Performance of the Weibull individual growth model for weight at age data

Authors

  • Enrique Villa-Diharce Centro de Investigación en Matemáticas Author
  • Evlin A. Ramírez-Félix Instituto Mexicano de Investigación en Pesca y Acuacultura Sustentables Author
  • Juan Antonio García-Borbón Instituto Mexicano de Investigación en Pesca y Acuacultura Sustentables Author
  • Miguel Á. Cisneros-Mata Instituto Mexicano de Investigación en Pesca y Acuacultura Sustentables Author

DOI:

https://doi.org/10.15517/cy079f12

Keywords:

cumulative distribution function, age-weight relationship, model comparison, Weibull growth model, von Bertalanffy growth model

Abstract

Introduction: Knowledge of different functions associated with a probability distribution, as well as their properties, can be translated into functions that provide information about different characteristics of the growth process under study. Objectives: To analyze the relationship between individual growth models and the cumulative distribution functions of continuous random variables. Methods: We compare the flexibility and goodness of fit of the Weibull-type model against the von Bertalanffy weight growth model. We fit these two growth models into two very different sets of age-weight data taken from the literature; the first comprises 22 pairs of Pacific halibut mean weight at age, and the second 900 pairs of striped bass weight-age-data. Results: The Weibull-type growth model had greater flexibility and neglected less information available in the data sets than the von Bertalanffy model. Conclusions: The Weibull model, derived from cumulative probability distribution, is a good choice to fit weight-at-age data as it is more flexible than the commonly used von Bertalanffy model.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaky (Eds.), Proceeding of the Second International Symposium on Information Theory (pp. 267-281). Akademia Kiado, Budapest.

Allen, M. S., & Hightower, J. E. (2010). Fish population dynamics: mortality, growth, and recruitment. In W. A. Hubert & M. C. Quist (Eds.), Inland fisheries management in North America (pp. 43-79). American Fisheries Society. Bethesda, Maryland.

Botello-Ruvalcaba, M., Villaseñor-Talavera, R. & Rodríguez-Moreno, F. (2010). Ordenamiento de Pesquerías por Recursos Estratégicos de México, Tomo I CONAPESCA, SAGARPA. México. 300 p.

Brown, S. C., Giuliano, A. M., & Versak, B. A. (2024). Female age at maturity and fecundity in Atlantic striped bass. Mar. and Coastal Fish. Dynamics, Management, and Ecosystem Science, 1-19. https://doi.org/10.1002/mcf2.10280.

Burnham, K. P., & Anderson, D. R. A. (2002). Model selection and multimodel inference: A practical Information-Theory Approach, second ed. Springer. New York, U.S.A. 488 p.

Callihan, J. L., Godwin, C. H., Dockendorf, K. J., & Buckel, J. A. (2014). Growth and mortality of hatchery-reared striped bass stocked into nonnatal systems. North American Journal of Fisheries Management, 34(6), 1131-1139. https://doi.org/10.1080/02755947.2014.951805.

Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2), 197–242. https://doi.org/10.1111/j.1095-8649.2001.tb00127.x.

Campana, S. E., & Thorrold, S. R. (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations. Canadian Journal of Fisheries and Aquatic Sciences 58,30–38. https://doi.org/10.1139/F00-177.

Collet, D. (2015). Modelling survival data in medical research, third ed. Chapman and Hall/CRC.

Collins, B. W. (1982). Growth of the striped bass in the Sacramento-San Joaquin estuary. California Fish and Game, 68(3), 146-159.

Dagogo, J., Ukamaka, C., & Oyinebifun, B. E. (2023). Comparative analysis of additive and multiplicative error terms of Weibull, Logistic Gompertz, Hills and Richards Models with four parameters. Journal of Advances in Mathematics and Computer Science, 38(5), 1-34. https://doi.org/10.9734/jamcs/2023/v38i51758.

de Almeida-Souza, M., Hernández-Velazco, M. R., Brazão-Protázio, J. M., Escobar-Flores, J. G., López-Sánchez, C. A., Hernández-Díaz, J. C., & Wehenkel, C. A. (2021). Proposal for a hybrid model based on the Weibull growth equation in the adjustment of growth curves applied to pine forest species in northern Mexico. Environmental Science Proceedings 3, 107. https://doi.org/10.3390/IECF2020-08036.

