Morphology, histology and histochemistry of the gastrointestinal tract of the fish Prochilodus magdalenae (Characiformes: Prochilodontidae)
DOI:
https://doi.org/10.15517/rev.biol.trop..v73i1.63718Keywords:
histochemistry; histology; mucins; mucous cells; detritivorous fish.Abstract
Introduction: The Bocachico Prochilodus magdalenae, an endemic herbivorous/detritivorous fish from the Magdalena River basin, is the region’s most important fishing resource, with high ecological and socioeconomic significance. Its populations have declined significantly due to fishing pressure and anthropogenic environmental stressors, including wastewater discharge, infrastructure projects, and material extraction. Understanding the characteristics of its digestive tract is a crucial knowledge gap, hindering the comprehension of nutritional and physiological processes vital for aquaculture and both in situ and ex situ conservation efforts.
Objective: To characterize the morphological, histological, and histochemical features of P. magdalenae’s gastrointestinal tract (GIT) and relate them to its feeding habits.
Methods: Fifteen adult specimens from the Sogamoso River (Santander, Colombia) were analyzed using standard morphological measurements and histological and histochemical staining techniques for tissue structure and mucin distribution analysis. Descriptive statistics were used for morphological analysis.
Results: Specimens averaged 24.66 cm standard length, 291.77 g weight, and 1.02 condition factor, with a mean GIT weight of 12.02 g. The digestive tract showed four distinct regions: oropharyngeal cavity, esophagus (mean length 1.26 cm), stomach, and intestine (mean length 88.18 cm). The esophagus contained abundant acinar glands, producing neutral and acidic mucins, with acidic mucins predominating. The U-shaped stomach showed simple columnar epithelium with tubular gastric glands producing only neutral mucins. The intestine, lined with simple columnar epithelium, exhibited differential mucin distribution: high neutral mucins anteriorly and predominantly acidic mucins in middle and posterior segments.
Conclusions: The gastrointestinal characteristics align with its feeding habits, particularly the elongated intestine and thick pyloric muscular layer. The distinct mucin distribution pattern, especially the carboxylated acidic mucins in the middle and posterior intestinal segments, supports nutrient absorption functions. These findings provide crucial reference points for fish welfare assessment, pathogen response in aquaculture, and environmental impact evaluation in natural habitats.
Downloads
References
Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M., & Monier, M. N. (2015). Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): Growth performance, whole-body composition, and innate immunity. Aquaculture International, 23(5), 1261–1274. https://doi.org/10.1007/s10499-015-9882-y DOI: https://doi.org/10.1007/s10499-015-9882-y
Abumandour, M. M. A., & El-Bakary, N. E. R. (2018). Morphological descriptions of the esophagus of the sea bream (Sparus aurata, Linneaus 1758). Russian Journal of Marine Biology, 44(2), 135–140. https://doi.org/10.1134/S1063074018020025 DOI: https://doi.org/10.1134/S1063074018020025
Agbugui, M. O., & Oniye, S. J. (2013). Some morphometric parameters of Pomadasys Jubelini in the New Calabar–Bonny River, Porthacourt, Nigeria. Academia Arena, 5(8), 1–4.
Agostinho, A. A., Pelicice, F. M., & Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(Suppl. 4), 1119–1132. https://doi.org/10.1590/S1519-69842008000500019 DOI: https://doi.org/10.1590/S1519-69842008000500019
Albus, U. (2012). [Review of the book Guide for the care and use of laboratory animals (8th ed.), by National Research Council]. Laboratory Animals, 46(4), 373–374. https://doi.org/10.1258/la.2012.150312 DOI: https://doi.org/10.1258/la.2012.150312
Allan, J. D., & Castillo, M. M. (2007). Human impacts. In Stream Ecology: Structure and function of running waters (pp. 317–357). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5583-6_13 DOI: https://doi.org/10.1007/978-1-4020-5583-6_13
Alonso, F., Mirande, J. M., & Pandolfi, M. (2015). Gross anatomy and histology of the alimentary system of Characidae (Teleostei: Ostariophysi: Characiformes) and potential phylogenetic information. Neotropical Ichthyology, 13(2), 273–286. https://doi.org/10.1590/1982-0224-20140137 DOI: https://doi.org/10.1590/1982-0224-20140137
Atencio-García, V., Hernández-Muñoz, J., & Pardo-Carrasco, S. (2008). Descripción morfológica del tubo digestivo de juveniles de rubio Salminus affinis (Pisces: Characidae). Acta Biológica Colombiana, 13(3), 97–110.
