Impacto del cambio climático en la distribución de especies de plantas exóticas invasoras en humedales de la provincia occidental de Sri Lanka
DOI:
https://doi.org/10.15517/rev.biol.trop..v73i1.58832Palabras clave:
temperatura; expansión de área de distribución; exóticas; cambio de hábitat; biodiversidad.Resumen
Introducción: El cambio climático y las especies de plantas exóticas invasoras (EPI) amenazan gravemente los ecosistemas naturales a nivel mundial.
Objetivo: Identificar y evaluar la idoneidad climática de siete especies asociadas a humedales y predecir su distribución futura utilizando vías socioeconómicas compartidas (VSSP) 2 4.5 y 5 8.5 para 2050 y 2070.
Métodos: Las especies seleccionadas para el estudio fueron Alstonia macrophylla, Annona glabra, Dillenia suffruticosa. Lantana camara, Leucaena leucocephala, Panicun maximum, y Sphagneticola trilobata. Los datos sobre la presencia de especies se recopilaron mediante estudios de campo en la provincia occidental (distritos de Colombo, Gampaha y Kalutara) y estos, junto con datos climáticos, se incorporaron al modelo de máxima entropía (modelo MaxEnt). Se desarrollaron mapas de áreas de idoneidad climática para las siete EPIs para el clima actual y cuatro escenarios futuros.
Resultados: A. glabra, L. camara y L. leucocephala mostraron un aumento en las áreas adecuadas para el clima para 2050 y 2070 en ambos escenarios climáticos en comparación con la distribución actual. S. trilobata mostró una disminución en su rango en el futuro en comparación con la distribución actual. El área adecuada del clima para A. macrophylla tampoco se expandirá en ninguno de los escenarios, excepto por un aumento modesto en SSP2 4.5 en 2050. La distribución actual de D. suffruticosa y las distribuciones de SSP2 4.5 en 2050 fueron casi idénticas, y los otros dos escenarios futuros mostraron una distribución comparativamente baja. Para P. maximum, SSP2 4.5 indicó un ligero aumento en las áreas adecuadas del clima para 2070 en comparación con la distribución actual.
Conclusión: A. glabra, L. camara y L. leucocephala pueden volverse altamente invasivas a medida que sus áreas de distribución se expandan en respuesta a futuros cambios climáticos. La distribución de S. trilobata se reducirá significativamente en futuros escenarios climáticos. A medida que las áreas adecuadas para EPIs aumenten en el distrito de Colombo en comparación con otros distritos de la provincia, sus especies de plantas nativas asociadas a humedales pueden enfrentar un mayor riesgo de invasión por EPIs en futuros escenarios climáticos.
Descargas
Referencias
Abdelaal, M., Fois, M., Dakhil, M. A., Bacchetta, G., & El-Sherbeny, G. A. (2020). Predicting the potential current and future distribution of the endangered endemic vascular plant Primula boveana Decne. ex-Duby in Egypt. Plants, 9(8), 957. https://doi.org/10.3390/PLANTS9080957 DOI: https://doi.org/10.3390/plants9080957
Bambaradeniya, C., Ekanayake, S. P., Gunawardena, J., & Balakrishna, P. (2001). Preliminary observations on the status of alien invasive biota in natural ecosystems of Sri Lanka [Technical Report]. IUCN Regional Biodiversity Programe.
