1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Insights from DNA barcoding endangered endemic Caridina shrimps
(Decapoda: Atyidae) in Lindu Lake, Indonesia
Novalina Serdiati1*; https://orcid.org/0000-0002-1905-555X
Muhammad Safir2; https://orcid.org/0000-0001-7972-6178
Akbar Marzuki Tahya2; https://orcid.org/0000-0001-8313-209X
Muh Saleh Nurdin1; https://orcid.org/0000-0003-0875-7211
Nur Hasanah1; https://orcid.org/0000-0002-3642-9517
Abigail Mary Moore3; https://orcid.org/0000-0002-4122-3740
1. Aquatic Resources Management Study Program, Faculty of Animal Husbandry and Fisheries, Tadulako University,
Palu 94118, Central Sulawesi, Indonesia; novalinaserdiati@untad.ac.id (*Correspondence), msalehnurdin@gmail.com,
nurhasanah.nura@gmail.com
2. Aquaculture Study Program, Faculty of Animal Husbandry and Fisheries, Tadulako University, Palu 94118, Central
Sulawesi, Indonesia; safirmuhammad@gmail.com, amtahya@gmail.com
3. Graduate School, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia; abigail@pasca.unhas.ac.id
Received 08-X-2024. Corrected 17-II-2025. Accepted 02-IX-2025.
ABSTRACT
Introduction: Humanity faces a multidimensional crisis with severe threats to often poorly known freshwater
biodiversity. Molecular tools, like DNA barcoding, can aid in biodiversity exploration, monitoring, and conser-
vation. Sulawesian Caridina shrimps are both ecologically significant and endangered yet remain understudied.
Objective: To contribute well-documented DNA barcode (COX1 mtDNA) sequences for three Caridina species
endemic to Lindu Lake.
Methods: We collected 224 Caridina shrimps from three sites around Lindu Lake in August (n = 73), and
October 2023 (n = 117), and July 2024 (n = 34). We measured and analyzed morphological traits as dimension-
less ratios of total length. We extracted DNA from six specimens (two per species) and COX1 mtDNA barcodes
obtained through PCR (primers jgLCO and jgHCO) and Sanger sequencing. We obtained homologous sequences
from GenBank (BLAST routine) and BOLD repositories for phylogenetic analyses. All molecular analyses were
performed in MEGA 11.
Results: One species was identified at each site. Morphological traits differ between species. Three haplotypes
with low divergence: one in Caridina kaili, one in Caridina linduensis, and one in both Caridina dali and C.
linduensis. Homologous sequences in GenBank and BOLD included very few Sulawesi endemic species; these
formed the closest sister clades to Lindu Lake Caridina.
Conclusions: We submitted to the GenBank repository the first reference DNA barcodes for each of the Lindu
Lake Caridina species. The poor resolution of COX1 mtDNA for Lindu Lake Caridina may be due to recent evo-
lutionary processes. Our study highlights the ongoing need for barcoding freshwater invertebrates, particularly
atyid shrimps from Sulawesi, in the Wallacea bioregion.
Keywords: atyid shrimps; Crustacea; cryptic species; lacustrine; mitochondrial DNA; Wallacea.
https://doi.org/10.15517/pqf2j611
GENETICS
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
INTRODUCTION
Humanity is facing a triple crisis with
synergistic challenges in biodiversity loss, cli-
mate change, and threats to human wellbeing
(Baldwin-Cantello et al., 2023). The current
rate of biodiversity loss has been described as
a 6th mass extinction (Ceballos et al., 2015).
Freshwater ecosystems cover less than 1 %
of the earths surface, but account for over
6 % of described species, and present com-
plex management challenges (Dudgeon et al.,
2006). Freshwater biodiversity is increasingly
at risk due to direct and indirect anthropogenic
threats, calling for urgent action from local to
global scales to “bend the curve of freshwater
biodiversity loss” (Albert et al., 2021; Reid et
al., 2019; Tickner et al., 2020). Data are cru-
cial in addressing this crisis and stemming or
reversing biodiversity losses, in particular to
support planning and action at appropriate
spatial and temporal scales; however, for many
aquatic taxa, appropriate data are often still
lacking or incomplete, especially for inverte-
brates (Ahmed et al., 2022; Dudgeon et al.,
2006; Reid et al., 2019; Strayer & Dudgeon,
2010; Tickner et al., 2020).
Sulawesi, formerly known as the Celebes, is
the largest island in Wallacea, formed through
the meeting of the Eurasian, Pacific and Austral-
asian geotectonic plates, and a hotspot for ter-
restrial and aquatic endemism (Michaux, 2010;
Stelbrink et al., 2012; Struebig et al., 2022). The
unique Sulawesian freshwater fauna includes
radiations of closely related species in both ver-
tebrate and invertebrate taxa (Mokodongan &
Yamahira, 2015; Schubart et al., 2008; Stelbrink
et al., 2014; Vaillant et al., 2013; von Rintelen,
Bouchet & Glaubrecht, 2007), including atyid
shrimps of the genus Caridina (von Rintelen,
von Rintelen, Meixner et al., 2007; von Rintelen
& Cai, 2009). The genus Caridina comprises
at least 763 species (De Grave et al., 2015)
with a complex biogeography (de Mazancourt
RESUMEN
Información obtenida del código de barras de ADN en camarones Caridina (Decapoda: Atyidae)
endémicos en peligro de extinción en el Lago Lindu, Indonesia
Introducción: La humanidad enfrenta una crisis multidimensional con graves amenazas a la biodiversidad de
agua dulce, a menudo poco conocida. Las herramientas moleculares, como el código de barras de ADN, pueden
ayudar en la exploración, monitoreo y conservación de la biodiversidad. Los camarones Caridina de Sulawesi son
ecológicamente significativos y están en peligro, pero siguen siendo poco estudiados.
Objetivo: Contribuir con secuencias bien documentadas de código de barras de ADN (COX1 mtDNA) para tres
especies de Caridina endémicas del Lago Lindu.
Métodos: Recolectamos 224 camarones Caridina de tres sitios alrededor del Lago Lindu en agosto (n = 73),
octubre 2023 (n = 117) y en julio 2024 (n = 34). Medimos y analizamos rasgos morfológicos como proporciones
adimensionales de la longitud total. Extrajimos ADN de seis especímenes (dos por especie) y obtuvimos códigos
de barras COX1 mtDNA mediante PCR (primers jgLCO y jgHCO) y secuenciación Sanger. Obtuvimos secuen-
cias homólogas de GenBank (rutina BLAST) y repositorios BOLD para análisis filogenéticos. Todos los análisis
moleculares se realizaron en MEGA 11.
Resultados: Identificamos una especie en cada sitio. Los rasgos morfológicos diferían entre las especies. Tres
haplotipos con baja divergencia: uno en C. kaili, uno en C. linduensis, y uno en C. dali y C. linduensis. Las secuen-
cias homólogas en GenBank y BOLD incluyeron muy pocas especies endémicas de Sulawesi; estas formaron los
clados hermanos más cercanos a Caridina del Lago Lindu.
Conclusiones: Enviamos al repositorio GenBank los primeros códigos de barras de ADN de referencia para cada
una de las especies de Caridina del Lago Lindu. La baja resolución del COX1 mtDNA para Caridina del Lago
Lindu puede deberse a procesos evolutivos recientes. Nuestro estudio destaca la necesidad de codificar genética-
mente los invertebrados de agua dulce, en particular los camarones átidos de Sulawesi, en la región biogeográfica
de Wallacea.
Palabras clave: camarones átidos; crustáceos; especies crípticas; lacustres; ADN mitocondrial; Wallacea.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
et al., 2019). By 2021 at least 39 Sulawesian
Caridina species were known (Dwiyanto et al.,
2021), with 26 species endemic to ancient lakes
(Poso and the Malili complex), including their
tributary rivers (Klotz et al., 2021; von Rintelen,
2011; von Rintelen & Cai, 2009). Although
data on their biology and ecology are limited,
these freshwater shrimps likely play important
ecological roles in their typically oligotrophic
habitats (von Rintelen & Cai, 2009).
Molecular (DNA-based) tools are increas-
ingly used for biodiversity exploration and
monitoring, supporting conservation planning
and action (Deiner et al., 2017; Gostel & Kress,
2022; Ruppert et al., 2019), including in fresh-
water ecosystems (Reid et al., 2019; Takahashi
et al., 2023). The use of molecular markers
(short nucleotide sequences) called DNA bar-
codes theoretically enable the identification of
organisms based on small samples taken from
the target organism (Gostel & Kress, 2022).