Awaad, A. S., Moawad, U. K., & Tawfiek, M. G. (2014). Comparative histomorphological and histochemical studies on the Oesophagus of Nile tilapia Oreochromis niloticus and African catfish Clarias gariepinus. Journal of Histology, 2014(1), e987041. https://doi.org/10.1155/2014/987041 DOI: https://doi.org/10.1155/2014/987041
Baldisserotto, B., Urbinati, E. C., & Cyrino, J. E. P. (Eds.). (2019). Biology and physiology of freshwater neotropical fish. Academic Press. https://doi.org/10.1016/C2017-0-03766-7 DOI: https://doi.org/10.1016/C2017-0-03766-7
Benbow, M. E., Receveur, J. P., & Lamberti, G. A. (2020). Death and decomposition in aquatic ecosystems. Frontiers in Ecology and Evolution, 8(17), 1–12. https://doi.org/10.3389/fevo.2020.00017 DOI: https://doi.org/10.3389/fevo.2020.00017
Benedito, E., Santana, A., & Werth, M. (2018). Divergence in energy sources for Prochilodus lineatus (Characiformes: Prochilodontidae) in Neotropical floodplains. Neotropical Ichthyology, 16(4), e160130. https://doi.org/10.1590/1982-0224-20160130 DOI: https://doi.org/10.1590/1982-0224-20160130
Bosi, G., Merella, P., Maynard, B. J., & Sayyaf-Dezfuli, B. (2022). Microscopic characterization of the mucous cells and their mucin secretions in the alimentary canal of the Blackmouth catshark Galeus melastomus (Chondrichthyes: Elasmobranchii). Fishes, 7(1), 8. https://doi.org/10.3390/fishes7010008 DOI: https://doi.org/10.3390/fishes7010008
Bowen, S. H. (2022). Digestion and assimilation of benthic biofilm by the sábalo, Prochilodus lineatus. Journal of Fish Biology, 100(1), 107–116. https://doi.org/10.1111/jfb.14924 DOI: https://doi.org/10.1111/jfb.14924
Bowen, S. H., Gu, B., & Huang, Z. (2006). Diet and digestion in Chinese mud carp Cirrhinus molitorella compared with other Ilyophagous fishes. Transactions of the American Fisheries Society, 135(5), 1383–1388. https://doi.org/10.1577/T05-158.1 DOI: https://doi.org/10.1577/T05-158.1
Burns, M. D. (2021). Adaptation to herbivory and detritivory drives the convergent evolution of large abdominal cavities in a diverse freshwater fish radiation (Otophysi: Characiformes). Evolution, 75(3), 688–705. https://doi.org/10.1111/evo.14178 DOI: https://doi.org/10.1111/evo.14178
Caballero, M. J., Izquierdo, M. S., Kjørsvik, E., Fernández, A. J., & Rosenlund, G. (2004). Histological alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. Journal of Fish Diseases, 27(9), 531–541. https://doi.org/10.1111/j.1365-2761.2004.00572.x DOI: https://doi.org/10.1111/j.1365-2761.2004.00572.x
Cabrera-Páez, Y., Aguilar-Betancourt, C., & González-Sansón, G. (2008). Indicadores morfológicos y reproductivos del pez Gambusia puncticulata (Poeciliidae) en sitios muy contaminados del río Almendares, Cuba. Revista de Biología Tropical, 56(4), 1991–2004. https://doi.org/10.15517/rbt.v56i4.5774 DOI: https://doi.org/10.15517/rbt.v56i4.5774
Cañas-Alva, C. M., Moya-Vásquez, L. C., Vargas-Rojas, M., & Mercado-Torres, A. (2020). Relación longitud-peso y factor de condición de Prochilodus nigricans y Potamorhina altamazonica en la cuenca del río Tahuayo, Loreto (Perú). Folia Amazónica, 29(1), 37–50. https://doi.org/10.24841/fa.v29i1.502 DOI: https://doi.org/10.24841/fa.v29i1.502
Cao, X. J., & Wang, W. M. (2009). Histology and mucin histochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco. Anatomia, Histologia, Embryologia, 38(4), 254–261. https://doi.org/10.1111/j.1439-0264.2009.00932.x DOI: https://doi.org/10.1111/j.1439-0264.2009.00932.x
Castro, R. M. C., & Vari, R. P. (2004). Detritivores of the South American fish family Prochilodontidae (Teleostei: Ostariophysi: Characiformes): A phylogenetic and revisionary study. (No. 622). Smithsonian Contributions and Studies Series. https://doi.org/10.5479/si.00810282.622 DOI: https://doi.org/10.5479/si.00810282.622
