Rhizospheric bacteria associated with Dryopteris pseudofilix-mas (Dryopteridaceae) at Mount Tláloc, México
DOI:
https://doi.org/10.15517/1xmz9014Keywords:
Fern; rhizobacteria; soil microorganisms; diversity; vegetationAbstract
Introduction: Plant roots harbor communities of bacteria that can provide benefits to their host through the production of phytohormones, phosphate solubilization, and nitrogen fixation. In Mexico, there are few studies on the richness and diversity of rhizobacteria communities associated with ferns. Objective: To analyze and identify the functional groups of bacteria from the rhizosphere of Dryopteris pseudofilix-mas in Mount Tlaloc, Mexico. Methods: Rhizospheric soil from D. pseudofilix-mas was collected at four sites where this fern occurs naturally. Bacterial populations were quantified by the plate count and dilution method. The isolated strains were characterized and identified using the 16S rDNA gene. Physical and chemical characteristics of the soil were determined and data of soil moisture, temperature and light in the canopy were collected. Results: The total bacteria population was from 30.1 to 92.3 x 104 CFU g-1 soil. Soil pH and phosphorus content influenced the density of bacterial populations. About 108 bacterial strains were isolated, 92 were Gram-negative and 16 Gram-positive. The isolated strains belonged to 20 genera, being the most abundant Pseudomonas and Bacillus. The Sørensen index indicates that the species of bacteria are similar in the four sites; Pseudomonas jessenii was present in the four sites. The bacterial strains presented more than one plant growth promoting activity, being the group of nitrogen fixers the most abundant. Conclusions: The rhizosphere of D. pseudofilix-mas harbors diverse groups of functional bacteria that could potentially be used in biotechnology for ecological restoration or agricultural purposes. The bacterial population of the four sites was dominated mainly by Pseudomonas and Bacillus.
Downloads
References
Aldrete, A. (2008). Distribución altitudinal, tratamientos pregerminativos e influencia de Lupinus spp. (Fabaceae, Papalionoidae) en la fertilidad de suelos forestales. [Tesis doctoral, Institución de enseñanza e investigación en ciencias agrícolas]. Colegio de Postgraduados. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/1423
Anderson, R. O. (2009). Eukaryotic Microbial Communities Associated with the Rhizosphere of the Temperate Fern Thelypteris noveboracensis (L.) Nieuwl. American Fern Journal, 99(3), 176–181.
Antenozio, M. L., Giannelli, G., Marabottini, R., Brunetti, P., Allevato, E., Marzi, D., Capobianco, G., Bonifazi, G., Serranti, S., Visioli, G., Stazi, S. R., & Cardarelli, M. (2021). Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Scientific Reports, 11(1), 6794. https://doi.org/10.1038/s41598-021-86076-7
Aquiahuatl, M., Volke, T., Prado, L., Matsumoto, S., Ramírez, F., & Salazar, M. (2012). Manual de prácticas de laboratorio de microbiología general (1a Ed.). Universidad Autónoma Metropolitana.
Bautista-Cruz, A., Montaño, N., Camargo-Ricalde, S., & Pacheco, L. (2014). Hongos micorrizógenos arbusculares y nutrimentos del suelo asociados a cuatro especies de helechos en dos ecosistemas de Oaxaca, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(3), 199–212. https://doi.org/10.5154/r.rchscfa.2014.02.007
Benmrid, B., Ghoulam, C., Ammar, I., Nkir, D., Saidi, R., Staropoli, A., Iacomino, G., ELhajjami, E., Cheto, S., Geistlinger, J., Idbella, M., & Bargaz, A. (2024). Drought-tolerant rhizobacteria with predicted functional traits enhanced wheat growth and P uptake under moderate drought and low P-availability. Microbiological Research, 285, 127795. https://doi.org/10.1016/j.micres.2024.127795
Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62(3), 293–300. https://doi.org/10.1128/jb.62.3.293-300.1951
Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In A. Klute (Ed.), Physical and Mineralogical Methods-Agronomy Monograph (2nd Ed., pp. 363–365). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59, 39–45. http://dx.doi.org/10.1097/00010694-194501000-00006
Byung-Chun, K., Mi, K., Hyun, K., Beom, S., Sook, K., & Kee-Sun, S. (2009). Isolated from the Rhizosphere of the Fern Paenibacillus filicis sp. Nov., isolated from the rhizosphere of the fern. The Journal of Microbiology, 47(5), 524–529. https://doi.org/10.1007/s12275-009-0266-8
Cabrera-Luna, J. A., & Gómez-Sánchez, M. (2005). Análisis florístico de La Cañada, Querétaro, México. Boletín de la Sociedad Botánica de México, 77, 35–50.
Chaluvadi, S., & Bennetzen, J. L. (2018). Species-associated differences in the below-ground microbiomes of wild and domesticated setaria. Frontiers in Plant Science, 9, 1183. https://doi.org/10.3389/fpls.2018.01183
Conagua. (2024). Información Estadística Climatológica. Base de Datos Climatológica Nacional. Servicio Meteorológico Nacional, Comisión Nacional del Agua, México. https://smn.conagua.gob.mx/tools/RESOURCES/Normales_Climatologicas/Mensuales/mex/mes15210.txt
Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA fresh tissue. Focus, 12(1), 13–15.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi: 10.1093/nar/gkh340
Döbereiner, J., & Day, J. M. (1976). Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. En W. E. Newton, & C. J. N. Nyman (Eds.), International Symposium on Nitrogen Fixation (1a Ed., pp. 518–538). Washington State University Press.
