity among sites,
we calculated Hill numbers at three diversity
orders (Moreno et al., 2011): Species richness
(q = 0): Number of observed species. Shannon
diversity (q = 1): The exponent of the Shannon-
Wiener index, weighting species by their rela-
tive abundance. Simpson diversity (q = 2): The
inverse of the Simpson index, emphasizing
dominant species. Confidence intervals were
computed for each diversity order using Spade
software and R Studio (Chao et al., 2016).
To assess differences among sites, we per-
formed an Analysis of Similarities (ANOSIM)
with 9 999 permutations and a significance
threshold of p < 0.05. The null hypothesis
(H₀) stated that there were no differences
among sites.
Additionally, we conducted a classification
and ordination analysis using the Chao-Jaccard
index to visualize grouping patterns among
study sites. This was implemented in PAST v.
3.01 and R Studio (Chao et al., 2016; Hammer
et al., 2001).
To identify morphospecies responsible for
site dissimilarities, we performed a non-metric
multidimensional scaling (NMDS) analysis
using species abundance data.
Finally, to explore the potential influence
of environmental variables (ambient humidity,
ambient temperature, soil temperature, and
soil pH) on morphospecies abundance, we
conducted a Canonical Correspondence Analy-
sis (CCA). Morphotypes with fewer than 10
individuals were excluded from this analysis to
minimize bias.
RESULTS
A total of 1 106 myriapod individuals were
collected during the study, comprising 326
individuals of Chilopoda and 780 individuals
of Diplopoda. The centipedes were distributed
across three orders, six families, and 11 mor-
phospecies, while the millipedes represented
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
five orders, nine families, and 21 morphospe-
cies, indicating greater richness and abundance
within the Diplopoda (Table 2).
Among the Chilopoda, the order Geophi-
lomorpha exhibited the highest abundance,
with 162 individuals, representing 14.6 % of the
total collected specimens. This was followed
closely by Scolopendromorpha, which had 158
individuals (14.3 %). In contrast, Lithobio-
morpha was the least represented, with only
Tabl e 2
Taxonomic composition and abundances of centipedes and millipedes in the evaluated localities’ Tropical Dry Forest
fragments, using different collection techniques.
Class Order Family Morpho-
species
Abundance Techniques Total
Tur SaJ Mag Car
Chilopoda Geophilomorpha Geophilidae Geo1 8 17 8 8 Free Search
Soil Monolith
Pitfall Traps
Winkler Traps
41
Oryidae Ory1 0500Soil Monolith
Pitfall Traps
Winkler Traps
5
Ory2 17 54 10 30 Free Search
Winkler Traps
111
Schendylidae Sch1 0500Free Search
Soil Monolith
Winkler Traps
5
Lithobiomorpha Henicopidae Hen1 1050Free Search 6
Scolopendromorpha Scolopendridae Sco1 0 1 1 0 Free Search
Soil Monolith
2
Sco2 0 0 0 9 Free Search 9
Sco3 6 1 7 16 Free Search
Soil Monolith
Winkler Traps
30
Sco4 5 2 0 5 Free Search 12
Scolopocryptopidae Scp1 15 60 4 25 Free Search
Soil Monolith
Winkler Traps
104
Scp2 1 0 0 0 Free Search 1
Diplopoda Polydesmida Chelodesmidae Che1 22 116 0 8 Free Search
Winkler Traps
146
Che2 3000Free Search
Soil Monolith
3
Che3 23 4 26 2 Free Search
Soil Monolith
Pitfall Traps
55
Che4 3260Free Search
Winkler Traps
11
Cyrtodesmidae Cyr1 0500Soil Monolith
Winkler Traps
5
Cyr2 0200Winkler Traps 2
Fuhrmannodesmidae Fhu1 105 18 0 0 Soil Monolith 123
Fhu2 39 25 0 0 Free Search
Soil Monolith
Pitfall Traps
Winkler Traps
64
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
six specimens, accounting for less than 1 %
of the total abundance. Within the Chilopoda
families, Oryidae was the most abundant, com-
prising 10.5 % of the total individuals, while
Schendylidae was the least abundant, contrib-
uting less than 1 %.
For Diplopoda, the order Polydesmida
was the most dominant, with 473 individu-
als, representing 42.7 % of the total collect-
ed specimens. The second most abundant
order was Spirostreptida, with 184 individu-
als (16.5 %), while Siphonophorida exhibited
the lowest abundance, with only 17 individu-
als (2 %). Regarding family-level composition,
Fuhrmannodesmidae was the most abundant,
comprising 21.9 % of the total individuals, fol-
lowed by Chelodesmidae (19.4 %). The families
Pyrgodesmidae and Cyrtodesmidae were the
least represented, each accounting for less than
1 % of the total Diplopoda individuals.