Cifuentes, R., González, J., Montoya, G., Jara, A., Ortíz, N., Piedra, P., & Habit, E. (2012). Weight-length relationships and condition factor of native fish from San Pedro River (Valdivia River basin, Chile). Gayana (Concepción), 76(Suppl. 1), 86–100. https://doi.org/10.4067/S0717-65382012000100009 DOI: https://doi.org/10.4067/S0717-65382012000100009
Contreras-Almazo, I. A. E., Cantillo-González, O. E., Coronel-Ortiz, I. Y., González-Rentería, M., & Pacheco-Peñaranda, E. (2019). Aspectos biológicos y reproductivos en hembras Prochilodus magdalenae (Steindachner, 1879) Ciénagas del Departamento del Cesar, Colombia. AquaTIC: Revista Electrónica de Acuicultura, (54), 1–14.
Cornick, S., Tawiah, A., & Chadee, K. (2015). Roles and regulation of the mucus barrier in the gut. Tissue Barriers, 3(1–2), e982426. https://doi.org/10.4161/21688370.2014.982426 DOI: https://doi.org/10.4161/21688370.2014.982426
Couto, T. B. A., Messager, M. L., & Olden, J. D. (2021). Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nature Sustainability, 4(5), 409–416. https://doi.org/10.1038/s41893-020-00665-4 DOI: https://doi.org/10.1038/s41893-020-00665-4
Cyrino, J. E. P., Bureau, D., & Kapoor, B. G. (Eds.). (2008). Feeding and digestive functions in fishes. Taylor & Francis Group. DOI: https://doi.org/10.1201/b10749
Day, R. D., Tibbetts, I. R., & Secor, S. M. (2014). Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes. Journal of Comparative Physiology B, 184(4), 497–512. https://doi.org/10.1007/s00360-014-0813-4 DOI: https://doi.org/10.1007/s00360-014-0813-4
de Moraes, M. F. P. G., Barbola, I. F., & Guedes, É. A. C. (1997). Alimentação e relações morfológicas com o aparelho digestivo do “curimbatá”, Prochilodus lineatus (Valenciennes) (Osteichthyes, Prochilodontidae), de uma lagoa do Sul do Brasil. Revista Brasileira de Zoologia, 14(1), 169–180. https://doi.org/10.1590/S0101-81751997000100015 DOI: https://doi.org/10.1590/S0101-81751997000100015
Díaz, A. O., García, A. M., & Goldemberg, A. L. (2008). Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: A histochemical study. Acta Histochemica, 110(1), 76–85. https://doi.org/10.1016/j.acthis.2007.08.002 DOI: https://doi.org/10.1016/j.acthis.2007.08.002
Domeneghini, C., Arrighi, S., Radaelli, G., Bosi, G., & Veggetti, A. (2005). Histochemical analysis of glycoconjugate secretion in the alimentary canal of Anguilla anguilla L. Acta Histochemica, 106(6), 477–487. https://doi.org/10.1016/j.acthis.2004.07.007 DOI: https://doi.org/10.1016/j.acthis.2004.07.007
Doria-González, M. A., Espitia-Galvis, A. M., Segura-Guevara, F. F., & Olaya-Nieto, C. W. (2020). Biología reproductiva del bocachico Prochilodus magdalenae (Prochilodontidae) en el río San Jorge, Colombia. Acta Biológica Colombiana, 26(1), 54–61. https://doi.org/10.15446/abc.v26n1.82907 DOI: https://doi.org/10.15446/abc.v26n1.82907
dos Santos, M. L., Arantes, F. P., Santiago, K. B., & dos Santos, J. E. (2015). Morphological characteristics of the digestive tract of Schizodon knerii (Steindachner, 1875), (Characiformes: Anostomidae): An anatomical, histological and histochemical study. Anais da Academia Brasileira de Ciências, 87(2), 867–878. https://doi.org/10.1590/0001-3765201520140230 DOI: https://doi.org/10.1590/0001-3765201520140230
Favero, G. C., Costa dos Santos, F. A., Soares da Costa-Júlio, G. S., Soares-Batista, F., Teixeira-Bonifácio, C., Araújo-Torres, I. F., Oliveora-Paranhos, C., & Kennedy-Luz, R. (2022). Effects of water temperature and feeding time on growth performance and physiological parameters of Piaractus brachypomus juveniles. Aquaculture, 548(Part 2), 737716. https://doi.org/10.1016/j.aquaculture.2021.737716 DOI: https://doi.org/10.1016/j.aquaculture.2021.737716
