The impact of climate change on the distribution of wetland-associated invasive alien plant species in Western province, Sri Lanka

Authors

DOI:

https://doi.org/10.15517/rev.biol.trop..v73i1.58832

Keywords:

temperature; range expansion; exotic; habitat shift; biodiversity.

Abstract

Introduction: Climate change and invasive alien plant species (IAPS) severely threaten natural ecosystems globally.

Objective: To identify and assess climate suitability for seven wetland-associated species and predict their future distribution using shared socio-economic pathways (SSPs) 2 4.5 and 5 8.5 for 2050 and 2070.

Methods: The species selected were Alstonia macrophylla, Annona glabra, Dillenia suffruticosa, Lantana camara, Leucaena leucocephala, Panicun maximum, and Sphagneticola trilobata. Data on species occurrence were collected by field surveys in the Western province (Colombo, Gampaha and Kalutara districts), and this, together with climate data, were fed into the Maximum Entropy model (MaxEat model). Climate suitability area maps were developed for the seven IAPS for the current climate and four future scenarios.

Results: A. glabra, L. camara, and L. leucocephala showed an increase in climate-suitable areas for the years 2050 and 2070 under both climatic scenarios compared to the current distribution. S. trilobata showed a decrease in its range in the future compared to the current distribution. The climate-suitable area for A. macrophylla will also not expand under either scenario except for a modest rise in SSP2 4.5 in 2050. The current distribution of D. suffruticosa and SSP2 4.5 in 2050’s distributions were almost identical, and the other two future scenarios showed comparatively low distribution. For P. maximum SSP2 4.5 indicated a slight increase in climate-suitable areas for 2070 compared to the current distribution.

Conclusion: A. glabra, L. camara, and L. leucocephala can become highly invasive as their ranges expand in response to future climate changes. The distribution of S. trilobata will be significantly reduced under future climate scenarios. As suitable areas for IAPS increase in the Colombo district over time compared to other districts in the province, its wetland-associated native plant species may face a greater risk of invasion by IAPS in future climatic scenarios.

References

Abdelaal, M., Fois, M., Dakhil, M. A., Bacchetta, G., & El-Sherbeny, G. A. (2020). Predicting the potential current and future distribution of the endangered endemic vascular plant Primula boveana Decne. ex-Duby in Egypt. Plants, 9(8), 957. https://doi.org/10.3390/PLANTS9080957 DOI: https://doi.org/10.3390/plants9080957

Bambaradeniya, C., Ekanayake, S. P., Gunawardena, J., & Balakrishna, P. (2001). Preliminary observations on the status of alien invasive biota in natural ecosystems of Sri Lanka [Technical Report]. IUCN Regional Biodiversity Programe.

Bezeng, B. S., Morales-Castilla, I., van der Bank, M., Yessoufou, K., Daru, B. H., & Davies, T. J. (2017). Climate change may reduce the spread of non-native species. Ecosphere, 8(3), e01694. https://doi.org/10.1002/ecs2.1694 DOI: https://doi.org/10.1002/ecs2.1694

Bhagwat, S. A., Breman, E., Thekaekara, T., Thornton, T. F., & Willis, K. J. (2012). A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE, 7(3), e32407. DOI: https://doi.org/10.1371/journal.pone.0032407

Cao, Z., Zhang, L., Zhang, X., & Guo, Z. (2021). Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent Model. Sustainability, 13(20), 11253. https://doi.org/10.3390/su132011253 DOI: https://doi.org/10.3390/su132011253

Çoban, H. O., Örücü, M. K., & Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12(7), 2671. https://doi.org/10.3390/su12072671 DOI: https://doi.org/10.3390/su12072671

Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology and Evolution, 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003 DOI: https://doi.org/10.1016/j.tree.2013.04.003

Dang, A. T., Kumar, L., Reid, M., & Anh, L. N. (2021). Modeling the susceptibility of wetland plant species under climate change in the Mekong Delta, Vietnam. Ecological Informatics, 64, 101–358. https://doi.org/10.1016/j.ecoinf.2021.101358 DOI: https://doi.org/10.1016/j.ecoinf.2021.101358