The species accumulation curves (Fig. 3)
indicated a sampling efficiency of 97 %, as
estimated by ACE and Chao1 non-parametric
estimators. The proportion of Singletons and
Doubletons (species with only one or two
individuals recorded) accounted for approxi-
mately 10 % of the total sample, confirming
the adequacy and representativeness of the
sampling effort. The negative trend in the
Singletons curve suggested a decline in newly
Class Order Family Morpho-
species
Abundance Techniques Total
Tur SaJ Mag Car
Fhu3 0030Free Search
Pitfall Traps
3
Fhu4 0 53 0 0 Free Search
Soil Monolith
Winkler Traps
53
Pyrgodesmidae Pyr1 8 0 0 0 Free Search 8
Polyxenida Lophoproctidae Pol1 5735Free Search
Soil Monolith
Winkler Traps
20
Pol2 0900Free Search
Soil Monolith
9
Siphonophorida Siphonophoridae Sip1 6600Free Search
Soil Monolith
12
Sip2 0100Free Search 1
Sip3 0040Free Search
Soil Monolith
Winkler Traps
4
Spirobolida Rhinocricidae Rhi1 3 0 0 74 Free Search
Soil Monolith
Pitfall Traps
Winkler Traps
77
Spirostreptida Pseudonannolenidae Pse1 1 1 95 12 Free Search
Soil Monolith
Winkler Traps
109
Pse2 0 0 61 0 Free Search
Soil Monolith
61
Spirostreptidae Spt2 7000Free Search 7
Spt3 3310Free Search
Soil Monolith
7
281 397 234 194 - 1 106
* Turbaco (Tur), San Jacinto (SaJ), Magangué (Mag), and El Carmen (Car).
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
detected species, reinforcing the completeness
of the myriapod assemblages sampled within
the Tropical Dry Forest fragments of Bovar.
The diversity profiles (Fig. 4) revealed that
San Jacinto and Turbaco exhibited the highest
effective species richness across all diversity
orders. In terms of species richness (q0), El
Carmen had the lowest number of species,
with 11 recorded morphospecies, followed by
Magangué with 14, Turbaco with 20, and San
Jacinto with 22. When considering order 1
diversity (q1), which accounts for common spe-
cies, San Jacinto had the highest effective species
count, reaching 9.42, making it 1.01 times more
diverse than Turbaco, 1.34 times more diverse
than El Carmen, and 1.59 times more diverse
than Magangué. In terms of species dominance
(q2), which emphasizes dominant species,
Magangué had the lowest diversity value, with
only 3.95 effective species, representing 60.9 %
of San Jacintos diversity, 72.0 % of Turbacos,
and 79.7 % of El Carmens diversity.
A notable variation was observed between
Magangué and El Carmen, where Magangué
exhibited greater species richness, yet El Car-
men had a higher proportion of common
and dominant species. The observed diver-
sity trends closely aligned with expected values,
confirming the robustness of the sampling
effort. However, broader confidence intervals
were noted, particularly for species richness
(q0), indicating potential underrepresentation
of rare species in the dataset.
The ANOSIM analysis detected significant
differences among the study sites (R = 0.8208, p
= 0.0001), suggesting that each locality harbors
distinct myriapod assemblages. The classifica-
tion (Fig. 5A) and NMDS ordination analyses
(Fig. 5B) further identified three distinct clus-
ters. The first group comprised samples from
San Jacinto and Turbaco, which exhibited the
highest similarity in species composition, likely
due to minimal anthropogenic disturbance in
these areas. The second group corresponded to
El Carmen, which exhibited moderate dissimi-
larity from the previous group. The third and
most distinct cluster was formed by Magangué,
which showed the greatest divergence from the
other study sites, suggesting that its myriapod
assemblage was the most dissimilar.
Analysis of environmental factors revealed
that Turbaco and Magangué recorded the high-
est air temperatures, reaching 28.1 and 27.4 °C,
respectively, while San Jacinto and El Carmen
exhibited lower temperature values of 25.6 and
Fig. 3. Accumulation curves of myriapod species richness from Tropical Dry Forest fragments from the department of
Bolívar, Colombia.
Fig. 4. Diversity profiles (Diversity orders q0 for species
richness, q1 for common species, q2 for dominant species)
observed and expected for myriapods from Tropical Dry
Forest. fragments in the department of Bolívar. Confidence
intervals are presented as the projections of each curve on
the graph.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
26.0 °C. Similarly, soil temperature followed
the same trend, with Turbaco and Magangué
reaching 27.9 and 27.6 °C, and San Jacinto and
El Carmen showing lower values. In terms of
relative humidity, Turbaco exhibited the highest
percentage, at 93.6 %, followed by El Carmen
at 92.8 %, San Jacinto at 90.3 %, and Magangué
at 88.0 % (Fig. 6A). Soil pH varied across sites,
with Turbaco and Magangué displaying acidic
soils with pH values of 6.9 and 6.6, respectively,
whereas El Carmen had a neutral pH of 7.0,
and San Jacinto exhibited the highest pH value
of 7.1 (Fig. 6B).