Figueiredo-Silva, A. C., Saravanan, S., Schrama, J. W., Panserat, S., Kaushik, S., & Geurden, I. (2013). A comparative study of the metabolic response in rainbow trout and Nile tilapia to changes in dietary macronutrient composition. British Journal of Nutrition, 109(5), 816–826. https://doi.org/10.1017/S000711451200205X DOI: https://doi.org/10.1017/S000711451200205X
Firmino, J. P., Vallejos-Vidal, E., Sarasquete, C., Ortiz-Delgado, J. B., Balasch, J. C., Tort, L., Estevez, A., Reyes-López, F. E., & Gisbert, E. (2020). Unveiling the effect of dietary essential oils supplementation in Sparus aurata gills and its efficiency against the infestation by Sparicotyle chrysophrii. Scientific Reports, 10(1), 17764. https://doi.org/10.1038/s41598-020-74625-5 DOI: https://doi.org/10.1038/s41598-020-74625-5
Flecker, A. S. (1996). Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology, 77(6), 1845–1854. https://doi.org/10.2307/2265788 DOI: https://doi.org/10.2307/2265788
Genten, F., Terwinghe, E., & Danguy, A. (Eds.). (2008). Atlas of Fish Histology. CRC Press. https://doi.org/10.1201/9780367803599 DOI: https://doi.org/10.1201/9780367803599
Graham, L., & Orenstein, J. M. (2007). Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nature Protocols, 2(10), 2439–2450. https://doi.org/10.1038/nprot.2007.304 DOI: https://doi.org/10.1038/nprot.2007.304
Guzmán-Beltran, L., Santana, V. D., Verdugo, M. H., Gómez-Ramirez, E., & Hurtado-Giraldo, H. (2013). Descripción anatómica e histológica del tracto digestivo de Nicuro Pimelodus blochii (Valenciennes, 1840). Orinoquia, 17(1), 102–110. DOI: https://doi.org/10.22579/20112629.55
Hasim, Tuheteru, J., & Fazrin, D. N. (2021). Comparison of growth pattern, condition factor, gonadosomatic index of Glosogobius giuris and Ophieleotris aporos in Limboto Lake, Gorontalo, Indonesia. Biodiversitas: Journal of Biological Diversity, 22(6), 3388–3393. https://doi.org/10.13057/biodiv/d220646 DOI: https://doi.org/10.13057/biodiv/d220646
Hedayati, S. A., Bagheri, T., Hoseinifar, S. H., & Van Doan, H. (2020). Growth performances and hemato-immunological responses of common carp (Cyprinus carpio Linnaeus, 1758) to fermented Aspergillus oryzae. Iranian Journal of Fisheries Sciences, 19(4), 1749–1756. Scopus. https://doi.org/10.22092/ijfs.2018.117403
Jiao, F., Zhang, L., Limbu, S. M., Yin, H., Xie, Y., Yang, Z., Shang, Z., Kong, L., & Rong, H. (2023). A comparison of digestive strategies for fishes with different feeding habits: Digestive enzyme activities, intestinal morphology, and gut microbiota. Ecology and Evolution, 13(9), e10499. https://doi.org/10.1002/ece3.10499 DOI: https://doi.org/10.1002/ece3.10499
Karachle, P., & Stergiou, K. I. (2010). Intestine morphometrics of fishes: A compilation and analysis of bibliographic data. Acta Ichthyologica Et Piscatoria, 40(1), 45–54. https://doi.org/10.3750/AIP2010.40.1.06 DOI: https://doi.org/10.3750/AIP2010.40.1.06
Knutsen, H. R., Sørensen, S. R., Munk, P., Bardal, T., & Kjørsvik, E. (2021). Digestive tract and the muscular pharynx/esophagus in wild leptocephalus larvae of European eel (Anguilla anguilla). Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.545217 DOI: https://doi.org/10.3389/fmars.2021.545217
Koshio, S. (2015). Immunotherapies targeting fish mucosal immunity – Current knowledge and future perspectives. Frontiers in Immunology, 6, 643. https://doi.org/10.3389/fimmu.2015.00643 DOI: https://doi.org/10.3389/fimmu.2015.00643
Kroon, F., Streten, C., & Harries, S. (2017). A protocol for identifying suitable biomarkers to assess fish health: A systematic review. PloS One, 12(4), e0174762–e0174762. https://doi.org/10.1371/journal.pone.0174762 DOI: https://doi.org/10.1371/journal.pone.0174762
Kumar, G. L., & Kiernan, J. A. (Eds.). (2010). Education Guide - Special Stains and H & E: Pathology. Dako.