Bezeng, B. S., Morales-Castilla, I., van der Bank, M., Yessoufou, K., Daru, B. H., & Davies, T. J. (2017). Climate change may reduce the spread of non-native species. Ecosphere, 8(3), e01694. https://doi.org/10.1002/ecs2.1694 DOI: https://doi.org/10.1002/ecs2.1694
Bhagwat, S. A., Breman, E., Thekaekara, T., Thornton, T. F., & Willis, K. J. (2012). A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE, 7(3), e32407. DOI: https://doi.org/10.1371/journal.pone.0032407
Cao, Z., Zhang, L., Zhang, X., & Guo, Z. (2021). Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent Model. Sustainability, 13(20), 11253. https://doi.org/10.3390/su132011253 DOI: https://doi.org/10.3390/su132011253
Çoban, H. O., Örücü, M. K., & Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12(7), 2671. https://doi.org/10.3390/su12072671 DOI: https://doi.org/10.3390/su12072671
Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology and Evolution, 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003 DOI: https://doi.org/10.1016/j.tree.2013.04.003
Dang, A. T., Kumar, L., Reid, M., & Anh, L. N. (2021). Modeling the susceptibility of wetland plant species under climate change in the Mekong Delta, Vietnam. Ecological Informatics, 64, 101–358. https://doi.org/10.1016/j.ecoinf.2021.101358 DOI: https://doi.org/10.1016/j.ecoinf.2021.101358
Day, M. J., Wiley, C., Playford, J., & Zalucki, M. P. (2003). Lantana: current management status and future prospects. Australian Centre for International Agricultural Research. https://www.aciar.gov.au/publication/books-and-manuals/lantana-current-management-status-and-future-prospects
Ding, W., Li, H., & Wen, J. (2022). Response of the invasive plant Ailanthus altissima (Mill.) swingle and its two important natural enemies (Eucryptorrhynchus scrobiculatus (Motschulsky) and E. brandti (Harold)) to climate change. Ecological Indicators, 143, 109408. https://doi.org/10.1016/j.ecolind.2022.109408 DOI: https://doi.org/10.1016/j.ecolind.2022.109408
du Toit, M. J., du Preez, C. C., & Cilliers, S. S. (2021). Plant diversity and conservation value of wetlands along a rural-urban gradient. Bothalia, African Biodiversity & Conservation, 51(1), a4. https://doi.org/10.38201/btha.abc.v51.i1.4 DOI: https://doi.org/10.38201/btha.abc.v51.i1.4
Eeswaran, R. (2018). Climate change impacts and adaptation in the agriculture sector of Sri Lanka: What we learnt and way forward. In R. Eeswaran (Ed.), Handbook of climate change communication (Vol. 2, pp. 97–110). Springer. DOI: https://doi.org/10.1007/978-3-319-70066-3_8
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x
Essl, F., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., Van Kleunen, M., Weigelt, P., Mang, T., Dullinger, S., Lenzner, B., Moser, D., Maurel, N., Seebens, H., Stein, A., Weber, E., Chatelain, C., Inderjit, Genovesi, P., Kartesz, J., ... Winter, M. (2019). Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 11(5), plz051. https://doi.org/10.1093/aobpla/plz051 DOI: https://doi.org/10.1093/aobpla/plz051
Fernando, S. T, Kodippili, N., Suraweera, C., & Kumari, B. H. G. (2016). Identification of distribution of Lantana camera (Exotic Invasive Species) and its impacts on Udawalawa National Park, Sri Lanka. Proceedings of the 37th Asian Conference on Remote Sensing, Colombo, 496–504.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 DOI: https://doi.org/10.1002/joc.5086
Franklin, J. (2010). Mapping species distributions: spatial inference and prediction. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511810602
Gajaweera, C. J., Weerasinghe, B., & Seresinhe, T. (2011). Preliminary study on the adaptation of wild Guinea grass (Panicum maximum) to different agro-climatic regions in Hambanthota District. Proceedings of International Forestry and Environment Symposium, 16(0), 181–206. https://doi.org/10.31357/fesympo.v16i0.70 DOI: https://doi.org/10.31357/fesympo.v16i0.70
Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344, 486. https://doi.org/10.1126/science.1247579 DOI: https://doi.org/10.1126/science.1247579
Green, M. J. B., How, R., Padmalal, U. K. G. K., Dissanayake, S. R. B., & Rawat, G. S. (2009). The importance of monitoring biological diversity and its application in Sri Lanka. Tropical Ecology, 50(1), 41–56.
Heng, R. K. J., Onichandran, S., Suhailiee, K. A. M., Sait, M., Sam, S., & Empin, G. B. (2014). Estimation of the aboveground biomass in a Dillenia suffruticosa stand, Malaysia. Taiwan Journal of Forest Science, 29, 69–78.