One widely used DNA barcode is a fragment of
the cytochrome oxidase I mitochondrial DNA
(COI or COX1 mtDNA) (Hebert & Gregory,
2005). Environmental DNA (eDNA) meth-
ods can detect the recent presence of organ-
isms from samples (e.g. water, soil, air) of the
environment where they live and have shed
their DNA (Ruppert et al., 2019). Molecular
methods can, inter alia, help detect cryptic
diversity within an accepted taxon (Keith et
al., 2020; Keith & Mennesson, 2020; Siriwut et
al., 2021). The results can help determine com-
munity composition (Hernawati et al., 2020),
change known species distributions (Moore
et al., 2019) and require revisions in their
conservation status (Ndobe et al., 2023). How-
ever, the accuracy and usefulness of barcoding
and metabarcoding in key biodiversity-related
tasks such as the identification and monitor-
ing of specific taxa or biotic communities, are
heavily dependent on the taxonomic coverage
and quality of data deposited in nucleotide
sequence databases (Hestetun et al., 2020) such
as the NCBI GenBank (Sayers et al., 2022) and
Barcode of Life Database (Bold) (Ratnasing-
ham & Hebert, 2007).
Research on Sulawesian Caridina shrimps
has contributed to the study of evolution, in
particular speciation and species radiation (de
Mazancourt et al., 2019; von Rintelen et al.,
2010; von Rintelen & Cai, 2009). Their attrac-
tive appearance and their behavior have also
made them popular in the global aquarium
trade (Calado et al., 2003; Herjayanto, Ndobe,
et al., 2019; Kiruba-Sankar et al., 2018). In
addition to fishing pressure for the ornamental
trade, many are threatened habitat degradation
or loss (De Grave et al., 2015; Klotz et al., 2021),
and at least one Caridina dennerli (von Rintelen
& Cai, 2009) may be extinct (von Rintelen,
2018). Despite their popularity and awareness
of their vulnerability, Sulawesian atyid shrimps
remain understudied. Specific gaps include data
on species distributions, incomplete exploration
of species complexes, and biodiversity explora-
tion, as evidenced by the ongoing discovery
and description of new species (Annawaty et
al., 2022; Klotz et al., 2021; Klotz et al., 2023).
Given the number of species and the complex-
ity of identification based on external morphol-
ogy alone, the use of molecular methods has the
potential to support the study of atyid shrimp
diversity and distribution patterns. However,
many Caridina species (including most Sulawe-
sian Caridina) lack reference sequences in the
NCBI and BOLD databases.
Lindu Lake has a surface area of around
34.5 km2, a maximum depth of around 72.6 m,
and lies within an enclave in the Lore Lindu
National Park in Central Sulawesi, Indonesia
(Annawaty & Wowor, 2015). The lake and
its watershed are within the UNESCO-recog-
nized Lore Lindu Biosphere Reserve (Coordi-
nation and Communication Management of
Lore Lindu Biosphere Reserve, 2020). Three
Caridina species have been described from the
lake (Annawaty & Wowor, 2015). Of these, C.
linduensis (Roux, 1904) has been assessed as
Critically Endangered (CR) under IUCN Red
List criteria (De Grave & Wowor, 2020), while
C. dali (Annawaty & Wowor, 2015) and C. kaili
(Annawaty & Wowor, 2015) have not been
assessed. The purpose of this study was to con-
tribute well-documented DNA barcode (COX1
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
mtDNA) sequences obtained from Caridina
spp. specimens collected from Lindu Lake.
MATERIAL AND METHODS
Material-shrimp specimens: The material
examined in this study comprised 224 atyid
shrimps of the genus Caridina collected around
Lindu Lake in Central Sulawesi, Indonesia
(01°16’-01°23’ S, 120°1-120°11’ E) on 21 August
(n = 73) and 14 October 2023 (n = 117), and on
6 July 2024 (n = 34). The specimens were cap-
tured using dip nets collected from three sites
(Fig. 1) and euthanized using clove oil at a con-
centration of 200 mg/L until fully unresponsive
(Coyle et al., 2007).
Material-DNA: In each year (2023 and
2024), body tissue from a specimen of each
of the three morphospecies collected was pre-
served in a 1.5 ml Eppendorf tube filled with 96
% absolute ethanol for genetic analysis. These
six samples were sent to the Bionesia Laborato-
ry in Denpasar, Indonesia for further analysis.
Morphological analysis: Each specimen
was measured (digital calipers, precision 0.1
mm), weighed (digital scales, precision 0.01
g) and identified based on morphological
characters with reference to species descrip-
tions (Annawaty & Wowor, 2015; Roux, 1904)
and other information on the Lindu shrimps
(Annawaty et al., 2016).
Fig. 1. Samples of Caridina shrimps from Lindu Lake and their collection sites. A. C. kaili (ID: UNTAD_2024_CS01). B. C.
dali (ID: UNTAD_2024_CS02). C. C. linduensis (ID: UNTAD_2024_CS03).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Morphometric traits measured in mm
(digital calipers, precision 0.1 mm) were: total
length (TL), head length (HL), rostrum length
(RL), body length (BL) and telson length (TS).
Dimensionless ratios to total length (TL) were
calculated (%) and given as range and mean ±
standard deviation (SD). Statistical tests were
conducted in Microsoft Excel 365 at the 95
% confidence level. Mean values of each trait
were compared through analysis of variance
(ANOVA) followed by post-hoc Student’s t-test
if significant differences in mean values were
detected (p < 0.05).
DNA Barcoding and Phylogenetic Analy-
sis: Genomic DNA was extracted from 10
g sub-samples of muscle tissue taken from
each of the preserved (96 % absolute ethanol)
shrimp samples using DNeasy Tissue Kits (Qia-
gen) following the manufacturer’s protocol. The
extracted DNA samples were stored in a freezer
for further analysis (-20 °C).
A fragment of the cytochrome oxidase I
(COX1) mitochondrial DNA (mtDNA) gene
was amplified through polymerase chain reac-
tion (PCR) using the forward primer jgLCO
(5’-TIT CIA AYC AYA ARG AYA TTG G-3’)
and reverse primer jgHCO (5’-TAI ACY TCI
GGR TGI CCR AAR AAY CA-3’) (Geller et al.,
2013) on an Applied Biosystems™ 2720 Ther-
mal Cycler machine. Each PCR reaction tube
contained 25 µl comprising: 2 µl extracted DNA
template; 1.25 µl of each primer (10 mM), 9 µl of
ddH2O, and 12.5 µl Ready Mix. The PCR pro-
file comprised initial denaturation at 94 °C for
3 min; 38 cycles of denaturation at 94 °C for 30
s, annealing at 50°C for 30 s, extension at 72 °C
for 60 s; and final extension at 72 °C for 2 min.
PCR product presence was verified through
electrophoresis on 1 % agarose gel stained with
Nucleic Acid Gel Stain (GelRed®). Verified PCR
product was sent for Sanger sequencing at PT.
Genetika Science, Jakarta, Indonesia.
The Sanger sequencing trace files (.abi
files) were imported into MEGA 11 (Tamura
et al., 2021). The forward and reverse sequenc-
es produced from each sample were cleaned,
aligned, trimmed, and combined to produce
a consensus sequence (DNA barcode). The
six barcodes obtained were submitted to the
NCBI GenBank nucleotide repository (submis-
sion SUB14743114) and allocated GenBank
accession numbers PQ361195-PQ361200. The
genetic distance between the DNA barcodes
(Kimura, 1980), their protein and nucleotide
composition were calculated in MEGA 11.
The on-line NCBI BLAST routine (Altschul
et al., 1990) was used with the Organism option
set to Caridina (taxid: 96236). All 65 resulting
homologous sequences obtained were down-
loaded using the FASTA (aligned sequences)
option. COX1 DNA barcodes were downloaded
from the Barcode of Life Database (BOLD).
The BOLD Identification routine did not find
any records similar to the Lindu Lake Caridina
barcodes. The BOLD database had 118 pub-
licly available clusters or Barcode Index Num-
bers (BINS) containing 2 554 records from 20
countries. Of these, 2 452 had species names,
representing 197 species. BOLD BINS typically
represent low-level taxa (species or sub-species/
populations within a species). BINS with Indo-
nesia as a country of origin were downloaded
as FASTA files.