Lasso, C. A., Agudelo-Córdoba, E., Jiménez-Segura, L. F., Ramírez-Gil, H., Morales-Betancourt, M., Ajiaco-Martínez, R. E., de Paula Gutiérrez, F., Usma-Oviedo, J. S., Muñoz-Torres, S. E., & Sanabria-Ochoa, A. I. (Eds.). (2011). I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
Leiv-Leknes, I. (2011). Histochemical studies on mucin-rich cells in the digestive tract of a teleost, the Buenos Aires tetra (Hyphessobrycon anisitsi). Acta Histochemica, 113(3), 353–357. https://doi.org/10.1016/j.acthis.2010.01.010 DOI: https://doi.org/10.1016/j.acthis.2010.01.010
Leiv-Leknes, I. (2015). Mucin in epithelial cells in oesophagus and stomach of black tetra, Gymnocorymbus ternetzi (Characidae, Teleostei). Zoomorphology, 134(2), 269–277. https://doi.org/10.1007/s00435-015-0256-9 DOI: https://doi.org/10.1007/s00435-015-0256-9
Liu, Z., Chang, H., Xu, F., Zhao, H., Zhu, L., Sun, Z., Yang, M., Wang, X., & Ma, A. (2023). Genome-wide association study of feed conversion ratio in turbot (Scophthalmus maximus) based on genome resequencing. Aquaculture Reports, 33, 101804. https://doi.org/10.1016/j.aqrep.2023.101804 DOI: https://doi.org/10.1016/j.aqrep.2023.101804
Mancera-Rodríguez, N. J., Castellanos-Barliza, J., & Urrego-Ballestas, D. (2016). Reproducción de Saccodon dariensis (Teleostei: Parodontidae) en afluentes del río Guatapé, cuenca del río Magdalena, Colombia. Revista de Biología Tropical, 64(2), 635–653. https://doi.org/10.15517/rbt.v64i2.20691 DOI: https://doi.org/10.15517/rbt.v64i2.20691
Marchetti, L., Capacchietti, M., Sabbieti, M. G., Accili, D., Materazzi, G., & Menghi, G. (2006). Histology and carbohydrate histochemistry of the alimentary canal in the rainbow trout Oncorhynchus mykiss. Journal of Fish Biology, 68(6), 1808–1821. https://doi.org/10.1111/j.0022-1112.2006.01063.x DOI: https://doi.org/10.1111/j.0022-1112.2006.01063.x
Moawad, U., Awaad, A., & Tawfiek, M. (2016). Histomorphological, histochemical and ultrastructural studies on the stomach of the adult African catfish (Clarias gariepinus). Journal of Microscopy and Ultrastructure, 5(3), 155–166. DOI: https://doi.org/10.1016/j.jmau.2016.08.002
Mojica, J. I., Usma, J. S., Álvarez-León, R., & Lasso, C. A. (Eds.). (2012). Libro Rojo de Peces Dulceacuícolas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Morales-González, G. (2023). Morfo-ecología alimenticia de machos del género de peces vivíparos Poeciliopsis (Cyprinodontiformes: Poeciliidae) [Tesis de licenciatura, Universidad Autónoma Metropolitana]. XOOK. https://repositorio.xoc.uam.mx/jspui/handle/123456789/43583
Moreno, J. M., Aguilar, F. A., Boada, N. S., Rojas, J. A., & Prieto, C. (2019). Análisis morfométrico e índices corporales del capitán de la sabana. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 66(2), 141–153. https://doi.org/10.15446/rfmvz.v66n2.82433 DOI: https://doi.org/10.15446/rfmvz.v66n2.82433
Mosquera-Ramos, D. F., & Gómez-Ramírez, E. (2024). Anatomía macro y microscópica del sistema digestivo del dentón (Megaleporinus muyscorum) en etapa adulta. Acta Biológica Colombiana, 29(1), 61–69. https://doi.org/10.15446/abc.v29n1.100063 DOI: https://doi.org/10.15446/abc.v29n1.100063