Iqbal, M. C. M., Wijesundera, D. S. A., & Ranwala, S. M. W. (2014). Climate change, invasive alien flora and concerns for their management in Sri Lanka. Ceylon Journal of Science, 43(2), 1–15 DOI: https://doi.org/10.4038/cjsbs.v43i2.7321
Jayawardhane, J., & Gunaratne, A. M. T. A. (2022). Influence of Alastonia macrophylla spread on the restoration success of pine conversion programmes in Sri Lanka. Journal of Tropical Forest Science, 34(3), 285–295. https://doi.org/10.26525/jtfs2022.34.3.285 DOI: https://doi.org/10.26525/jtfs2022.34.3.285
Jiang, P., Jiang, J., Yang, C., Gu, X., Huang, Y., & Liu, L. (2023). Climate change will lead to a significant reduction in the global cultivation of Panicum milliaceum. Atmosphere, 14(8), 1297. DOI: https://doi.org/10.3390/atmos14081297
Kariyawasam, C. S., Kumar, L., & Ratnayake, S. S. (2019). Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy, 21(6), 571. https://doi.org/10.3390/e21060571 DOI: https://doi.org/10.3390/e21060571
Kariyawasam, C. S., Kumar, L., Ratnayake, S. S., & Wijesundara, D. S. A. (2021). Potential risks of invasive alien plant species on native plant biodiversity in Sri Lanka due to climate change. Biodiversity, 22, 24–34. https://doi.org/10.1080/14888386.2021.1905547 DOI: https://doi.org/10.1080/14888386.2021.1905547
Kato-Noguchi, H., & Kurniadie, D. (2021). Allelopathy of Lantana camara as an invasive plant. Plants, 10(5), 1028. https://doi.org/10.3390/plants10051028 DOI: https://doi.org/10.3390/plants10051028
Leroy, B., Meynard, C. N., Bellard, C., & Courchamp, F. (2015). Virtual species, an R package to generate virtual species distributions. Ecography, 39(6), 599–607. https://doi.org/10.1111/ecog.01388 DOI: https://doi.org/10.1111/ecog.01388
Liyanage, M. de S., Jayasundara, H. P. S., & Gunasekera, G. (1993). Leucaena as a multipurpose tree for coconut plantations in Sri Lanka. Journal of Tropical Forest Science, 6(2), 91–97.
Marambe, B., & Wijesundara, S. (2021). Effects of climate change on weeds and invasive alien plants in Sri Lankan agro-ecosystems: Policy and management implications. Frontiers in Agronomy, 3, 641006. https://doi.org/10.3389/fagro.2021.641006 DOI: https://doi.org/10.3389/fagro.2021.641006
Ministry of Mahaweli Development & Environment. (2015). A descriptive guide to invasive alien species of Sri Lanka: A descriptive account of national priority and potentially invasive alien species. Biodiversity Secretariat, Ministry of Mahaweli Development & Environment.
Nanayakkara, T. M. E. (2002). A study on biology and invasive characteristics of Annona glabra in Bellanwila-Attidiya wetland [Master´s thesis, University of Sri Jayewardenepura]. Scholar Bank (Digital Repository), University of Sri Jayewardenepura. http://dr.lib.sjp.ac.lk/handle/123456789/3042
Nghiem, L. T., Tan, H. T., & Corlett, R. T. (2015). Invasive trees in Singapore: Are they a threat to native forests? Tropical Conservation Science, 8(1), 201–214. DOI: https://doi.org/10.1177/194008291500800116
Nyairo, R., & Machimura, T. (2020). Potential effects of climate and human influence changes on range and diversity of nine Fabaceae species and implications for nature’s contribution to people in Kenya. Climate, 8(10), 109. https://doi.org/10.3390/cli8100109 DOI: https://doi.org/10.3390/cli8100109
Perera, K. R. S., & Epa, U. P. K. (2023). Effect of aqueous extracts of the invasive weed, creeping daisy (Sphagneticola trilobata) on the mortality of earthworm, Perionyx excavates. Indian Journal of Weed Science, 55(2), 213–216. DOI: https://doi.org/10.5958/0974-8164.2023.00039.4
Perera, K. R. S., Ratnayake, R. M. C. S., & Epa, U. P. K. (2023). Allelopathic effects of the invasive plant Wedelia (Sphagneticola trilobata L.) aqueous extract on common beans (Phaseolus vulgaris L.). Journal of Experimental Biology and Agricultural Sciences, 11(3), 542–549. DOI: https://doi.org/10.18006/2023.11(3).542.549
Phillips, S. J., Anderson, R. P., Dudík, M., & Schapire, R. E. (n.d.). Maxent software for modeling species niches and distributions (Version 3.4.4) [Software]. American Museum of Natural History. http://biodiversityinformatics.amnh.org/open_source/maxent/
Prematilake, K. G., & Ekanayake, P. B. (2004). Beware of Arundevi, the invasive alien. Tea Bulletin, 19(1-2), 8–9.