The Canonical Correspondence Analysis
(CCA) (Fig. 7) identified a strong association
between species distribution and environmen-
tal variables. The first CCA axis explained 64.2
% of the total variance, indicating a strong
environmental influence on myriapod com-
position across sites. The species Pse1, Spt2,
Che3, and Che4 were positively associated with
high air and soil temperatures, particularly in
Magangué, which had the highest recorded
temperatures. This pattern suggests that these
species exhibit a preference for warm environ-
ments. In contrast, environmental humidity
Fig. 5. Classification A. and ordination B. of samples of myriapod assemblages carried out in fragments of Tropical Dry
Forests in the department of Bolívar. Note the formation of three groups: Group 1 (San Jacinto and Turbaco), El Carmen,
and Magangué.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
was positively correlated with El Carmen, rein-
forcing the presence of species associated with
more humid conditions.
Additionally, morphospecies Ory2, Geo1,
and Scp1 exhibited a strong association with soil
pH variations, with their abundance increasing
in response to changes in pH across the four
evaluated localities. These findings highlight
the significant role of environmental variables
in shaping the composition and distribution of
myriapod communities within the Tropical Dry
Forest fragments of Bolívar.
DISCUSSION
Class Chilopoda: In this study, we iden-
tified three of the four Chilopoda orders
previously documented in Colombia within
the department of Bolívar. Geophilomor-
pha emerged as the most predominant order,
encompassing all three families reported for the
country (Foddai et al., 2000; Prado-Sepúlveda
et al., 2016). At the family level, 60 % of those
documented for Colombia were represented
(Chagas-Jr et al., 2014), with Scolopendridae
(Scolopendromorpha) being the most diverse.
This contrasts with previous studies, such as
those conducted by Castillo (2017) and Prado-
Sepúlveda et al. (2016), where Scolopocryptopi-
dae exhibited the highest richness.
Previous research identified the genera
Newportia Gervais, 1 847, and Scolopocryp-
tops Newport, 1 844, along with the species
Scolopocryptops ferrugineus Linnaeus, 1 767,
Fig. 6. Variation of environmental parameters concerning the abundance of each location. A. Ambient humidity, ambient
temperature, and soil temperature, vs abundances. B. pH vs abundance.
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
Rhisyda Wood, 1 862, Rhisyda celeris (Humbert
& Saussure, 1869), Scolopendra arthrorhabdoi-
des Ribaut, 1 912, and Scolopendra gigantea
Linnaeus, 1 758 in Bolívar. Additionally, the
genus Cormocephalus Newport, 1 844 (order
Scolopendromorpha) and Notiphilides Lat-
zel, 1 880 (order Geophilomorpha) have been
recorded for the Colombian Caribbean region
(Chagas-Jr et al., 2014).
Class Diplopoda: Five of the seven Dip-
lopoda orders registered for Colombia were
found in the department of Bolívar, with Poly-
desmida and Spirostreptida being the most
representative. This pattern aligns with findings
from studies in Colombia and the Neotropics,
which highlight the dominance of these orders
in various ecosystems, such as the Otún River
basin (Ruiz-Cobo et al., 2010), the Andean
humid forest of Icononzo, and the Eastern Hills
of Bogotá (Castillo-Ávila et al., 2015; Prado
& Herrera, 2013), as well as the high tropical
rainforest of Los Tuxtlas in Mexico (Bueno &
Rojas, 1999).
At the family level, 69.2 % of the Diplopoda
families documented in Colombia were rep-
resented (Castillo-Ávila et al., 2015; Martínez-
Torres & Flórez, 2015; Ruiz-Cobo et al., 2010).
Additionally, the number of recorded families
has increased compared to prior inventories
conducted in Bolívar and presented at scien-
tific conferences (SOCOLEN, 2016; Carrillo-
Pallares et al., 2019). The new records also
expand upon previously unregistered families
in ICN databases and the Universidad de Carta-
gena collections (consulted in December 2020).
However, despite their presence in neighboring
areas, Aphelidesmidae and Paradoxosomatidae
were absent from this study.
Furthermore, For Paradoxosomatidae,
Hoffman (1999), Pérez-Asso & Pérez-Gelabert
(2001), Shelley & Lehtinen (1998), and Suriel
(2012) suggested that species such as Oxidus
gracilis (Koch, 1847) and Orthomorpha coarc-
tata (De Saussure, 1860) were likely introduced
via the greenhouse plant trade from Asia. The
absence of these species in Bolívar may indicate
environmental or ecological barriers limiting
their establishment in the studied fragments.
Fig. 7. Canonical correspondence analysis (ACC) between the environmental variables (ambient humidity, ambient
temperature, soil pH, and soil temperature) and the abundances of the morphospecies of the evaluated localities.
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
Myriapod Diversity in Tropical Dry For-
est Fragments: The species accumulation curve
suggests that the sampling effort successfully
captured a robust representation of myriapods,
supporting the reliability of the dataset for
characterizing Tropical Dry Forest assemblages
in Bolívar. The decreasing trend in Singleton
and Doubleton curves, which eventually inter-
sect, suggests that the probability of discover-
ing additional rare species is low. However,
further sampling in new localities containing
forest fragments would be valuable in assessing
whether diversity patterns remain consistent.