Mozsár, A., Boros, G., Sály, P., Antal, L., & Nagy, S. A. (2015). Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. Journal of Applied Ichthyology, 31(2), 315–320. https://doi.org/10.1111/jai.12658 DOI: https://doi.org/10.1111/jai.12658
Nachi, A. M., Hernandez-Blazquez, F. J., Barbieri, R. L., Leite, R. G., Ferri, S., & Phan, M. T. (1998). Intestinal histology of a detritivorous (iliophagous) fish Prochilodus scrofa (Characiformes, Prochilodontidae). Annales Des Sciences Naturelles - Zoologie et Biologie Animale, 19(2), 81–88. https://doi.org/10.1016/S0003-4339(98)80002-6 DOI: https://doi.org/10.1016/S0003-4339(98)80002-6
Namulawa, V. T., Kato, C. D., Nyatia, E., Rutaisire, J., & Britz, P. J. (2015). Transmission electron microscopy of the gastrointestinal tract of nile perch Lates niloticus. International Journal of Morphology, 33(2), 751–758. https://doi.org/10.4067/S0717-95022015000200053 DOI: https://doi.org/10.4067/S0717-95022015000200053
Natale, S., Bertini, A., Gisbert, E., Andree, K. B., Benini, E., Vallainc, D., Gatta, P. P., Bonaldo, A., & Parma, L. (2025). First insight into temporal variation of digestive enzyme activities in flathead grey mullet (Mugil cephalus) during the ongrowing phase. Aquaculture Reports, 41, 102652. https://doi.org/10.1016/j.aqrep.2025.102652 DOI: https://doi.org/10.1016/j.aqrep.2025.102652
Noaillac-Depeyre, J., & Gas, N. (1982). Ultrastructure of endocrine cells in the stomach of two teleost fish, Perca fluviatilis L. and Ameiurus nebulosus L. Cell and Tissue Research, 221(3), 657–678. https://doi.org/10.1007/BF00215709 DOI: https://doi.org/10.1007/BF00215709
Nunes, C., Silva, A., Soares, E., & Ganias, K. (2011). The use of hepatic and somatic indices and histological information to characterize the reproductive dynamics of Atlantic sardine Sardina pilchardus from the Portuguese Coast. Marine and Coastal Fisheries, 3(1), 127–144. https://doi.org/10.1080/19425120.2011.556911 DOI: https://doi.org/10.1080/19425120.2011.556911
Okuthe, G. E., & Bhomela, B. (2021). Morphology, histology and histochemistry of the digestive tract of the banded tilapia, Tilapia sparrmanii (Perciformes: Cichlidae). Zoologia (Curitiba), 37, e51043. https://doi.org/10.3897/zoologia.37.e51043 DOI: https://doi.org/10.3897/zoologia.37.e51043
Olaya, C. M., Ovalle, C. H., Gómez Ramírez, E., Rodríguez Caicedo, D., Caldas Martínez, M. L., & Hurtado Giraldo, H. (2007). Histología y morfometría del sistema digestivo del silúrido bagre tigrito (Pimelodus pictus). Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 54, 311–323. https://repositorio.unal.edu.co/handle/unal/24915
Ortiz-Ruiz, M., López-Flórez, C., Castro-Rebolledo, M. I., Baldisserotto, B., & Gómez-Ramírez, E. (2024). Anatomy, histology and ultrastructure of the digestive tract in Andean fish (Trichomycterus bogotensis) and ecological implications. Zoomorphology, 143(2), 433–441. https://doi.org/10.1007/s00435-023-00634-3 DOI: https://doi.org/10.1007/s00435-023-00634-3
Osorio-Urtecho, K. (2018). Efecto de la salinidad sobre el metabolismo del glucógeno hepático y cerebral tras la ingesta de alimento, usando como organismo de ensayo a Tilapia Roja (Oreochromis spp.) [Tesis de maestría]. Universidad Nacional Autónoma de Nicaragua.