Phylogenetic analysis was conducted in
MEGA 11 (Tamura et al., 2021). Sequences
were aligned using the ClustalW (Thompson
et al., 1994) option. Phylogenetic trees repre-
senting inferred evolutionary history within
the genus Caridina were constructed using
the Neighbor-Join (NJ) algorithm (Saitou &
Nei, 1987) with 1 000 bootstrap test replicates
(Felsenstein, 1985). Evolutionary distances (as
number of base substitutions per site) were
computed using the Kimura 2-parameter meth-
od (Kimura, 1980). The first analysis included
65 GenBank accession nucleotide sequences
from 16 nominal species and covered a total of
673 positions. The second analysis included 141
selected BOLD accessions from 19 BINS (SMT
1) representing 12 nominal species and one
BIN labelled Caridina sp. and covered a total of
654 nucleotide positions. Representative trees
were exported as a Newick files and edited
using the interactive tree of life (iTOL) version
5 (Letunic & Bork, 2021).
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
RESULTS
Morphological traits: At each site, only
one species was identified (Fig. 1). The main
diagnostic character for distinguishing the
three Lindu Lake Caridina species is the rela-
tive length of the rostrum (Annawaty & Wowor,
2015). This is longest in C. linduensis, extending
well beyond the basal antennular peduncle seg-
ment; in C. dali, the rostrum barely overreaches
this segment, while in C. kaili the rostrum
barely reaches or falls short of the end of this
segment. A further diagnostic trait for C. kaili is
a stouter second pereiopod compared to C. dali,
while C. kaili also has the largest eggs, visible in
the ovigerous female specimen in Fig. 1A.
The typology of the collection sites cor-
responded with previous studies on the three
species (Annawaty et al., 2016; Annawaty &
Wowor, 2015), which describe C. kaili as an
obligate stream species and C. linduensis as a
truly lacustrine shrimp, while C. dali was found
in both stream and lacustrine habitat. They
also note that they never found two species at
the same site. In this study, all specimens from
the tributary river site (Fig. 1A) were identified
as C. kaili, consonant with its designation as an
obligate stream species. All specimens from the
first site along the shore of the lake were iden-
tified as C. dali (Fig. 1B), and those from the
second lakeshore site as C. linduensis (Fig. 1C).
Morphometric data on the specimens
caught show high variability between individu-
als within each species and considerable over-
lap between species (Table 1). Total length (TL)
of the 224 specimens collected ranged from 5.1
to 21.8 mm, with a weight range of 0.01-0.12 g.
The data in Table 1 indicates considerable
morphological plasticity within each of the
Lindu Lake Caridina species; C. kaili, consid-
ered an obligate stream-dwelling rather than
lacustrine shrimp, had the lowest intra-species
variation in each character. Each species dif-
fered significantly from the other two in at least
one character. The mean value of the diagnostic
character rostrum length (RL) relative to total
length (RL/TL) followed the order given in
the species descriptions (Annawaty & Wowor,
2015) for the length relative to the basal anten-
nular peduncle segment. However, there was
considerable overlap and intra-species variation
in this ratio (Fig. 2).
Table 1
Morphometric characters of Caridina spp. (n = 224) from Lindu Lake*.
N.° Species nTL (mm) HL/TL (%) RL/TL (%) BL/TL (%) TS/TL (%) W (g)
Range Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Range
1C. kaili 92 12.0-21.8 15.9 ± 1.9 26.02 ± 5.30a10.46 ± 2.22a60.22 ± 5.35a13.26 ± 3.12a0.01-0.12
2C. dali 49 5.1-20.7 11.66 ± 3.72 29.49 ± 8.06b10.78 ± 3.49a55.25 ± 10.90b14.22 ± 3.52ab 0.01-0.10
3C. linduensis 83 8.9-20.0 13.5 ± 2.5 29.91 ± 6.28b12.50 ± 4.22b61.55 ± 11.37a14.81 ± 2.90b0.01-0.10
* For each character (column), mean values with the same superscript letter do not differ significantly from each other (95 %
confidence level).
Fig. 2. Boxplot of the ratio rostrum length to total length
(RL/TL, in %) for Caridina spp. (n = 224) from Lindu Lake.
DNA barcodes: The DNA barcode
sequences obtained from Lindu Lake Caridina
shrimps belonging to three morphotypes were
673 bp long. These sequences were submitted
to the NCBI GenBank database (Submission
SUB14743114, accession numbers PQ361195-
PQ361200). The GC-AT ratio was 69 %
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
(59.138:40.862). The genetic distances between
sequences ranged from zero (0.0) to nearly
0.003 (Table 2).
There were three sites with single nucleo-
tide polymorphisms and 3 alleles within this
data set (Table 3). The nucleotide and protein
composition were similar for all six sequences
from the three putative species (Table 4).
The mutations were all silent, meaning that
the protein translation was the same for all
six barcodes.
LAST and phylogenetic reconstruction:
The BLAST-n routine output included very few
Table 2
Genetic distance (base substitutions per site) between COX1 mtDNA barcodes of Caridina shrimp from Lindu Lake.
N.° Sample ID GenBank
Accession
Sequence number
1 2 3 4 5
1 UNTAD_2023_CS01 PQ361195
2 UNTAD_2024_CS01 PQ361196 0.0000000
3 UNTAD_2023_CS02 PQ361197 0.0044726 0.0044726
4 UNTAD_2024_CS02 PQ361199 0.0029806 0.0029806 0.0014875
5 UNTAD_2023_CS03 PQ361198 0.0029806 0.0029806 0.0014875 0.0000000
6 UNTAD_2024_CS03 PQ361200 0.0029806 0.0029806 0.0014875 0.0000000 0.0000000
Table 3
Single nucleotide polymorphisms (SNPs) and alleles in 673 bp COX1 mtDNA barcodes of Caridina shrimp from Lindu Lake.
N.° Sample ID Sequence
Lab ID Morphospecies Nucleotide site number Allele
21 245 270
1 UNTAD_2023_CS01 BIOSUB280.001 Caridina kaili A G T 1
2 UNTAD_2023_CS02 BIOSUB280.002 C. dali G A A 2
3 UNTAD_2023_CS03 BIOSUB280.003 C. linduensis G A T 3
4 UNTAD_2024_CS01 BIOSUB237.004 C. kaili A G T 1
5 UNTAD_2024_CS02 BIOSUB237.003 C. dali G A T 3
6 UNTAD_2024_CS03 BIOSUB237.005 C. linduensis G A T 3
Table 4
Nucleotide and translated protein composition of Lindu Lake Caridina shrimp COX1 mtDNA barcodes.
No GenBank Accession Number Base composition (% of 673 positions)
T C A G
1PQ361195-PQ361197, PQ361199, PQ361200 34.324 21.545 24.814 19.316
3 PQ361198 34.175 21.545 24.963 19.316
Mean 34.299 21.545 24.839 19.316
Translated proteins (identical for all six sequences)
Protein %Protein %Protein %
Alanine 8.929 Isoleucine 6.250 Arginine 2.232
Cysteine 0.000 Lysine 0.000 Serine 7.589
Aspartic acid 3.125 Leucine 15.625 Threonine 5.357
Glutamic acid 0.893 Methionine 7.143 Valine 6.696
Phenylalanine 7.143 Asparagine 4.018 Tryptophan 2.679
Glycine 11.161 Proline 5.804 Tyrosine 1.786
Histidine 2.679 Glutamine 0.893 Total: 224 codons
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
homologous Caridina sequences. All sequences
with a high cover % (90-100 %) had a low iden-
tity (% ID range 77.81-86.03 %), well below
thresholds for species identity. Of these, the
closest match in the GenBank database (88.63
% ID) was deposited as Caridina boehmei
(accession OR765944) obtained from a domes-
ticated population of this Indonesian native
shrimp (Romadhona et al., 2024). Conversely,
all overlapping sequences with the highest high
ID scores (> 95 %) had low cover % (29 %). All
phylogenetic trees produced using this data set
had similar topography. The Lindu Lake bar-
code sequences were consistently nested in the
genus Caridina within a clade containing other
species from Sulawesi, while the next nearest
neighbors were mostly species known to occur
in Indonesia (Fig. 3).
The BOLD BINs with geolocation data
in Indonesia comprised many more Caridina
COX1 sequences compared to GenBank. Most
of these had a high cover % with the Lindu
Lake Caridina DNA barcode sequences. Most
of the species in the Indonesian BINs have geo-
located reports from Sulawesi in the GBIF data-
base (Global Biodiversity Information Facility,
2024); however, there were no BOLD Bins rep-
resenting named Sulawesi endemic species. The
neighbor-join phylogenetic tree shows three
major clades, one comprising the Lindu Lake
sequences (Fig. 4).