Fairfield, E. A., Richardson, D. S., Daniels, C. S., Butler, C. L., Bell, E., & Taylor, M. I. (2021). Ageing European lobsters (Homarus gammarus) using DNA methylation of evolutionarily conserved ribosomal DNA. Evolutionary Applications 14, 2305-2318. https://doi.org/10.1111/eva.1329.

Forsberg, J. E. (2001). Aging manual for Pacific halibut: procedures and methods used at the International Pacific Halibut Commission. International Pacific Halibut Commission Technical Report 46.

Gamito, S. (1998). Growth models and their use in ecological modelling: an application to a fish population. Ecological Modelling, 113(1-3), 83–94. https://doi.org/10.1016/s0304-3800(98)00136-7.

Gupta, R. D., & Kundu, D. (1999). Generalized Exponential Distribution. Australian and New Zealand Journal of Statistics, 41, 173-188. http://dx.doi.org/10.1111/1467-842X.00072

Gervasi, C. L. (2015). The reproductive biology of striped bass (Morone saxatilis) in Chesapeake Bay. Dissertations, Theses, and Masters’ Projects. William & Mary. Paper 1539617959. https://dx.doi.org/doi:10.25773/v5-mdh7-b167.

Haddon, M. J. (2011). Modelling and Quantitative Methods in Fisheries, 2nd ed. Chapman and Hall/CRC Press. ISBN-13:978-1-4398-9417-0.

Hallinan, A. J. (1993). A review of the Weibull distribution. Journal of Quality Technology, 25, 85-93. https://doi.org/10.1080/00224065.1993.11979431.

Hoel, P. G., Port, S. C., & Stone, C. J. (1972). Introduction to Statistical Theory. Houghton Mifflin Company. ISBN 0395120764.

IPHC. (1987). The Pacific Halibut: Biology, Fishery and Management. International Pacific Halibut Commission Technical Report, No. 22.

IPHC. (1998). The Pacific Halibut: Biology, Fishery and Management. International Pacific Halibut Commission Technical Report, No. 40.

Juan-Jordá M. J., Mosqueira, I., Freire, J, & Dulvy, N. K. (2015). Population declines of tuna and relatives depend on their speed of life. Proceedings of the Royal Society B : Biological Sciences, 282: 20150322, 1-6. http://dx.doi.org/10.1098/rspb.2015.0322.

Katsanevakis, S., & Maravelias, C. D. (2008). Modelling fish growth: Multimodel inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries, 9,178-187. https://doi.org/10.1111/j.1467-2979.2008.00279.x.

Knight, W. (1968). Asymptotic growth: An example of nonsense disguised as mathematics. Journal of the Fisheries Research Board of Canada, 25, 1303-1307. https://doi.org/10.1139/f68-114.

Knight, W. (1969). A formulation of the von Bertalanffy growth curve when the growth rate is roughly constant. Journal of the Fisheries Research Board of Canada, 26, 3069-3072. https://doi.org/10.1139/f69-289.

Lowerre-Barbieri, S., & Friess, C. (2022). Modeling fecundity at age in Gulf of Mexico Red Snapper to help evaluate the best measure of reproductive potential. SEDAR74-DW-40. SEDAR, North Charleston, SC. (https://sedarweb.org/documents/sedar-74-dw-40-modeling-fecundity-at-age-in-gulf-of-mexico-red-snapper-to-help-evaluate-the-best-measure-of-reproductive-potential/).

Luquín-Covarrubias M. A., Morales-Bojórquez, E., & González-Peláez, S. S. (2010). The last geoduck: The experience of geoduck clam fishery management in the Mexican Pacific Ocean. Marine Policy, 143. https://doi.org/10.1016/j.marpol.2022.105145.

Marshall, A.W., & Olkin, I. (2007). Life Distributions, structure of nonparametric, semiparametric, and parametric families. Springer. ISBN 13:9780387203331. https://doi.org/10.1007/978-0-387-68477-2.

Meeker, W. Q., Escobar, L. A., & Pascual, F. G. (2022). Statistical methods for reliability data, second ed. John Wiley and Sons. ISBN: 9781118115459.

Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299-302. https://doi.org/10.1109/24.229504.

Mudholkar, G.S., Srivastava, D. K., & Freimer, M. (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37, 436-445. https://doi.org/10.2307/1269735.

Mudholkar, G. S., & Hutson, A. D. (1996). The exponentiated Weibull family: Some properties and flood data application. Communications in Statistics: Theory and Methods, 25, 3059-3083. https://doi.org/10.1080/03610929608831886.