The ANOSIM analysis revealed significant
differences among localities, a result further
supported by classification and ordination anal-
yses (Fig. 5). The similarity observed between
San Jacinto and Turbaco can be attributed to
their low levels of anthropogenic disturbance
and the presence of well-preserved Tropical Dry
Forest remnants. The shared biotic and abiotic
conditions in these locations, including prox-
imity to water sources (Aguilera, 2014; Menco,
2013), may facilitate species coexistence and
interactions, leading to higher local diversity
(González-Montaña et al., 2017; Wardle, 2006).
Conversely, El Carmen and Magangué exhib-
ited greater dissimilarity, likely due to intensive
habitat modification. These areas have been
heavily affected by armed conflict, extensive
livestock farming, monocultures, and semi-
urban expansion (Aguilera, 2014; Daniels-Puel-
lo, 2016). Such disturbances can degrade forest
structure, disrupt ecological interactions, and
lead to biodiversity loss (Rendón-Carmona et
al., 2009). Despite these transformations, some
morphospecies were shared across multiple
sites, suggesting that certain myriapods possess
ecological plasticity, allowing them to adapt to
fragmented forest environments.
The CCA analysis showed that the mor-
phospecies Ory1 and Geo1 (order Geophi-
lomorpha) were associated with soil pH
variations in San Jacinto. Their abundance
increased in soils with higher pH values, likely
reflecting their preference for microhabitats
within surface soil layers, where they construct
galleries. Since soil chemistry can directly
influence species distribution, this result aligns
with previous studies on macroinvertebrate
communities, where chilopod densities were
linked to soil pH, nitrogen, and carbon content
(Díaz et al., 2014). Given these relationships,
further investigations into soil properties would
enhance our understanding of myriapods as
bioindicators of soil health (Rendón et al., 2011;
Ruiz-Cobo et al., 2010).
Interestingly, the morphospecies Fhu1
(order Polydesmida) and Rhy1 (order Spi-
robolida) did not show significant variations
in abundance across environmental gradients.
However, numerous individuals of these spe-
cies were observed engaging in courtship and
copulation behaviors during the study. Similar
patterns have been reported in the Andean
humid forest of Icononzo, Tolima, where Spi-
rostreptidae morphospecies displayed compa-
rable reproductive behaviors (Castillo, 2017).
Conservation Implications: Tropical Dry
Forests are recognized for their high arthropod
richness and serve as valuable ecological mod-
els for assessing biotic and abiotic interactions
(Janzen, 1980; Janzen, 1988). In Colombia,
previous biodiversity assessments have focused
primarily on insect communities, such as ants
(Formicidae) (Chacón et al., 2012; Simanca-
Fontalvo et al., 2013), dung beetles (Scarabaei-
nae) (Rangel-Acosta et al., 2016), and certain
spider groups (Escorcia et al., 2012). This study
represents the first systematic evaluation of
myriapods in these forest fragments in Bolívar,
contributing new taxonomic and ecological
insights for this arthropod group.
The rapid loss of Tropical Dry Forest veg-
etation has direct consequences for myriapod
communities, as many species depend on stable
microhabitats for survival. The observed diver-
sity variations across forest fragments under-
score the importance of conserving remaining
forest patches, which harbor unique species
assemblages. If these remnants were lost, a
significant portion of the regions myriapod
diversity would disappear, further diminishing
ecosystem integrity.
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
Despite ongoing anthropogenic pressures,
the Tropical Dry Forest remnants of Bolívar
continue to support high arthropod diversity,
including myriapods. The results of this study
indicate that species richness and abundance
remain high, likely due to microhabitat het-
erogeneity across different successional stages.
This underscores the ecological significance of
these forests and highlights their priority sta-
tus for conservation efforts. Given the limited
research on Neotropical myriapods, further
assessments are necessary to expand taxonomic
knowledge and refine conservation strategies
for these ecosystems.
Author contribution statement: Martín
Carrillo-Pallares and Wilder Zapata-M contrib-
uted to the conception, design, execution, and
writing of this study. Daniela Martínez-Torres,
Gabriel R. Navas-S, and Adriana Bermúdez-
Tobón led the project design, performed speci-
men collection, identification, data analysis,
and contributed to manuscript writing and final
proofreading. All authors read and approved
the final version of the manuscript and agree to
its submission.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
The authors thank the University of Carta-
gena for funding this research (Resolution No.
00473 de 2022) and the Institute of Natural
Sciences of the National University of Colom-
bia for its institutional support. Special thanks
to Sebastián Galvis and Fabio Cupul for their
help in specimen identification, and to Profes-
sor Eduardo Flórez for his contributions to the
ICN myriapodology collection. We also extend
our gratitude to field assistants Diego Bolaño,
Andrés Florez, José Martínez, Waldo León,
Dairo Rodríguez, David Vergara, Ada Luz San-
doval, and Gloribeth Ríos for their valuable
collaboration. Finally, we thank the local com-
munities of El Carmen Turbaco, San Jacinto,
and Magangue for their support, willingness,
and contributions.