DISCUSSION
The sequences obtained are likely the first
reference barcode sequences for the Lindu
Fig. 3. Phylogenetic tree (Neighbor-Join algorithm, 1 000 bootstrap replicates) inferred from six Lindu Lake Caridina DNA
barcodes (COI mtDNA) and 65 homologous NCBI GenBank accessions (673 nucleotide positions). Branch color indicates
nominal species distribution: Red = Lindu Lake (this study); Blue = Sulawesi endemic; Green = Indonesian distribution;
Black = not reported from Indonesia.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Lake Caridina species Caridina linduensis, C.
dali and C. kaili, and are the first to be made
publicly available. The identity with the closest
homologous atyid shrimp barcodes was well
below 90 %, whereas reported inter-specific
variation (p-distance in %) in the COI sequenc-
es ranged from 0.8 to 4.9 with 7.7 % diver-
gence over the entire Poso watershed clade for
Caridina shrimps in Poso Lake (von Rintelen,
von Rintelen, & Glaubrecht, 2007) and from
0.5 to 9.7 with 11.5 % divergence over the entire
Malili lake complex clade (von Rintelen, 2011).
Fig. 2 and Fig. 3 show multiple well-
separated clades for several nominal species, in
particular C. brachydactyla, C. cantonensis, C.
gracilipes, C. indistincta, C. papuana, C. sulawesi
and C. tenuirostris. This indicates a need for
further research integrating classic morphom-
eristic and molecular approaches to clarify the
taxonomy and distribution of species within the
genus Caridina. Conversely, in both trees the
COX1 sequences for the three putative species
present in Lindu Lake are grouped in a clade
with shorter internal (sub-clade) branches than
most single species clades. Furthermore, one
sub-clade contains identical sequences from
two morphospecies (C. dali and C. linduensis).
We conclude that the COX1 mtDNA frag-
ment used as a DNA barcode in this study could
not be used to reliably distinguish between the
three putative Caridina species present in Lindu
Lake. However, this marker can distinguish
Fig. 4. Phylogenetic tree (Neighbor-Join algorithm, 1 000 bootstrap replicates) inferred from six Lindu Lake Caridina
DNA barcodes (COX1 mtDNA) and 141 homologous COX1 sequences from 19 Indonesian BOLD BINS (654 nucleotide
positions). Different highlight colors represent the terminal sub-clades of the Lindu Lake clade (red branch).
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Lindu Lake Caridina from all other congeners
for which homologous DNA barcodes are cur-
rently available in the BOLD and GenBank
sequence repositories, even with overlaps as
low as 29 % in terms of the gene region covered.
The usefulness of the COI/COX1 mtDNA
barcode (and mitochondrial DNA more gener-
ally) for successful species delineation is limited
in cases where recent speciation events have
occurred (Raupach & Radulovici, 2015). The
low interspecific genetic distances between the
three putative species in this study may be
due to recent evolutionary radiation. However,
incongruence between taxonomic units based
on mtDNA genotype and phenotype can result
from high phenotypic plasticity (Fritz et al.,
2007; González-Castellano et al., 2020), and
patterns of COX1 variability can vary consider-
ably between decapod taxa (Matzen-da Silva et
al., 2011). These results call for further research
with a range of molecular markers to deter-
mine whether the Lindu Lake morphotypes do
indeed correspond to species at a genetic level
and, if so, identify a suitable molecular marker
(alternative “barcode”) capable of reliably dis-
tinguishing them from one another. Ambiguity
in DNA barcodes for crustacean identification
are also reported for the genus Macrobrachium
(Rosyida et al., 2023). These cases highlight the
need to combine molecular and classical taxo-
nomic methods rather than relying fully on one
or the other, in particular to delineate taxa and
identify individuals.
With respect to other Sulawesi endemic
Caridina, homologous sequences were only
accessible for four out of around 40 species.
Therefore, no conclusions can be drawn regard-
ing the power of the COX1 mtDNA molecular
marker used in distinguishing the majority of
Sulawesian Caridina species from the Lindu
Lake Caridina or from each other. This under-
lines the ongoing need for DNA barcoding of
freshwater and diadromous invertebrates, as
well as fish (Hubert et al., 2015).
Threats to native Sulawesi freshwater
fish and invertebrates, especially the many
endemic species, include habitat degradation
or loss; unsustainable exploitation, most often
for human consumption or the ornamental
aquarium trade; and the introduction of alien
species (Annawaty et al., 2016; Herder et al.,
2012; Herder et al., 2022; Klotz & von Rintelen,
2013; Rahmawati et al., in press; Serdiati et al.,
2021; von Rintelen et al., 2012; von Rintelen,
von Rintelen, Meixner et al., 2007; von Rintelen
& Cai, 2009). Caridina shrimps are considered
particularly sensitive to pollution (von Rintelen
& Cai, 2009), vulnerable to predation by alien
invasive species (Herder et al., 2012; Herder et
al., 2022), and popular in the poorly document-
ed aquarium hobby (Calado et al., 2003; Udin,
2013; von Rintelen & Cai, 2009). While posing
a threat to wild populations, this popularity has
also raised public awareness of their plight (von
Rintelen et al., 2012). Although management
measures are clearly vital to conserve native/
endemic species in Sulawesi lakes and their
watersheds, no in situ conservation measures
are reported in studies on Caridina shrimps in
Lindu Lake and its tributaries (Annawaty et al.,
2016; De Grave & Wowor, 2020).
Lindu Lake lies within the Lore Lindu
UNESCO Biosphere Reserve (LLBR) estab-
lished in 1978; the lake and riparian villages
form an enclave in the Lore Lindu National
Park, gazette in 1999 (Nontji, 2016). Tourism
and fisheries have been promoted as livelihood
options for Lindu Lake villagers (Muhamad et
al., 2023), and alien fish have been introduced
for this purpose (De Grave & Wowor, 2020;
Herjayanto, Gani, et al., 2019). Conservation
management of the Lindu Lake watershed has
been complicated by complex socio-economic
and cultural dynamics, with considerable in-
migration and potential conflicts between eth-
nic groups, illegal logging, and other land-use
issues (Anugrahsari et al., 2020; Mappatoba et
al., 2017; Rahman et al., 2021). Initiatives to
conserve the biodiversity of Lindu Lake and its
watershed, in particular the Caridina shrimps
in this study, include a project funded in 2022
by the Mohamed bin Zayed Species Conserva-
tion Fund for the conservation of Caridina
linduensis (Mohamed Bin Zayed-Species Con-
servation Fund [MBZ-SCF], 2022). The overall
project goal was to develop a multi-pronged
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
conservation strategy, with proposed activities
including studies on the reproductive biol-
ogy and ecology of C. linduensis as well as
developing and deploying artificial spawning
grounds in the lake and educational/awareness-
building programs for local communities, and
the release of larvae. However, the source of
these larvae was not specified in (MBZ-SCF,
2022), and it is not clear how far the targets
were accomplished. The project report does
not mention the complexities raised by the
presence of more than one Caridina taxon, pos-
sibly as only C. linduensis (De Grave & Wowor,
2020) has been assessed under IUCN Red List
criteria and, as an endangered species, is there-
fore eligible for funding from the Mohamed
Bin Zayed-Species Conservation Fund . The
only information found on output or outcome
from this project is a blog page (Dwiyanto,
2022) which makes general recommendations
similar to those proposed for endemic species
conservation in other Sulawesi lakes such as
Poso Lake (Serdiati et al., 2021). In addition to
identifying and protecting or restoring critical
habitat, the threat from alien species could be
reduced through promoting the use of low-
value or unused (invasive) alien species for
human consumption or as fish/animal feed
(Rahmawati et al., in press). There is still a
need to develop awareness regarding endemic
species, seek and leverage local traditions that
could support conservation, and involve com-
munities and other stakeholders in developing
workable conservation strategies, while moni-
toring of conservation targets (e.g., Caridina
populations and habitat condition) is crucial to
evaluate effectiveness.
In addition to in-situ measures, ex-situ
conservation can support the conservation of
endangered aquatic species (Calado et al., 2003;
Stoeckle et al., 2022), including those found in
Sulawesi lakes (Herjayanto et al., 2023; Herjay-
anto, Gani, et al., 2019; Wicaksono et al., 2022).
Ex-situ husbandry and breeding of decapods
has been developed for supplying the ornamen-
tal trade (Calado et al., 2003), and could help
alleviate one of the greatest threats to Sulawesi
aquatic organisms, including Caridina shrimps.