Oviedo-Montiel, H. de J. (2021). Cladóceros en el desarrollo del sistema digestivo de larvas de blanquillo Sorubim cuspicaudus [Tesis de maestría, Universidad de Córdoba]. Repositorio institucional: Universidad de Córdoba. https://repositorio.unicordoba.edu.co/handle/ucordoba/4284
Palladino, A., de Felice, E., Attanasio, C., Barone, C. M. A., Crasto, A., D’Angelo, L., Giaquinto, D., Lambiase, C., Scocco, P., Serrapica, F., & Maruccio, L. (2023). A morphological and ultrastructural study of the anterior digestive tract of adult Nile tilapia Oreochromis niloticus. Animals, 13(3), 420. https://doi.org/10.3390/ani13030420 DOI: https://doi.org/10.3390/ani13030420
Pereira, B. F., da Silva-Alves, R. M., Alves, A. L., Senhorini, J. A., de Alcântara-Rocha, R. de C. G., Hakime-Scalize, P., Pitol, D. L., & Caetano, F. H. (2014). Effects of biodegradable detergents in morphological parameters of liver in two neotropical fish species (Prochilodus lineatus and Astyanax altiparanae). Microscopy Research, 2(2), 39–49. https://doi.org/10.4236/mr.2014.22006 DOI: https://doi.org/10.4236/mr.2014.22006
Phrompanya, P., Saenphet, K., & Saenphet, S. (2019). Comparative histochemical study of the gastrointestinal tracts of the Nile tilapia (Oreochromis niloticus) and the hybrid catfish (Clarias batrachus x Clarias gariepinus). Acta Histochemica, 121(3), 261–267. https://doi.org/10.1016/j.acthis.2019.01.003 DOI: https://doi.org/10.1016/j.acthis.2019.01.003
Radkhah, A., & Eagderi, S. (2015). Length-weight and length-length relationships and condition factor of six cyprinid fish species of Zarrineh River (Urmia Lake basin, Iran). Iranian Journal of Ichthyology, 2(1), 61–64. https://doi.org/10.22034/iji.v2i1.12
Ragheb, E. (2023). Length-weight relationship and well-being factors of 33 fish species caught by gillnets from the Egyptian Mediterranean waters off Alexandria. Egyptian Journal of Aquatic Research, 49(3), 361–367. https://doi.org/10.1016/j.ejar.2023.01.001 DOI: https://doi.org/10.1016/j.ejar.2023.01.001
Ramírez-Espitia, E. J., Hurtado-Giraldo, H., & Gómez-Ramírez, E., (2020). Anatomía general, histología y morfometría del sistema digestivo del pez Pterophyllum scalare (Perciformes: Cichlidae). Revista de Biología Tropical, 68(4), 1371–1383. https://doi.org/10.15517/rbt.v68i4.40393 DOI: https://doi.org/10.15517/rbt.v68i4.40393
Ray, A. K., & Ringø, E. (2014). The gastrointestinal tract of fish. In D. Merrifield, & E. Ringø (Eds.), Aquaculture nutrition: Gut health, probiotics and prebiotics (pp. 1–13). John Wiley & Sons. https://doi.org/10.1002/9781118897263.ch1 DOI: https://doi.org/10.1002/9781118897263.ch1
Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P., & Rocha, L. A. (2016). Fish biodiversity and conservation in South America. Journal of Fish Biology, 89(1), 12–47. https://doi.org/10.1111/jfb.13016 DOI: https://doi.org/10.1111/jfb.13016
Ringø, E., Myklebust, R., Mayhew, T. M., & Olsen, R. E. (2007). Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture, 268(1–4), 251–264. https://doi.org/10.1016/j.aquaculture.2007.04.047 DOI: https://doi.org/10.1016/j.aquaculture.2007.04.047
Rodrigues, A. P. O., & Cargnin-Ferreira, E. (2017). Morphology and histology of the pirarucu (Arapaima gigas) digestive tract. International Journal of Morphology, 35(3), 950–957. https://doi.org/10.4067/S0717-95022017000300025 DOI: https://doi.org/10.4067/S0717-95022017000300025