Qin, Z., Zhang, J. E., DiTommaso, A., Wang, R. L., & Liang, K. M. (2016). Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models. Climatic change, 134, 193–208. DOI: https://doi.org/10.1007/s10584-015-1500-5
Setter, M., Bradford, M., Dorney, B., Lynes, B., Mitchell, J., Setter, S., & Westcott, D. (2002). Pond apple: Are the endangered cassowary and feral pig helping this weed to invade Queensland’s wet tropics. Thirteenth Australian Weeds Conference, 13, 173–176.
Sharma, P., Kaur, A., Batish, D. R., Kaur, S., & Chauhan, B. S. (2022). Critical insights into the ecological and invasive attributes of Leucaena leucocephala, a tropical agroforestry species. Frontiers in Agronomy, 4, 890992. https://doi.org/10.3389/fagro.2022.890992 DOI: https://doi.org/10.3389/fagro.2022.890992
Tesfamariam, B. G., Gessesse, B., & Melgani, F. (2022). MaxEnt-based modeling of suitable habitat for rehabilitation of Podocarpus forest at landscape scale. Environmental Systems Research, 11(1), 4. https://doi.org/10.1186/s40068-022-00248-6 DOI: https://doi.org/10.1186/s40068-022-00248-6
Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE, 13(4), e0195752. https://doi.org/10.1371/journal.pone.0195752 DOI: https://doi.org/10.1371/journal.pone.0195752
Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., & Zimmermann, N. E. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9(3-4), 137–152. https://doi.org/10.1016/j.ppees.2007.09.004 DOI: https://doi.org/10.1016/j.ppees.2007.09.004
United Nations. (1992). United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/convkp/conveng.pdf
United Nations Framework Convention on Climate Change. (2016). The Paris Agreement. https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarošík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., ... Settele, J. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution, 24(12), 686–693. https://doi.org/10.1016/j.tree.2009.06.008 DOI: https://doi.org/10.1016/j.tree.2009.06.008
Weber, E. (2004). Invasive plant species of the world: A reference guide to environmental weeds. Choice Reviews Online, 41(09), 41–5019. https://doi.org/10.5860/choice.41-5019 DOI: https://doi.org/10.5860/CHOICE.41-5019
Wickramathilake, B. A. K., Weerasinghe, T. K., & Ranwala, S. M. W. (2014). Impacts of woody invader Dillenia suffruticosa (Griff.) Martelli on physio-chemical properties of soil and, below and above ground Flora. Journal of Tropical Forestry and Environment, 3(2), 66–75. https://doi.org/10.31357/jtfe.v3i2.1844 DOI: https://doi.org/10.31357/jtfe.v3i2.1844
Wijesundara, S. (2010). Invasive alien plants in Sri Lanka. In B. Marambe, P. Silva, S. Wijesundara, & N. Atapattu (Eds.), Invasive alien species-strengthening capacity to control introduction and spread in Sri Lanka (pp. 27–38). Biodiversity Secretariat of the Ministry of Environment, Sri Lanka.
Zhang, J. H., Li, K. J., Liu, X. F., Yang, L., & Shen, S. K. (2021). Interspecific variance of suitable habitat changes for four alpine Rhododendron species under climate change: Implications for Their Reintroductions. Forests, 12(11), 1520. https://doi.org/10.3390/f12111520 DOI: https://doi.org/10.3390/f12111520
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista de Biología Tropical

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Creative Commons Atrubución 4.0 Licencia (CC BY 4.0)
Reconocimiento (BY) • (BY) Debe atribuir el trabajo de la manera especificada por el autor o el licenciador (pero no de manera que sugiera que tiene la aprobación para el uso del trabajo).