Captive breeding could also enable re-stocking
of native/endemic species populations (Theiss-
inger et al., 2021). Such interventions should
follow national (Sadili et al., 2015) and inter-
national (e.g. IUCN) guidelines, in particular
with respect to biosecurity and genetic diver-
sity considerations (Bouwmeester et al., 2021;
Theissinger et al., 2021; Velle et al., 2025). In the
case of cryptic/morphologically similar species,
DNA barcoding can assist in ensuring prospec-
tive broodstock belong to the same species, and
molecular markers can also be used to evaluate
intra-species genetic diversity in captive popu-
lations and wild populations enhanced through
restocking (Fox et al., 2018; Roques et al., 2018;
Stoeckle et al., 2022), as well as supporting
traceability (Ng et al., 2016). With respect to the
Lindu Caridina species, ex-situ conservation
efforts include research on the husbandry as
a first step towards captive breeding of C. kaili
(Herjayanto, Ndobe, et al., 2019).
In conclusion, this study provides the first
reference DNA barcodes (COI/COX1 mtDNA)
for atyid shrimps from Lindu Lake in Central
Sulawesi, Indonesia with lengths of 673 bp.
The similarity between the sequences, obtained
from specimens identified as Caridina linduen-
sis, C. dali, and C. kaili based on external mor-
phomeristic traits, and the mismatch between
morphotypes and genotypes (alleles based on
three single nucleotide polymorphisms), may
indicate poor resolution of this commonly
used molecular marker for the genus Caridina,
and call for further research with a range of
molecular markers. More broadly, efforts are
needed to fill the gap in standard COI/COX1
DNA barcodes for Sulawesi endemic aquatic
invertebrates, in particular atyid shrimps of the
genus Caridina. Such research can contribute
to urgently needed conservation measures, in
particular the monitoring of wild populations
as well as ex-situ initiatives and traceability in
the international aquarium trade.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is
no conflict of interest of any kind; and that we
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
followed all pertinent ethical and legal proce-
dures and requirements. All financial sources
are fully and clearly stated in the acknowledg-
ments section. A signed document has been
filed in the journal archives.
See supplementary material
53v73n1-suppl. 1
ACKNOWLEDGMENTS
The authors acknowledge financial sup-
port from Tadulako University through the
2024 DIPA (Budget Implementation Form)
funds for Postgraduate Studies under Contract
Number 1298/UN28.16/AL.04/2024.
REFERENCES
Ahmed, S. F., Kumar, P. S., Kabir, M., Zuhara, F. T., Mehja-
bin, A., Tasannum, N., Hoang, A. T., Kabir, Z., &
Mofijur, M. (2022). Threats, challenges and sustaina-
ble conservation strategies for freshwater biodiversity.
Environmental Research, 214(P1), 113808. https://doi.
org/10.1016/j.envres.2022.113808
Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran,
A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., &
Ripple, W. J. (2021). Scientists’ warning to humanity
on the freshwater biodiversity crisis. Ambio, 50(1),
85–94. https://doi.org/10.1007/s13280-020-01318-8
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman,
D. J. (1990). Basic local alignment search tool. Journal
of Molecular Biology, 215(3), 403–410. https://doi.
org/10.1016/S0022-2836(05)80360-2
Annawaty, A., & Wowor, D. (2015). The atyid shrimps
from Lake Lindu, Central Sulawesi, Indonesia with
description of two new species (Crustacea: Decapo-
da: Caridea). Zootaxa, 3957(5), 501–519. https://doi.
org/10.11646/zootaxa.3957.5.1
Annawaty, A., Lapasang, N. H. E., Rahayu, P., Hairul, H.,
Tadeko, F. R. I., & Dwiyanto, D. (2022). Checklist of
the freshwater shrimps (Crustacea, Decapoda, Cari-
dea) from the Banggai Archipelago, Central Sulawesi,
Indonesia. Check List, 18(2), 341–355. https://doi.
org/10.15560/18.2.341
Annawaty, A., Wowor, D., Farajallah, A., Setiadi, D., &
Suryobroto, B. (2016). Habitat preferences and dis-
tribution of the freshwater shrimps of the genus
Caridina (Crustacea: Decapoda: Atyidae) in Lake
Lindu, Sulawesi, Indonesia. HAYATI Journal of
Biosciences, 23(2), 45–50. https://doi.org/10.1016/j.
hjb.2016.04.001
Anugrahsari, I., Sardjono, M. A., Fitriyah, N., & Golar, G.
(2020). Social contracts: Pillars of community con-
servation partnerships in Lore Lindu National Park,
Indonesia. Forest and Society, 4(1), 115. https://doi.
org/10.24259/fs.v4i1.8682
Baldwin-Cantello, W., Tickner, D., Wright, M., Clark, M.,
Cornelius, S., Ellis, K., Francis, A., Ghazoul, J., Gor-
don, J. E., Matthews, N., Milner-Gulland, E. J., Smith,
P., Walmsley, S., & Young, L. (2023). The triple cha-
llenge: synergies, trade-offs and integrated responses
for climate, biodiversity, and human wellbeing goals.
Climate Policy, 23(6), 782–799. https://doi.org/10.108
0/14693062.2023.2175637
Bouwmeester, M. M., Goedknegt, M. A., Poulin, R., &
Thieltges, D. W. (2021). Collateral diseases: Aqua-
culture impacts on wildlife infections. Journal of
Applied Ecology, 58(3), 453–464. https://doi.
org/10.1111/1365-2664.13775
Calado, R., Lin, J., Rhyne, A. L., Araújo, R., & Narciso, L.
(2003). Marine ornamental decapods-popular, pricey,
and poorly studied. Journal of Crustacean Biology,
23(4), 963–973. https://doi.org/10.1651/C-2409
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A.,
Pringle, R. M., & Palmer, T. M. (2015). Accelera-
ted modern human–induced species losses: Entering
the sixth mass extinction. Science Advances, 1(5),
e1400253. https://doi.org/10.1126/sciadv.1400253
Coordination and Communication Management of Lore
Lindu Biosphere Reserve. (2020). History: The Lore
Lindu Biosphere Reserves. Lore Lindu Biosphere
Reserve. https://www.lorelindu-br.org/about
Coyle, S. D., Dasgupta, S., Tidwell, J. H., Beavers, T.,
Bright, L. A., & Yasharian, D. K. (2007). Com-
parative efficacy of anesthetics for the freshwater
prawn Macrobrachium rosenbergii. Journal of the
World Aquaculture Society, 36(3), 282–290. https://
doi.org/10.1111/j.1749-7345.2005.tb00332.x
De Grave, S., & Wowor, D. (2020). Caridina linduen-
sis (amended version of 2013 assessment)
[e.T198228A176123703]. The IUCN Red List of
Threatened Species. https://doi.org/10.2305/IUCN.
UK.2020-3.RLTS.T198228A176123703.en
De Grave, S., Smith, K. G., Adeler, N. A., Allen, D. J.,
Alvarez, F., Anker, A., Cai, Y., Carrizo, S. F., Klotz,
W., Mantelatto, F. L., Page, T. J., Shy, J. Y., Villalobos,
J. L., & Wowor, D. (2015). Dead shrimp blues: A
global assessment of extinction risk in freshwater
shrimps (Crustacea: Decapoda: Caridea). PLoS ONE,
10(3), e0120198. https://doi.org/10.1371/journal.
pone.0120198
de Mazancourt, V., Klotz, W., Marquet, G., Mos, B., Rogers,
D. C., & Keith, P. (2019). The complex study of
complexes: The first well-supported phylogeny of
two species complexes within genus Caridina (Deca-
poda: Caridea: Atyidae) sheds light on evolution,
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
biogeography, and habitat. Molecular Phylogenetics
and Evolution, 131, 164–180. https://doi.org/10.1016/j.
ympev.2018.11.002
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursiè-
re-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge,
D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L.
(2017). Environmental DNA metabarcoding: Trans-
forming how we survey animal and plant communi-
ties. Molecular Ecology, 26(21), 5872–5895. https://
doi.org/10.1111/mec.14350
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawa-
bata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R.