Day, M. J., Wiley, C., Playford, J., & Zalucki, M. P. (2003). Lantana: current management status and future prospects. Australian Centre for International Agricultural Research. https://www.aciar.gov.au/publication/books-and-manuals/lantana-current-management-status-and-future-prospects

Ding, W., Li, H., & Wen, J. (2022). Response of the invasive plant Ailanthus altissima (Mill.) swingle and its two important natural enemies (Eucryptorrhynchus scrobiculatus (Motschulsky) and E. brandti (Harold)) to climate change. Ecological Indicators, 143, 109408. https://doi.org/10.1016/j.ecolind.2022.109408 DOI: https://doi.org/10.1016/j.ecolind.2022.109408

du Toit, M. J., du Preez, C. C., & Cilliers, S. S. (2021). Plant diversity and conservation value of wetlands along a rural-urban gradient. Bothalia, African Biodiversity & Conservation, 51(1), a4. https://doi.org/10.38201/btha.abc.v51.i1.4 DOI: https://doi.org/10.38201/btha.abc.v51.i1.4

Eeswaran, R. (2018). Climate change impacts and adaptation in the agriculture sector of Sri Lanka: What we learnt and way forward. In R. Eeswaran (Ed.), Handbook of climate change communication (Vol. 2, pp. 97–110). Springer. DOI: https://doi.org/10.1007/978-3-319-70066-3_8

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Essl, F., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., Van Kleunen, M., Weigelt, P., Mang, T., Dullinger, S., Lenzner, B., Moser, D., Maurel, N., Seebens, H., Stein, A., Weber, E., Chatelain, C., Inderjit, Genovesi, P., Kartesz, J., ... Winter, M. (2019). Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 11(5), plz051. https://doi.org/10.1093/aobpla/plz051 DOI: https://doi.org/10.1093/aobpla/plz051

Fernando, S. T, Kodippili, N., Suraweera, C., & Kumari, B. H. G. (2016). Identification of distribution of Lantana camera (Exotic Invasive Species) and its impacts on Udawalawa National Park, Sri Lanka. Proceedings of the 37th Asian Conference on Remote Sensing, Colombo, 496–504.

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 DOI: https://doi.org/10.1002/joc.5086

Franklin, J. (2010). Mapping species distributions: spatial inference and prediction. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511810602

Gajaweera, C. J., Weerasinghe, B., & Seresinhe, T. (2011). Preliminary study on the adaptation of wild Guinea grass (Panicum maximum) to different agro-climatic regions in Hambanthota District. Proceedings of International Forestry and Environment Symposium, 16(0), 181–206. https://doi.org/10.31357/fesympo.v16i0.70 DOI: https://doi.org/10.31357/fesympo.v16i0.70

Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344, 486. https://doi.org/10.1126/science.1247579 DOI: https://doi.org/10.1126/science.1247579

Green, M. J. B., How, R., Padmalal, U. K. G. K., Dissanayake, S. R. B., & Rawat, G. S. (2009). The importance of monitoring biological diversity and its application in Sri Lanka. Tropical Ecology, 50(1), 41–56.

Heng, R. K. J., Onichandran, S., Suhailiee, K. A. M., Sait, M., Sam, S., & Empin, G. B. (2014). Estimation of the aboveground biomass in a Dillenia suffruticosa stand, Malaysia. Taiwan Journal of Forest Science, 29, 69–78.