REFERENCES
Adis, J., Minelli, A., de Morais, J. W., Pereira, L. A., Barbie-
ri, F., & Rodrigues, J. M. G. (1996). On abundance
and phenology of Geophilomorpha (Chilopoda) from
Central Amazonian Upland forests. Ecotropica, 2,
165–175.
Álvarez Hincapié, C. F., Maldonado-Ocampo, J., Sanjuan,
T., Álvarez-Dávila, E., Ajiaco, R. E., Buitrago, L.,
González, M. A., Herrera-R, G. A., Ortíz Gallego, R.,
Plata, C., Polanco, A., Rosselli, L., Uribe, U., Alterio,
H., Barrero, E. Y., & Laverde, O. (2021). Estado de
la biodiversidad en Colombia (pp. 100–369). En R.
Gómez-S., M. E. Chaves, W. Ramírez, M. Santama-
ría, G. Andrade, C. Solano, & S. Aranguren (Eds.),
Evaluación nacional de biodiversidad y servicios eco-
sistémicos de Colombia. Instituto de Investigación
de Recursos Biológicos Alexander von Humboldt,
Programa de las Naciones Unidas para el Desarrollo,
Centro Mundial de Monitoreo para la Conservación
del Programa de las Naciones Unidas para el Medio
Ambiente, & Ministerio Federal de Medio Ambiente,
Conservación de la Naturaleza y Seguridad Nuclear
de la República Federal de Alemania.
Alvarado-Solano, D. P., & Otero, J. T. (2015). Distribución
espacial del bosque seco tropical en el Valle del Cauca,
Colombia. Acta Biológica Colombiana, 20, 141–153.
https://doi.org/10.15446/abc.v20n2.46703
Aguilera, M. (2014). La economía de los Montes de María.
Economía & Región, 8(1), 81–141.
Bello, J. C., Báez, M., Gómez, M. F., Orrego, O., & Nägele,
L. (2014). Biodiversidad 2014: Estado y tendencias de
la biodiversidad continental de Colombia. Instituto
Alexander von Humboldt.
Bueno, J., & Rojas, P. (1999). Fauna de milpiés (Arthropoda:
Diplopoda) edáficos de una selva alta de los Tuxtlas,
Ver. México. Acta Zoológica Mexicana, 76, 59–83.
https://doi.org/10.21829/azm.1999.76761700
Bueno-Villegas, J. (2012). Diplópodos: los desconocidos
formadores de suelo. Biodiversitas, 102, 1–5.
Cantú-Salazar, L., Hidalgo-Mihart, M. G., López-González,
C. A., & González-Romero, A. (2005). Diet and food
resource use by pygmy skunk (Spilogale pygmaea) in
the tropical dry forest of Chamela, Mexico. Journal
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
of Zoology, 267(3), 283–289. https://doi.org/10.1017/
S0952836905007417
Cardoso, P., Crespo, L. C., Carvalho, R., Rufino, A. C., &
Henriques, S. S. (2009). Ad-hoc vs. standardized and
optimized arthropod diversity sampling. Diversity,
1(1), 36–51. https://doi.org/10.3390/d1010036
Carl, J. (1914). Die Diplopoden von Columbien nebst
Beiträgen zur Morphologie der Stemmatoiuliden.
Mémoires de la Société neuchâteloise des Sciences natu-
relles, 5, 821–993.
Carrillo-Pallares, M., Martínez-Torres, S. D., & Galvis-
Jiménez, S. (2019). Primer aporte a la diversidad de
miriápodos (Arthropoda: Myriapoda) del departa-
mento de Bolívar, Colombia. En Libro de resúmenes
del V Congreso Colombiano de Zoología (p. 46).
Castillo-Ávila, C. C., Prado, C., & García, A. (2015). First
record of the intake of lichenized fungi by diplopo-
ds (Myriapoda) in Eastern subregion of Sumapaz,
Colombia. Boletín de la Sociedad Entomogica Arago-
nesa, 57, 358–360.
Castillo, C. C. (2017). Caracterización de la miriapodofauna
(Arthropoda: Myriapoda) de bosque húmedo andino
en el municipio de Icononzo-Tolima, Colombia [Tesis
de pregrado]. Universidad Distrital Francisco José de
Caldas, Bogotá.
Chagas-Jr, A., Chaparro, E., Galvis, S., Triana, H. D., Flórez,
E., & Sícoli, J. C. (2014). The centipedes (Arthropo-
da, Myriapoda, Chilopoda) from Colombia: Part I.
Scutigeromorpha and Scolopendromorpha. Zootaxa,
3779(2), 133–156. 10.11646/zootaxa.3779.2.2
Chamberlin, R. V. (1921). Results of the Bryant Walker
expeditions of the University of Michigan to Colom-
bia 1913 and British Guiana 1914. Occasional Papers
of the Museum of Zoology, University of Michigan,
97, 139.
Chacón, P., Osorio-García, A. M., Achury, R., & Bermúdez-
Rivas, C. (2012). Hormigas (Hymenoptera: Formici-
dae) del Bosque seco Tropical (Bs-T) de la cuenca alta
del río Cauca, Colombia. Biota Colombiana, 13(2),
165-181.