Ogle, D. H. (2016). Introductory fisheries analyses with R, first edition. Chapman and Hall/CRC Press. ISBN 9781482235203.

Perkins, E. (2015). Biological and political factors affecting allocation of Pacific halibut quota to northern California. M. S. Thesis. Humboldt State University. 198 p. https://doi.org/doi:10.13140/RG.2.2.23425.97121

Prager, M. H., Saila S. B., & Recksiek, C. W. (1989). FISHPARM: a microcomputer program for parameter estimation of nonlinear models in fishery science, second edition. Old Dominion University Oceanography Technical Report, 87-10. https://www.fc.up.pt/pessoas/ptsantos/GCRN/fishparm.pdf

Quinn, T. J., II, Best, E. A., Bijsterveld, L. & McGregor, I. R. (1983). Sampling Pacific halibut (Hippoglossus stenolepis) landings for age composition: history evaluation, and estimation. International Pacific Halibut Commission, Scientific Report, 68. https://iphc.int/uploads/pdf/sr/IPHC-1983-SR068.pdf.

Quinn, T. J., & Deriso, R. B. (1999). Quantitative fish dynamics, Oxford University Press. Oxford, New York. 542 p.

R Core Team. (2023). R: A Language and environment for statistical computing. [Computer Software]. R Foundation for Statistical Computing. https://www.R-project.org/.

Rodgveller, C. J., Echave, K. B., Hulson, P-J. F., & Coutré, K. M. (2018). Age-at-maturity and fecundity of female sablefish sampled in December of 2011 and 2015 in the Gulf of Alaska. U.S. Department of Commerce, NOAA Technical Memo NMFS-AFSC-371, 31 pp. https://apps-afsc.fisheries.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-371.pdf

Seber, G. A. F. & Wild, C. J. (1989). Nonlinear regression, J. Wiley. ISBN 9780471617600. http://dx.doi.org/10.1002/0471725315.

Seo Y., Lee, D., & Choi, J. (2023). Developing and comparing individual tree growth models of major coniferous species in South Korea based on stem analysis data. Forests, 14(1), 115. https://doi.org/10.3390/f14010115.

Shi, P. -J., Ishikawa, T., Sandhu, H. S., Hui, C., Chakraborty, A., Jin, X. S., Tachihara, K., & Li, B. -L. (2014). On the 3/4-exponent von Bertalanffy equation for ontogenetic growth. Ecological Modelling, 276, 23–28 https://doi.org/10.1016/j.ecolmodel.2013.12.020.

St-Pierre, G. (1984). Spawning Locations and Season for Pacific Halibut. International Pacific Halibut Commission Scientific Report, 70, 1–46.

Swintek, J., Etterson, M., Flynn, K., & Johnson, R. (2019). Optimized temporal sampling designs of the Weibull growth curve with extensions to the von Bertalanffy model. Environmetrics, (e2552. https://doi.org/10.1002/env.2552).

Thach, T. T. (2022). A Three-component additive Weibull distribution and its reliability implications. Symmetry, 14(7), 1455. https://doi.org/10.3390/sym14071455.

Villamor, B., Navarro, M. R., Dueñas-Liaño, C. & Antolínez, A. (2016). Criterios de interpretación de la edad en los otolitos de la caballa del Atlántico nordeste (Scomber scombrus). Documento Interno del Instituto Español de Oceanografía, Proyecto BIOPEL. https://digital.csic.es/bitstream/10261/326969/4/Villamor%20et%20al.2016_Guia%20Criterios%20Edad%20Caballa.pdf.

von Bertalanffy, L. (1938). A quantitative theory of organic growth. Human Biology. 10, 181-213. https://www.jstor.org/stable/41447359.

von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Quarterly Reviews of Biology, 32, 217–231. https://doi.org/10.1086/401873.

Wen, Y., Liu, K., Liu, H., Cao, H., Mao, H., Dong, X., & Yin, Z. (2019). Comparison of nine growth curve models to describe growth of partridges (Alectoris chukar). Journal of Applied Animal Research, 47(1), 195-200. https://doi.org/10.1080/09712119.2019.1599900.

Yang, R. C., Kozak, A., & Smith, J. H. G. (1978). The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research, 8(4), 424-431. https://doi.org/10.1139/x78-062.

Published

2025-09-30