Iqbal, M. C. M., Wijesundera, D. S. A., & Ranwala, S. M. W. (2014). Climate change, invasive alien flora and concerns for their management in Sri Lanka. Ceylon Journal of Science, 43(2), 1–15 DOI: https://doi.org/10.4038/cjsbs.v43i2.7321

Jayawardhane, J., & Gunaratne, A. M. T. A. (2022). Influence of Alastonia macrophylla spread on the restoration success of pine conversion programmes in Sri Lanka. Journal of Tropical Forest Science, 34(3), 285–295. https://doi.org/10.26525/jtfs2022.34.3.285 DOI: https://doi.org/10.26525/jtfs2022.34.3.285

Jiang, P., Jiang, J., Yang, C., Gu, X., Huang, Y., & Liu, L. (2023). Climate change will lead to a significant reduction in the global cultivation of Panicum milliaceum. Atmosphere, 14(8), 1297. DOI: https://doi.org/10.3390/atmos14081297

Kariyawasam, C. S., Kumar, L., & Ratnayake, S. S. (2019). Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy, 21(6), 571. https://doi.org/10.3390/e21060571 DOI: https://doi.org/10.3390/e21060571

Kariyawasam, C. S., Kumar, L., Ratnayake, S. S., & Wijesundara, D. S. A. (2021). Potential risks of invasive alien plant species on native plant biodiversity in Sri Lanka due to climate change. Biodiversity, 22, 24–34. https://doi.org/10.1080/14888386.2021.1905547 DOI: https://doi.org/10.1080/14888386.2021.1905547

Kato-Noguchi, H., & Kurniadie, D. (2021). Allelopathy of Lantana camara as an invasive plant. Plants, 10(5), 1028. https://doi.org/10.3390/plants10051028 DOI: https://doi.org/10.3390/plants10051028

Leroy, B., Meynard, C. N., Bellard, C., & Courchamp, F. (2015). Virtual species, an R package to generate virtual species distributions. Ecography, 39(6), 599–607. https://doi.org/10.1111/ecog.01388 DOI: https://doi.org/10.1111/ecog.01388

Liyanage, M. de S., Jayasundara, H. P. S., & Gunasekera, G. (1993). Leucaena as a multipurpose tree for coconut plantations in Sri Lanka. Journal of Tropical Forest Science, 6(2), 91–97.

Marambe, B., & Wijesundara, S. (2021). Effects of climate change on weeds and invasive alien plants in Sri Lankan agro-ecosystems: Policy and management implications. Frontiers in Agronomy, 3, 641006. https://doi.org/10.3389/fagro.2021.641006 DOI: https://doi.org/10.3389/fagro.2021.641006

Ministry of Mahaweli Development & Environment. (2015). A descriptive guide to invasive alien species of Sri Lanka: A descriptive account of national priority and potentially invasive alien species. Biodiversity Secretariat, Ministry of Mahaweli Development & Environment.

Nanayakkara, T. M. E. (2002). A study on biology and invasive characteristics of Annona glabra in Bellanwila-Attidiya wetland [Master´s thesis, University of Sri Jayewardenepura]. Scholar Bank (Digital Repository), University of Sri Jayewardenepura. http://dr.lib.sjp.ac.lk/handle/123456789/3042

Nghiem, L. T., Tan, H. T., & Corlett, R. T. (2015). Invasive trees in Singapore: Are they a threat to native forests? Tropical Conservation Science, 8(1), 201–214. DOI: https://doi.org/10.1177/194008291500800116

Nyairo, R., & Machimura, T. (2020). Potential effects of climate and human influence changes on range and diversity of nine Fabaceae species and implications for nature’s contribution to people in Kenya. Climate, 8(10), 109. https://doi.org/10.3390/cli8100109 DOI: https://doi.org/10.3390/cli8100109

Perera, K. R. S., & Epa, U. P. K. (2023). Effect of aqueous extracts of the invasive weed, creeping daisy (Sphagneticola trilobata) on the mortality of earthworm, Perionyx excavates. Indian Journal of Weed Science, 55(2), 213–216. DOI: https://doi.org/10.5958/0974-8164.2023.00039.4

Perera, K. R. S., Ratnayake, R. M. C. S., & Epa, U. P. K. (2023). Allelopathic effects of the invasive plant Wedelia (Sphagneticola trilobata L.) aqueous extract on common beans (Phaseolus vulgaris L.). Journal of Experimental Biology and Agricultural Sciences, 11(3), 542–549. DOI: https://doi.org/10.18006/2023.11(3).542.549

Phillips, S. J., Anderson, R. P., Dudík, M., & Schapire, R. E. (n.d.). Maxent software for modeling species niches and distributions (Version 3.4.4) [Software]. American Museum of Natural History. http://biodiversityinformatics.amnh.org/open_source/maxent/

Prematilake, K. G., & Ekanayake, P. B. (2004). Beware of Arundevi, the invasive alien. Tea Bulletin, 19(1-2), 8–9.