Chao, A., Ma, K. H., Hsieh, T. C., & Chiu, C.-H. (2016).
User’s guide for online program SpadeR (Species-rich-
ness Prediction and Diversity Estimation in R). Natio-
nal Tsing Hua University. https://doi.org/10.13140/
RG.2.2.20744.62722
Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S, Mao, C.
X., Chazdon, R. L., & Longino, J. T. (2012). Models
and estimators linking individual-based and sample-
based rarefaction, extrapolation and comparison of
assemblages. Journal of Plant Ecology, 5(1), 3–21.
https://doi.org/10.1093/jpe/rtr044
Colwell, R. K. (2013). EstimateS: Statistical estimation
of species richness and shared species from samples
(versión 9.1) [Software] https://www.robertkcolwell.
org/pages/1407-estimates
Cupul-Magaña, F. G. (2012). Los ciempiés escutigeromor-
fos (Scutigeromorpha), escolopendromorfos (Scolo-
pendromorpha) y geofilomorfos (Geophilomorpha)
de la selva tropical caducifolia de la reserva de Cha-
mela, Jalisco, México. Insecta Mundi, 0208, 1–17.
Cupul-Magaña, F. G. (2014). Los ciempiés escolopendro-
morfos (Chilopoda: Scolopendromorpha) de México:
clave para géneros. Revista Colombiana de Entomolo-
gía, 40(2), 286–291.
Daniels-Puello, A. (2016). La transformación de la estruc-
tura productiva de los Montes de María: de despen-
sa agrícola a distrito minero-energético. Memorias,
Revista digital de historia y arqueología desde el Caribe
colombiano, 12(28), 52–83. https://doi.org/10.14482/
memor.29.8278
Díaz, J. M. (2006). Bosque seco tropical Colombia. Libros de
la Colección Ecológica.
Díaz, M., Rionda, M. H., Duhour, A. E., & Momo, F. R.
(2014). Artrópodos del suelo: Relaciones entre la
composición faunística y la intensificación agrope-
cuaria. Ecología Austral, 24, 327–334. https://doi.
org/10.25260/EA.14.24.3.0.10
Druce, D., Hamer, M., & Slotow, R. (2004). Sampling strate-
gies for millipedes (Diplopoda), centipedes (Chilopo-
da) and scorpions (Scorpionida) in savanna habitats.
African Zoology, 39(2), 293−304. https://doi.org/10.10
80/15627020.2004.11657225
Dryflor, B., Banda-R, K., Delgado-Salinas, A., Dexter, K.
G., Linares-Palomino, R., Oliveira-Filho, A., Prado,
D., Pullan, M., Quintana, C., Riina, R., Rodríguez,
G. M., Weintritt, J., Acevedo-Rodríguez, P., Adarve,
J., Álvarez, E., Aranguren, A., Arteaga, J. C., Aymard,
G., Castaño, A., … Pennington, R. T. (2016). Plant
diversity patterns in neotropical dry forests and their
conservation implications. Science, 353(6306), 1383–
1387. https://doi.org/10.1126/science.aaf5080
Edgecombe, G. D. (2011). Phylogenetic relationships of the
Myriapoda. In A. Minelli (Ed.), The Myriapoda (Vol.
1, pp. 1–20). Brill.
Escorcia, R. Y., Martínez, N. J., & Silva, J. P. (2012). Estudio
de la diversidad de arañas de un Bosque Seco Tropical
(Bs-T) en Sabanalarga, Atlántico, Colombia. Boletín
Científico Centro de Museos Museo de Historia Natural
de la Universidad de Caldas, 16(1), 247–260.
Etter, A. (1993). Diversidad ecosistémica en Colombia
hoy. En S. Cárdenas & H. D. Correa (Eds.), Nuestra
diversidad biológica (pp. 44–61). CEREC/Fundación
Alejandro Ángel Escobar.
Foddai, D., Pereira, L. A., & Minelli, A. (2000). A catalogue
of the geophilomorph centipedes (Chilopoda) from
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
Central and South America including Mexico. Ama-
zoniana, 14(1–2), 59–185.
Instituto de Hidrología, Meteorología y Estudios Ambien-
tales, Instituto Geográfico Agustín Codazzi, Instituto
de Investigación de Recursos Biológicos Alexander
von Humboldt, Instituto de Investigaciones Marinas
y Costeras José Benito Vives De Andréis, Instituto
Amazónico de Investigaciones Científicas Sinchi, &
Instituto de Investigaciones Ambientales del Pacífico
Jhon von Neumann. (2007). Ecosistemas continentales,
costeros y marinos de Colombia. Imprenta Nacional
de Colombia.
Galvis, L. A. (2009). Geografía económica del Caribe Conti-
nental (p. 87). Banco de la República.
Galvis, J. S. (2019). Estimando la diversidad de ciempiés
(Chilopoda, Myriapoda) en un bosque de niebla de los
Andes de Colombia: Aporte al establecimiento de un
protocolo de muestreo [Tesis de pregrado, Universidad
Nacional de Colombia].