Salem, M., Al-Tobasei, R., Ali, A., Lourenco, D., Gao, G., Palti, Y., Kenney, B., & Leeds, T. D. (2018). Genome-wide association analysis with a 50k transcribed gene snp-chip identifies QTL affecting muscle yield in rainbow trout. Frontiers in Genetics, 9, 387. https://doi.org/10.3389/fgene.2018.00387 DOI: https://doi.org/10.3389/fgene.2018.00387
Salinas-Torres, D. (2011). El sistema digestivo de peces óseos [Tesis de maestría, Universidad Nacional Autónoma de México]. TESIUNAM. https://hdl.handle.net/20.500.14330/TES01000672144
Samanta, P., Kumari, P., Pal, S., Mukherjee, A. K., & Ghosh, A. R. (2018). Histopathological and ultrastructural alterations in some organs of Oreochromis niloticus exposed to glyphosate-based herbicide, Excel Mera 71. Journal of Microscopy and Ultrastructure, 6(1), 35–43. https://doi.org/10.1016/j.jmau.2017.03.004 DOI: https://doi.org/10.4103/JMAU.JMAU_8_18
Serrano-López, J. N., Soto-López, K., Ochoa-Báez, R. I., O’Sullivan, J., & Galván-Magaña, F. (2021). Morphometry and histology to assess the maturity stage of three endangered devil ray species (Elasmobranchii: Mobulidae) from the Gulf of California. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(7), 1624–1635. https://doi.org/10.1002/aqc.3548 DOI: https://doi.org/10.1002/aqc.3548
Vega-Contreras, N. A., Galvis, F., & Salazar-Mercado, S. A. (2017). Relaciones evolutivas de los peces Prochilodus reticulatus y Prochilodus magdalenae (Characiformes: Prochilodontidae). Revista de Ciencias, 21(1), 161–171. https://doi.org/10.25100/rc.v21i1.6348 DOI: https://doi.org/10.25100/rc.v21i1.6348
Verma, C. R., Gorule, P. A., Kumkar, P., Kharat, S. S., & Gosavi, S. M. (2020). Morpho-histochemical adaptations of the digestive tract in Gangetic mud-eel Ophichthys cuchia (Hamilton 1822) support utilization of mud-dwelling prey. Acta Histochemica, 122(7), 151602. https://doi.org/10.1016/j.acthis.2020.151602 DOI: https://doi.org/10.1016/j.acthis.2020.151602
Vidal, M. R., Ruiz, T. F. R., dos Santos, D. D., Gardinal, M. V. B., de Jesus, F. L., Faccioli, C. K., Vicentini, I. B. F., & Vicentini, C. A. (2020). Morphological and histochemical characterisation of the mucosa of the digestive tract in matrinxã Brycon amazonicus (Teleostei: Characiformes). Journal of Fish Biology, 96(1), 251–260. https://doi.org/10.1111/jfb.14217 DOI: https://doi.org/10.1111/jfb.14217
Wilson, J. M., & Castro, L. F. C. (2010). Morphological diversity of the gastrointestinal tract in fishes. In M. Grosell, A. P. Farrell, & C. J. Brauner (Eds.), Fish physiology (Vol. 30, pp. 1–55). Academic Press. https://doi.org/10.1016/S1546-5098(10)03001-3 DOI: https://doi.org/10.1016/S1546-5098(10)03001-3
WWF Colombia & Autoridad Nacional de Acuicultura y Pesca (AUNAP). (2020). La pesca en Colombia: del agua a la mesa. Agenda del Mar. https://wwflac.awsassets.panda.org/downloads/libro_pesca_adm_2020baja_1.pdf
Xiong, D., Meng, Y., Yu, H., Liu, X., & Liu, H. (2019). Structure and ultrastructure studies of the digestive tract of the endangered Qinling lenok (Brachymystax tsinlingensis Li, 1966). Iranian Journal of Fisheries Science, 18(4), 981–995. https://dor.isc.ac/dor/20.1001.1.15622916.2019.18.4.16.7
Zaldúa, N., & Naya, D. E. (2014). Digestive flexibility during fasting in fish: A review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 169, 7–14. https://doi.org/10.1016/j.cbpa.2013.12.006 DOI: https://doi.org/10.1016/j.cbpa.2013.12.006
Published
Issue
Section
License
Copyright (c) 2025 Revista de Biología Tropical

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 License (CC BY 4.0)
Attribution (BY) • (BY) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