Qin, Z., Zhang, J. E., DiTommaso, A., Wang, R. L., & Liang, K. M. (2016). Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models. Climatic change, 134, 193–208. DOI: https://doi.org/10.1007/s10584-015-1500-5

Setter, M., Bradford, M., Dorney, B., Lynes, B., Mitchell, J., Setter, S., & Westcott, D. (2002). Pond apple: Are the endangered cassowary and feral pig helping this weed to invade Queensland’s wet tropics. Thirteenth Australian Weeds Conference, 13, 173–176.

Sharma, P., Kaur, A., Batish, D. R., Kaur, S., & Chauhan, B. S. (2022). Critical insights into the ecological and invasive attributes of Leucaena leucocephala, a tropical agroforestry species. Frontiers in Agronomy, 4, 890992. https://doi.org/10.3389/fagro.2022.890992 DOI: https://doi.org/10.3389/fagro.2022.890992

Tesfamariam, B. G., Gessesse, B., & Melgani, F. (2022). MaxEnt-based modeling of suitable habitat for rehabilitation of Podocarpus forest at landscape scale. Environmental Systems Research, 11(1), 4. https://doi.org/10.1186/s40068-022-00248-6 DOI: https://doi.org/10.1186/s40068-022-00248-6

Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE, 13(4), e0195752. https://doi.org/10.1371/journal.pone.0195752 DOI: https://doi.org/10.1371/journal.pone.0195752

Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., & Zimmermann, N. E. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9(3-4), 137–152. https://doi.org/10.1016/j.ppees.2007.09.004 DOI: https://doi.org/10.1016/j.ppees.2007.09.004

United Nations. (1992). United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/convkp/conveng.pdf

United Nations Framework Convention on Climate Change. (2016). The Paris Agreement. https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf

Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarošík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., ... Settele, J. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution, 24(12), 686–693. https://doi.org/10.1016/j.tree.2009.06.008 DOI: https://doi.org/10.1016/j.tree.2009.06.008

Weber, E. (2004). Invasive plant species of the world: A reference guide to environmental weeds. Choice Reviews Online, 41(09), 41–5019. https://doi.org/10.5860/choice.41-5019 DOI: https://doi.org/10.5860/CHOICE.41-5019

Wickramathilake, B. A. K., Weerasinghe, T. K., & Ranwala, S. M. W. (2014). Impacts of woody invader Dillenia suffruticosa (Griff.) Martelli on physio-chemical properties of soil and, below and above ground Flora. Journal of Tropical Forestry and Environment, 3(2), 66–75. https://doi.org/10.31357/jtfe.v3i2.1844 DOI: https://doi.org/10.31357/jtfe.v3i2.1844

Wijesundara, S. (2010). Invasive alien plants in Sri Lanka. In B. Marambe, P. Silva, S. Wijesundara, & N. Atapattu (Eds.), Invasive alien species-strengthening capacity to control introduction and spread in Sri Lanka (pp. 27–38). Biodiversity Secretariat of the Ministry of Environment, Sri Lanka.

Zhang, J. H., Li, K. J., Liu, X. F., Yang, L., & Shen, S. K. (2021). Interspecific variance of suitable habitat changes for four alpine Rhododendron species under climate change: Implications for Their Reintroductions. Forests, 12(11), 1520. https://doi.org/10.3390/f12111520 DOI: https://doi.org/10.3390/f12111520

Published

2025-07-30