García-Herrera, L. V., Ramírez-Fráncel, L. A., & Reinoso-
Flórez, G. (2019). Mamíferos del departamento del
Tolima: distribución y estado de conservación. Revis-
ta UDCA Actualidad & Divulgación Científica, 22(2).
González-Montaña, L. A., Wilches-Álvarez, W., & Rocha-
Caicedo, C. (2017). Diversidad alfa y beta de artró-
podos epigeos (Arthropoda) en tres sectores sobre
la Cordillera Oriental de Colombia. Revista Colom-
biana de Entomología, 43(2), 292–300. https://doi.
org/10.25100/socolen.v43i2.5962
Grainger, A. (1996). An evaluation of the FAO tropical forest
resource assessment, 1990. The Geographical Journal,
162(1), 73–79. https://doi.org/10.2307/3060217
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST:
Paleontological Statistics Software Package for Edu-
cation and Data Analysis. Palaeontologia Electronica,
4(1), 1–9. https://palaeo-electronica.org/2001_1/past/
past.pdf
Hoffman, R. L. (1999). Checklist of millipeds of North and
Middle America. Virginia Museum of Natural History.
Hoffman, R., Golovatch, S. I., Adis, J., & Morrais, J.
W. (2002). Diplopoda. In J. Adis (Ed.), Amazonian
Arachnida and Myriapoda (pp. 505–533). Pensoft
Publishers.
Janzen, D. H. (1980). Specificity of seed-attacking beetles
in a Costa Rican deciduous forest. Journal of Ecology,
68(3), 929–952. https://doi.org/10.2307/2259466
Janzen, D. H. (1988). Management of habitat fragments
in a tropical dry forest: Growth. Annals of the Mis-
souri Botanical Garden, 75(1), 105–116. https://doi.
org/10.2307/2399468
Lewis, J. G. E. (1981). The biology of centipedes (p. 476).
Cambridge University Press.
Malumbres-Olarte, J., Scharff, N., Pape, T., Coddington, J.
A., & Cardoso, P. (2017). Gauging megadiversity with
optimized and standardized sampling protocols: A
case for tropical forest spiders. Ecology and Evolution,
7, 494–506. https://doi.org/10.1002/ece3.2626
Martínez-Torres, D., & Flórez, E. (2015). Clase Diplopoda.
En E. Flórez, C. Romero-Ortíz, & D. S. López (Eds.),
Los artrópodos de la Reserva Natural Río Ñambí (Vol.
15, pp. 263–288). Serie de Guías de Campo del Insti-
tuto de Ciencias Naturales.
Mayaux, P., Holmgren, P., Achard, F., Eva, H., Stibig, H., &
Branthomme, A. (2005). Tropical forest cover chan-
ge in the 1990s and options for future monitoring.
Philosophical Transactions of the Royal Society B, 360,
373–384. https://doi.org/10.1098/rstb.2004.1590
Menco, D. (2013). Tenencia y usos de la tierra rural en
Montes de María-Colombia. Observatorio de la Eco-
nomía Latinoamericana, (185). https://ideas.repec.
org/a/erv/observ/y2013i18520.html
Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May,
I., Blyth, S., Kapos, V., & Gordon, J. E. (2006). A
global overview of the conservation status of tropical
dry forests. Journal of Biogepography, 33(3), 491–505.
https://doi.org/10.1111/j.1365-2699.2005.01424.x
Molinari, J., Gutiérrez, E. E., de Ascencão, A. A., Nassar, J.
M., Arends, A., & Márquez, R. J. (2005). Predation by
giant centipedes, Scolopendra gigantea, on three spe-
cies of bats in a Venezuelan cave. Caribbean Journal of
Science, 41(2), 340–346.
Morales, A. Y. (2019). Estructura y caracterización de la
comunidad de milpiés (Arthropoda: Diplopoda) en tres
fragmentos boscosos urbanos del norte de Armenia,
Quindío-Colombia [Tesis de pregrado, Universidad
del Quindío].
Moreno, C. E., Barragán, F., Pineda, E., & Pavón, N. P.
(2011). Reanálisis de la diversidad alfa: alternati-
vas para interpretar y comparar información sobre
comunidades ecológicas. Revista Mexicana de Biodi-
versidad, 82(4), 1249–1261. https://doi.org/10.22201/
ib.20078706e.2011.4.745
Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry
forest. Annual Review of Ecology, Evolution, and Syste-
matics, 17(1), 67–88. https://doi.org/10.1146/annurev.
es.17.110186.000435
Pennington, R. T., Lewis, G. P., & Ratter, J. A. (2006). An
overview of the plant diversity, biogeography and con-
servation of Neotropical savannas and seasonally dry
forests. In R. T. Pennington, G. P. Lewis, & J. A. Ratter
(Eds.), Neotropical savannas and seasonally dry forests
(pp. 17–45). CRC Press.
Pérez-Asso, A. R., & Pérez-Gelabert, D. E. (2001). Checklist
of the millipeds (Diplopoda) of Hispaniola. Boletín de
la Sociedad Entomogica Aragonesa, 28, 67–80.