J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J.,
& Sullivan, C. A. (2006). Freshwater biodiversity:
Importance, threats, status and conservation challen-
ges. Biological Reviews, 81(2), 163–182. https://doi.
org/10.1017/S1464793105006950
Dwiyanto, D. (2022). Fauna Endemik Danau Lindu: Rekam
Jejak Kehidupan Danau Lindu dari Masa ke Masa
[Lindu Lake endemic species: a record of life in Lindu
Lake over time]. Zoological Community of Celebes.
https://www.zccindonesia.org/post/fauna-endemik-
danau-lindu-rekam-jejak-kehidupan-danau-lindu-
dari-masa-ke-masa
Dwiyanto, D., Annawaty, A., Farajallah, A., & Wowor, D.
(2021). A preliminary survey of the freshwater shrimp
genus Caridina from Eastern Sulawesi, Indonesia.
Tropical Natural History, 21(2), 337–342. https://doi.
org/10.58837/tnh.21.2.251715
Felsenstein, J. (1985). Confidence limits on phylogenies:
An approach using the bootstrap. Evolution, 39(4),
783–791. https://doi.org/10.1111/j.1558-5646.1985.
tb00420.x
Fox, G., Darolti, I., Hibbitt, J.-D, Preziosi, R. F., Fitzpatrick,
J. L., & Rowntree, J. K. (2018). Bespoke markers for
ex-situ conservation: application, analysis and cha-
llenges in the assessment of a population of endan-
gered undulate rays. Journal of Zoo and Aquarium
Research, 6(2), 50–56.
Fritz, U., Hundsdörfer, A., Široký, P., Auer, M., Kami, H.,
Lehmann, J., Mazanaeva, L., Türkozan, O., & Wink,
M. (2007). Phenotypic plasticity leads to incon-
gruence between morphology-based taxonomy and
genetic differentiation in western Palaearctic tortoi-
ses (Testudo graeca complex; Testudines, Testudini-
dae). Amphibia-Reptilia, 28(1), 97–121. https://doi.
org/10.1163/156853807779799135
Geller, J., Meyer, C., Parker, M., & Hawk, H. (2013).
Redesign of PCR primers for mitochondrial cyto-
chrome c oxidase subunit I for marine invertebrates
and application in all-taxa biotic surveys. Molecu-
lar Ecology Resources, 13(5), 851–861. https://doi.
org/10.1111/1755-0998.12138
Global Biodiversity Information Facility. (2024). GBIF
Home page. https://www.gbif.org
González-Castellano, I., Pons, J., González-Ortegón, E., &
Martínez-Lage, A. (2020). Mitogenome phylogenetics
in the genus Palaemon (Crustacea: Decapoda) sheds
light on species crypticism in the rockpool shrimp
P. el eg an s . PLoS ONE, 15(8), e0237037. https://doi.
org/10.1371/journal.pone.0237037
Gostel, M. R., & Kress, W. J. (2022). The expanding role of
DNA barcodes: Indispensable tools for ecology, evo-
lution, and conservation. Diversity, 14(3), 213. https://
doi.org/10.3390/d14030213
Hebert, P. D. N., & Gregory, T. R. (2005). The pro-
mise of DNA barcoding for taxonomy. Sys-
tematic Biology, 54(5), 852–859. https://doi.
org/10.1080/10635150500354886
Herder, F., Möhring, J., Flury, J. M., Utama, I. V., Wantania,
L., Wowor, D., Boneka, F. B., Stelbrink, B., Hilgers, L.,
Schwarzer, J., & Pfaender, J. (2022). More non-native
fish species than natives, and an invasion of Malawi
cichlids, in ancient Lake Poso, Sulawesi, Indonesia.
Aquatic Invasions, 17(1), 72–91. https://www.reabic.
net/aquaticinvasions/2022/AI_2022_Herder_etal.pdf
Herder, F., Schliewen, U. K., Geiger, M. F., Hadiaty, R. K.,
Gray, S. M., McKinnon, J. S., Walter, R. P., & Pfaender,
J. (2012). Alien invasion in Wallaces Dreamponds:
records of the hybridogenic “flowerhorn” cichlid in
Lake Matano, with an annotated checklist of fish
species introduced to the Malili Lakes system in
Sulawesi. Aquatic Invasions, 7(4), 521–535. https://
doi.org/10.3391/ai.2012.7.4.009
Herjayanto, M., Carman, O., Tri Soelistyowati, D., Ali-
muddin, Wicaksono, A. W., & Arfah, H. (2023). The
ontogenic study of early life stages of culture-bred
Nomorhamphus sp. (Zenarchopteridae) from Lindu,
Central Sulawesi. Jurnal Akuakultur Indonesia, 22(2),
179–186. https://doi.org/10.19027/jai.22.2.179-186
Herjayanto, M., Gani, A., Adel, Y. S., & Suhendra, N. (2019).
Frehswater fish of lakes and it’s inlet rivers in Sulawesi
Tengah Province, Indonesia. Journal of Aquatropica
Asia, 4(1), 1–9. https://doi.org/10.33019/aquatropica.
v4i1.1679
Herjayanto, M., Ndobe, S., Abdillah, A., Muamar, M., Mela-
ty, P., Gani, A., Fadli, M., Suhendra, N., Waris, A., &
Musdalifa, M. (2019). Preliminary study of Caridina
kaili domestication, endemic shrimp to Lake Lindu,
Central Sulawesi, Indonesia. Jurnal Perikanan Dan
Kelautan, 9(2), 165–173. https://doi.org/10.33512/
jpk.v9i2.8629
Hernawati, R., Nurhaman, U., Busson, F., Suryobroto, B.,
Hanner, R., Keith, P., Wowor, D., & Hubert, N. (2020).
Exploring community assembly among Javanese and
Balinese freshwater shrimps (Atyidae, Palaemonidae)
through DNA barcodes. Hydrobiologia, 847(2), 647–
663. https://doi.org/10.1007/s10750-019-04127-7
Hestetun, J. T., Bye-Ingebrigtsen, E., Nilsson, R. H., Glover,
A. G., Johansen, P.-O., & Dahlgren, T. G. (2020).
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Significant taxon sampling gaps in DNA databases
limit the operational use of marine macrofauna meta-
barcoding. Marine Biodiversity, 50(5), 70. https://doi.
org/10.1007/s12526-020-01093-5
Hubert, N., Kadarusman, Wibowo, A., Busson, F., Caruso,
D., Sulandari, S., Nafiqoh, N., Pouyaud, L., Rüber,
L., Avarre, J. C., Herder, F., Hanner, R., Keith, P., &
Hadiaty, R. K. (2015). DNA barcoding Indonesian
freshwater fishes: challenges and prospects. DNA
Barcodes, 3(1), 144–169. https://dx.doi.org/10.1515/
dna-2015-0018
Keith, P., & Mennesson, M. I. (2020). Review of Giuris
(Teleostei: Eleotridae) from Indo-Pacific islands, with
description of three new species. Cybium, 44(4), 331–
349. https://doi.org/10.26028/cybium/2020-444-004
Keith, P., Mennesson, M. I., Sauri, S., Busson, F., Delrieu-
Trottin, E., Limmon, G., Nurjirana, Dahruddin, H.,
& Hubert, N. (2020). Giuris (Teleostei: Eleotridae)
from Indonesia, with description of a new species.
Cybium, 44(4), 317–329. https://doi.org/10.26028/
cybium/2020-444-003
Kimura, M. (1980). A simple method for estimating evo-
lutionary rates of base substitutions through com-
parative studies of nucleotide sequences. Journal
of Molecular Evolution, 16(2), 111–120. https://doi.
org/10.1007/BF01731581
Kiruba-Sankar, R., Raj, J. P., Saravanan, K., Kumar, K. L.,
Angel, J. R. J., Velmurugan, A., & Roy, S. D. (2018).
Invasive species in freshwater ecosystems-threats to
ecosystem services. In C. Sivaperuman, A. Velmu-
rugan, A. K. Singh, & I. Jaisankar (Eds.), Biodiversity
and climate change adaptation in tropical islands (pp.
257–296). Academic Press.