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025546, enero-diciembre 2025 (Publicado Set. 18, 2025)
Pizano, C., Cabrera, M., & García, H. (2014). Bosque seco
tropical en Colombia: Generalidades y contexto. En
C. Pizano & H. García (Eds.), El bosque seco tropical
en Colombia (pp. 37–47). Instituto de Investigación de
Recursos Biológicos Alexander von Humboldt.
Prado, C. C., & Herrera, C. A. (2013). Contribución al estu-
dio de los miriápodos en la Quebrada La Vieja, Bosques
Orientales, Bogotá [Tesis de pregrado, Universidad
Distrital Francisco José de Caldas].
Prado-Sepúlveda, C., Triana, H. D., & Galvis, S. (2016). Los
ciempiés (Myriapoda: Chilopoda) de bosque andino
en el municipio de Icononzo (Colombia, Tolima) y
clave para las familias presentes en Colombia. Boletín
de la Sociedad Entomológica Aragonesa, 58, 188–196.
Ramírez, V. A., Aranda, L., & Rico, V. (2018). La resiliencia
del bosque seco tropical: un seguro de vida para su
conservación. Biodiversitas, 137, 13–16.
Rangel-Acosta, J. L., Blanco-Rodríguez, O. R., & Mar-
tínez-Hernández, N. J. (2016). Escarabajos copro-
necrófagos (Scarabaeidae: Scarabaeinae) en diferentes
usos del suelo en la Reserva Campesina La Montaña
(RCM) en el departamento del Atlántico, Colombia.
Boletín Científico Centro de Museos Museo de Historia
Natural de la Universidad de Caldas, 20(1), 78–97.
https://doi.org/10.17151/bccm.2016.20.1.7
Rendón-Carmona, H., Martínez-Yrízar, A., Balvanera, P., &
Pérez-Salicrup, D. (2009). Selective cutting of woody
species in a Mexican tropical dry forest: Incompa-
tibility between use and conservation. Forest Ecolo-
gy and Management, 257(2), 567–579. https://doi.
org/10.1016/j.foreco.2008.09.031
Rendón, S., Artunduaga, F., Ramírez, R., Quiroz, J. A., &
Leiva, E. I. (2011). Los macroinvertebrados como
indicadores de la calidad del suelo en cultivos de
mora, pasto y aguacate. Revista Facultad Nacional de
Agronomía Medellín, 64(1), 5793–5802.
Rodríguez, G. M., Banda-R, K., Reyes, S. P., & Estupiñan, A.
C. (2012). Lista comentada de las plantas vasculares
de bosques secos prioritarios para la conservación
en los departamentos de Atlántico y Bolívar (Caribe
colombiano). Biota Colombiana, 13(2), 7–39.
Ruiz-Cobo, D. H., Bueno-Villegas, J., & Feijoo-Martínez,
A. (2010). Uso de la tierra y diversidades alfa, beta
y gamma de diplópodos en la cuenca del río Otún,
Colombia. Universitas Scientiarum, 15(1), 59–67.
http://dx.doi.org/10.11144/javeriana.SC15-1.luaa
Shelley, R. M. (2002). A revised, annotated, family-level
classification of the Diplopoda. Arthropoda Selecta,
11(3), 187–207.
Shelley, R. M., & Lehtinen, P. T. (1998). Introduced milli-
peds of the family Paradoxosomatidae on Pacific
Islands (Diplopoda: Polydesmida). Arthropoda Selecta,
7(2), 81−94.
Simanca-Fontalvo, R., Fajardo-Herrera, R. J., & Martínez,
N. J. (2013). Fauna de hormigas (Hymenoptera: For-
micidae) en dos remanentes de Bosque Seco Tropical
(Bs-T) en Corrales de San Luis, Atlántico, Colombia.
Boletín del Museo de Entomología de la Universidad
del Valle, 14(1), 1–14.
Sociedad Colombiana de Entomología. (2016). Libro de
resúmenes 43° Congreso de la Sociedad Colombiana de
Entomología (287 p.). SOCOLEN.
Suriel, C. (2012). Presencia de Oxidus gracilis, Chon-
dromorpha xanthotricha y Asiomorpha coarctata
(Diplopoda: Paradoxosomatidae) en La Hispaniola.
Solenodon, 10, 23–31.
Wardle, D. A. (2006). The influence of biotic interac-
tions on soil biodiversity. Ecology Letters, 9(7).
870–886. https://onlinelibrary.wiley.com/doi/
epdf/10.1111/j.1461-0248.2006.00931.x
Zapata, W., Vergara-Moreno, D., Carrillo-Pallares, M.,
Segovia-Paccini, A., Navas-S., G. R., & Malumbres-
Olarte, J. (2023). Seasonal diversity of spider assem-
blages (Araneae: Arachnida) in the “Guillermo
Piñeres” Botanical Garden, Turbaco–Colombia. Neo-
tropical Biodiversity, 9(1), 17–28. https://doi.org/10.10
80/23766808.2022.2157948