Klotz, W., & von Rintelen, K. (2013). Three new species of
Caridina (Decapoda: Atyidae) from Central Sulawesi
and Buton Island, Indonesia, and a checklist of
the islands’ endemic species. Zootaxa, 3664(4), 554.
https://doi.org/10.11646/zootaxa.3664.4.8
Klotz, W., von Rintelen, T., Annawaty, A., Wowor, D., & von
Rintelen, K. (2023). Caridina clandestina, new spe-
cies, an unusual new freshwater shrimp (Crustacea:
Decapoda: Atyidae) from the remote high elevation
Napu Valley of Sulawesi, Indonesia. Raffles Bulle-
tin of Zoology, 71, 12–25. https://doi.org/10.26107/
RBZ-2023-0002
Klotz, W., von Rintelen, T., Wowor, D., Lukhaup, C., &
von Rintelen, K. (2021). Lake Posos shrimp fauna
revisited: the description of five new species of the
genus Caridina (Crustacea, Decapoda, Atyidae) more
than doubles the number of endemic lacustrine spe-
cies. ZooKeys, 1009, 81–122. https://doi.org/10.3897/
zookeys.1009.54303
Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL)
v5: An online tool for phylogenetic tree display and
annotation. Nucleic Acids Research, 49(W1), W293–
W296. https://doi.org/10.1093/nar/gkab301
Mappatoba, M., Kassa, S., Palebori, H., Anwar, C., Tanamal,
C. E., & Ilyas, S. (2017). Exploring nature conserva-
tion problems at Lore Lindu National Park Central
Sulawesi, Indonesia. International Journal of Agricul-
ture Innovations and Research, 6(2), 279–284.
Matzen-da Silva, J., Creer, S., dos Santos, A., Costa, A. C.,
Cunha, M. R., Costa, F. O., & Carvalho, G. R. (2011).
Systematic and evolutionary insights derived from
mtDNA COI barcode diversity in the Decapoda
(Crustacea: Malacostraca). PLoS ONE, 6(5), e19449.
https://doi.org/10.1371/journal.pone.0019449
Michaux, B. (2010). Biogeology of Wallacea: geotecto-
nic models, areas of endemism, and natural bio-
geographical units. Biological Journal of the
Linnean Society, 101(1), 193–212. https://doi.
org/10.1111/j.1095-8312.2010.01473.x
Mohamed Bin Zayed-Species Conservation Fund. (2022).
Mohamed bin Zayed Species project number 220528372
Conservation of the critically endangered and endemic
shrimp Caridina linduensis in Lake Lindu, Central
Sulawesi, Indonesia. Mohamed Bin Zayed Species
Conservation Fund. https://www.speciesconserva-
tion.org/case-studies-projects/lindu-shrimp/28372
Mokodongan, D. F., & Yamahira, K. (2015). Origin
and intra-island diversification of Sulawesi ende-
mic Adrianichthyidae. Molecular Phylogenetics and
Evolution, 93, 150–160. https://doi.org/10.1016/j.
ympev.2015.07.024
Moore, A. M., Tassakka, A. C. M., Ambo-Rappe, R., Yasir,
I., Smith, D. J., & Jompa, J. (2019). Unexpected
discovery of Diadema clarki in the Coral Triangle.
Marine Biodiversity, 49(5), 2381–2399. https://doi.
org/10.1007/s12526-019-00978-4
Muhamad, H., Saleh, M., & Mascunra, A. (2023). Patron-
client and Lindu lake tourism development. Jurnal
Penelitian Pendidikan Indonesia, 9(3), 1585. https://
doi.org/10.29210/020232202
Ndobe, S., Nurdin, M. S., Hasanah, N., Putra, A. E.,
Mansyur, K., Nasir, M., Rabuna, M. L., & Moore,
A. M. (2023). DNA barcoding detects resurrected
taxon Giuris laglaizei (Sauvage 1880) in Sulawesi,
Indonesia: Bolano Sau Lake payangka phylogeny,
phenotypic characters and implications for Giuris spp.
conservation. F1000Research, 11(2), 295. https://doi.
org/10.12688/f1000research.108970.2
Ng, T. H., Tan, S. K., Wong, W. H., Meier, R., Chan, S. Y.,
Tan, H. H., & Yeo, D. C. J. (2016). Molluscs for sale:
Assessment of freshwater gastropods and bivalves in
the ornamental pet trade. PLoS ONE, 11(8), e0161130.
https://doi.org/10.1371/journal.pone.0161130
Nontji, A. (2016). Danau-danau alami Nusantara. Masya-
rakat Limnologi Indonesia.
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Rahman, A., Cyio, M. B., Darman, S., & Hasanah, U.
(2021). Outlooks for developing land degradation
mitigation policy plans in the Lindu watershed hope
for the present and the future. International Journal
of Research and Innovation in Social Science, 5(5),
501–509. https://doi.org/10.47772/IJRISS.2021.5529
Rahmawati, Budimawan, Arief, A. A., Moore, A. M., &
Jompa, J. (in press). Fisheries in the Malili ancient
lake complex: from endemic to introduced species.
Cybium.
Ratnasingham, S., & Hebert, P. D. N. (2007). Bold: The
barcode of life data system (http://www.barcodinglife.
org). Molecular Ecology Notes, 7(3), 355–364. https://
doi.org/10.1111/j.1471-8286.2007.01678.x
Raupach, M. J., & Radulovici, A. E. (2015). Looking back
on a decade of barcoding crustaceans. ZooKeys, 539,
53–81. https://doi.org/10.3897/zookeys.539.6530
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P.
A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J.,
Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W.,
Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke,
S. J. (2019). Emerging threats and persistent conser-
vation challenges for freshwater biodiversity. Biologi-
cal Reviews, 94(3), 849–873. https://doi.org/10.1111/
brv.12480
Romadhona, E. I., Megawati, N., Widantara, H., Sutanti, S.,
Rahman Ardiansyah, A., Mariya Dewi, K., Fitri Laras-
sagita, A., Firman, A., Risky, M., Rahmat, R., & Ayub,
A. (2024). Characterization of CO1 and 18S rDNA
genes from indonesian native ornamental shrimp
Caridina boehmei. Jurnal Akuakultur Indonesia, 23(2),
147–156. https://doi.org/10.19027/jai.23.2.147-156
Roques, S., Berrebi, P., Rochard, E., & Acolas, M. L. (2018).
Genetic monitoring for the successful re-stocking of a
critically endangered diadromous fish with low diver-
sity. Biological Conservation, 221, 91–102. https://doi.
org/10.1016/j.biocon.2018.02.032
Rosyida, E., Moore, A. M., Serdiati, N., Ndobe, S., &
Siddik, J. (2023). DNA barcoding of an amphidro-
mous palaemonid shrimp recruiting to the Palu River,
Central Sulawesi, Indonesia. In N. Edy, A. Alam, S.
Rijal, R. Pratama, A. Wibowo, & A. A. Kasim (Eds.),
Proceedings of the 2nd International Interdisciplinary
Conference on Environmental Sciences and Sustaina-
ble Developments 2022 Environment and Sustaina-
ble Development (IICESSD-ESD 2022) (vol. 36, pp.
153–158). Atlantis Press.
Roux, J. (1904). Décapodes d’eau douce de Cèlébes (Genres
Caridina et Potamon). Revue Suisse de Zoologie, 12,
539–571. https://doi.org/10.5962/bhl.part.10150
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past,
present, and future perspectives of environmental
DNA (eDNA) metabarcoding: A systematic review
in methods, monitoring, and applications of global
eDNA. Global Ecology and Conservation, 17, e00547.
https://doi.org/10.1016/j.gecco.2019.e00547
Sadili, D., Haryono, P., Kamal, M. M., Sarmintohadi, D., &
Ramli, I. (2015). Pedoman Umum Restoking Jenis Ikan
Terancam Punah. Direktorat Jenderal Kelautan Pesisir
dan Pulau-Pulau Kecil.
Saitou, N., & Nei, M. (1987). The neighbor-joining method:
a new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution, 4(4), 406–425.
https://doi.org/10.1093/oxfordjournals.molbev.
a040454
Sayers, E. W., Cavanaugh, M., Clark, K., Pruitt, K. D.,
Schoch, C. L., Sherry, S. T., & Karsch-Mizrachi, I.
(2022). GenBank. Nucleic Acids Research, 50(D1),
D161–D164. https://doi.org/10.1093/nar/gkab1135
Schubart, C. D., Santl, T., & Koller, P. (2008). Mitochondrial
patterns of intra- and interspecific differentiation
among endemic freshwater crabs of ancient lakes
in Sulawesi. Contributions to Zoology, 77(2), 83–90.
http://dx.doi.org/10.1163/18759866-07702004
Serdiati, N., Arfiati, D., Sri Widodo, M., Lelono, T. D.,
Ndobe, S., Mansyur, K., & Moore, A. M. (2021).
Perspectives on sustainable management of the Poso
Lake (Indonesia) endemic ricefish, Oryzias nigrimas
(Actinopterygii: Adrianichthyidae). Revista de Biolo-
gía Tropical, 69(1), 139–152. https://doi.org/10.15517/
rbt.v69i1.42404
Siriwut, W., Jeratthitikul, E., Panha, S., Chanabun, R., Ngor,
P. B., & Sutcharit, C. (2021). Evidence of cryptic
diversity in freshwater Macrobrachium prawns from
Indochinese riverine systems revealed by DNA barco-
de, species delimitation and phylogenetic approaches.
PLoS ONE, 16(6), e0252546. https://doi.org/10.1371/
journal.pone.0252546
Stelbrink, B., Albrecht, C., Hall, R., & von Rintelen, T. (2012).
The biogeography of Sulawesi revisited: is there evi-
dence for a vicariant origin of taxa on Wallaces “ano-
malous island”? Evolution, 66(7), 2252–2271. https://
doi.org/10.1111/j.1558-5646.2012.01588.x
Stelbrink, B., Stöger, I., Hadiaty, R. K., Schliewen, U. K., &
Herder, F. (2014). Age estimates for an adaptive lake
fish radiation, its mitochondrial introgression, and an
unexpected sister group: Sailfin silversides of the Malili
Lakes system in Sulawesi. BMC Evolutionary Biology,
14(1), 94. https://doi.org/10.1186/1471-2148-14-94
Stoeckle, B. C., Mueller, M., Nagel, C., Kuehn, R., & Geist,
J. (2022). A conservation genetics perspective on sup-
portive breeding: A case study of the common nase
(Chondrostoma nasus). Aquatic Conservation: Mari-
ne and Freshwater Ecosystems, 32(10), 1596–1605.
https://doi.org/10.1002/aqc.3863
Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversi-
ty conservation: recent progress and future challenges.
Journal of the North American Benthological Society,
29(1), 344–358. https://doi.org/10.1899/08-171.1
Struebig, M., Aninta, S. G., Beger, M., Bani, A., Barus,
H., Brace, S., Davies, Z. G., De Brauwer, M., Diele,
K., Djakiman, C., Djamaluddin, R., Drinkwater, R.,
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e2025672, enero-diciembre 2025 (Publicado Set. 17, 2025)
Dumbrell, A., Evans, D., Fusi, M., Herrera-Alsina, L.
L., Iskandar, D. T., Jompa, J., Juliandi, B., … Supriat-
na, J. (2022). Safeguarding imperiled biodiversity
and evolutionary processes in the Wallacea center of
endemism. BioScience, 72(11), 1118–1130. https://doi.
org/10.1093/biosci/biac085
Takahashi, M., Saccò, M., Kestel, J. H., Nester, G., Camp-
bell, M. A., van der Heyde, M., Heydenrych, M. J.,
Juszkiewicz, D. J., Nevill, P., Dawkins, K. L., Bessey,
C., Fernandes, K., Miller, H., Power, M., Mousavi-
Derazmahalleh, M., Newton, J. P., White, N. E.,
Richards, Z. T., & Allentoft, M. E. (2023). Aquatic
environmental DNA: A review of the macro-organis-
mal biomonitoring revolution. Science of The Total
Environment, 873, 162322. https://doi.org/10.1016/j.
scitotenv.2023.162322
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11:
Molecular Evolutionary Genetics Analysis version 11.
Molecular Biology and Evolution, 38(7), 3022–3027.
https://doi.org/10.1093/molbev/msab120
Theissinger, K., Edsman, L., Maguire, I., Diéguez-Uribeon-
do, J., & Jussila, J. (2021). Editorial: conservation
of European freshwater crayfish. Frontiers in Eco-
logy and Evolution, 9, 1–4. https://doi.org/10.3389/
fevo.2021.804629
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994).
CLUSTAL W: improving the sensitivity of progres-
sive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Research, 22(22), 4673–
4680. http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC308517/
Tickner, D., Opperman, J. J., Abell, R., Acreman, M.,
Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton,
J., Darwall, W., Edwards, G., Harrison, I., Hughes,
K., Jones, T., Leclère, D., Lynch, A. J., Leonard, P.,
McClain, M. E., Muruven, D., Olden, J. D., … Young,
L. (2020). Bending the curve of global freshwater
biodiversity loss: An emergency recovery plan. BioS-
cience, 70(4), 330–342. https://doi.org/10.1093/biosci/
biaa002
Udin, S. (2013, September 14). Eight new shrimps described
from Sulawesi. Sulawesi Shrimp Udang Hias Sulawesi.
http://sulawesishrimp.blogspot.com/2013/09/eight-
new-shrimps-described-from.html
Vaillant, J. J., Bock, D. G., Haffner, G. D., & Cristescu, M.
E. (2013). Speciation patterns and processes in the
zooplankton of the ancient lakes of Sulawesi Island,
Indonesia. Ecology and Evolution, 3(9), 3083–3094.
https://doi.org/10.1002/ece3.697
Velle, G., Thorstad, E. B., Garseth, Å. H., Gjøen, T., Gulla,
S., Lo, H., Mo, T. A., & Malmstrøm, M. (2025). Balan-
cing the restoration of a native fish and the risks of
hitch-hiking invasive species. Management of Biologi-
cal Invasions, 16(1), 247–276. https://doi.org/10.3391/
mbi.2025.16.1.15
von Rintelen, K. (2011). Intraspecific geographic diffe-
rentiation and patterns of endemism in freshwater
shrimp species flocks in ancient lakes of Sulawesi.
In C. Held, S. Koenemann, & C. D. Schubart (Eds.),
Phylogeography and Population Genetics in Crustacea
(1st ed., pp. 257–271). CRC Press.
von Rintelen, K. (2018). Caridina denner-
li [e.T198055A109683594]. The IUCN Red List of
Threatened Species 2018. https://doi.org/10.2305/
IUCN.UK.2018-2.RLTS.T198055A109683594.en
von Rintelen, K., & Cai, Y. (2009). Radiation of ende-
mic species flocks in ancient lakes: Systematic revi-
sion of the freshwater shrimp Caridina H. Milne
Edwards, 1837 (Crustacea: Decapoda: Atyidae) from
the ancient lakes of Sulawesi, Indonesia, with the
description of eight new species. The Raffles Bulletin
of Zoology, 57(2), 343–452.
von Rintelen, K., Glaubrecht, M., Schubart, C. D., Wessel,
A., & von Rintelen, T. (2010). Adaptive radiation and
ecological diversification of Sulawesis ancient lake
shrimps. Evolution, 64(11), 3287–3299. https://doi.
org/10.1111/j.1558-5646.2010.01043.x
von Rintelen, K., von Rintelen, T., & Glaubrecht, M. (2007).
Molecular phylogeny and diversification of freshwater
shrimps (Decapoda, Atyidae, Caridina) from ancient
Lake Poso (Sulawesi, Indonesia)-The importance of
being colourful. Molecular Phylogenetics and Evo-
lution, 45(3), 1033–1041. https://doi.org/10.1016/j.
ympev.2007.07.002
von Rintelen, K., von, Rintelen, T., Meixner, M., Lüter,
C., Cai, Y., & Glaubrecht, M. (2007). Freshwater
shrimp-sponge association from an ancient lake. Bio-
logy Letters, 3(3), 262–264. https://doi.org/10.1098/
rsbl.2006.0613
von Rintelen, T., Bouchet, P., & Glaubrecht, M. (2007).
Ancient lakes as hotspots of diversity: a morpho-
logical review of an endemic species flock of Tylo-
melania (Gastropoda: Cerithioidea: Pachychilidae)
in the Malili lake system on Sulawesi, Indonesia.
Hydrobiologia, 592(1), 11–94. https://doi.org/10.1007/
s10750-007-0765-8
von Rintelen, T., von Rintelen, K., Glaubrecht, M., Schubart,
C. D., & Herder, F. (2012). Aquatic biodiversity hots-
pots in Wallacea: the species flocks in the ancient
lakes of Sulawesi, Indonesia. In D. J. Gower, K.
Johnson, J. Richardson, B. Rosen, L. Rüber, & S.
Williams (Eds.), Biotic evolution and environmental
change in Southeast Asia (pp. 290–315). Cambridge
University Press.
Wicaksono, A. W., Carman, O., Soelistyowati, D. T.,
Arfah, H., Alimuddin, Herjayanto, M., Solahudin,
E. A., & Ahmadi, K. (2022). Biometric characteriza-
tion and morphogenesis of Anasa ornamental fish
(Nomorhamphus sp.) endemic to Lake Lindu, Central
Sulawesi, Indonesia. AACL Bioflux, 15(5), 2479–2487.
http://www.bioflux.com.ro/home/volume-15-5-2022/