Etchevers, J. D. (1987). Determinación de nitrógeno en suelos. En S.A. Aguilar, J. D. Etchevers, & R. J. Z. Castellanos (Eds.), Análisis químico para evaluar la fertilidad del suelo (pp. 45–83). Sociedad Mexicana de la Ciencia del Suelo.
Galván-Díaz, E. L. (2021). Procesos edáficos en andosoles en una catena en el Monte Tláloc: estudio multiescalar [Tesis de maestría, Institución de enseñanza e investigación en ciencias agrícolas]. Colegio de Postgraduados. http://colposdigital.colpos.mx:8080/jspui/handle/10521/4957
Galván-Tejada, N. C., Peña-Ramirez, V., Mora-Palomino, L., & Siebe, C. (2014). Soil P fractions in a volcanic soil chronosequence of Central Mexico and their relationship to foliar P in pine trees. Journal of Plant Nutrition and Soil Science, 177, 792–802. https://doi.org/10.1002/jpln.201300653
Ganger, M. T., Hiles, R., Hallowell, H., Cooper, L., McAllister, N., Youngdahl, D., Alfieri, J., & Ewing, S. J. (2019). A soil bacterium alters sex determination and rhizoid development in gametophytes of the fern Ceratopteris richardii. AoB PLANTS, 11(2), plz012. https://doi.org/10.1093/aobpla/plz012
Giri, B., Giang, P. H., Kumari, R., Prasad, R., & Varma, A. (2005). Microbial diversity in soils. En A. Varma, & F. Buscot (Eds.), Microorganisms in soils: Roles in genesis and functions (Vol. 3, pp. 19–55). Soil Biology. https://doi.org/10.1007/3-540-26609-7_2
Glick, B. R. (2020). Introduction to plant growth-promoting bacteria. En B. R. Glick (Ed.), Beneficial Plant-Bacterial Interactions (pp. 1–37). Springer Nature Switzerland.
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Han, X., Zheng, L., Chen-Yang, L., Wei-Na, J., Hong-Tao, W., & Chun-Hua, W. (2015). Phytochemical constituents and biological activities of plants from the genus Dryopteris. Chemistry & Biodiversity, 12(8), 1131–1162. https://doi: 10.1002/cbdv.201400157
Hill, I., Park, D., Bridges, W., & David, W. (2022). Soil water content and photosynthetically active radiation influences soil color assessment. Geoderma Regional, 31, e00581. https://doi.org/10.1016/j.geodrs.2022.e00581
Huang, A., Teplitski, M., Rathinasabapathi, B., & Ma, L. (2010). Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Canadian Journal of Microbiology, 56(3), 236–246. https://doi.org/10.1139/W10-005
Jag, V., Poehlein, A., Bengelsdorf, F. R., Daniel, R., & Dürre, P. (2017). Genome sequencing and description of Oerskovia enterophila VJag, an agar- and cellulose-degrading bacterium. Standards in Genomic Sciences, 12, 30. https://doi.org/10.1186/s40793-017-0244-4
Kshitipati, P., Ranjan, K. P., Debadatta, S., Shraddha, M., Sanjib, K. S., Narayan, P., Sushanta, K. P., & Alok, K. P. (2024). Exploitation of cellulose degrading bacteria in bioconversion of agro-wastes. Chemosphere, 347, 140654. https://doi.org/10.1016/j.chemosphere.2023.14065
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. http://doi: 10.1093/molbev/msw054
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. http://doi: 10.1093/molbev/msy096.PMID: 29722887
Lara-Pérez, L. A., Valdés-Baizabal, M., Noa-Carrazana, J. C., Zulueta-Rodríguez, R., Lara-Capistrán, L., & Andrade-Torres, A. (2015). Mycorrhizal associations of ferns and lycopods of central Veracruz, Mexico. Symbiosis, 65, 85–92. https://doi.org/10.1007/s13199-015-0320-8
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111–5120. http://doi: 10.1128/AEM.00335-09
Li, X. J., Song, X. H., Tang, S. Q., Wei, K. X., Suo, Z. W., Xu, Y., Luo, J., Huang, H., Li, C. Y., Liu, D. X., & Liu, X. Q. (2023). Phytochemical constituents from rhizomes of Dryopteris crassirhizoma and their anti-inflammatory activity. Natural Product Research, 38(20), 3574–3580. https://doi.org/10.1080/14786419.2023.2256446
Ling, N., Wang, T., & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nature Communications, 13, 836. https://doi.org/10.1038/s41467-022-28448-9
Liu, M., Li, B., Xu, L., & Yu, R. (2021). Characteristics of culturable microbial community in rhizosphere/non-rhizosphere soil of Potentilla fruticosa population in alpine meadow elevation gradient. Frontiers in Soil Science, 1, 741012. https://doi.org/10.3389/fsoil.2021.741012
López-Hernández, J., García-Cárdenas, E., López-Bucio, J. S., Jiménez-Vázquez, K. R., de la Cruz, H. R., Ferrera-Rodríguez, O., Santos-Rodríguez, D. L., Ortiz-Castro, R., & López-Bucio, J. (2022). Screening of phosphate solubilization identifies six Pseudomonas species with contrasting phytostimulation properties in Arabidopsis Seedlings. Microbial Ecology, 86(1), 431–445. http://doi: 10.1007/s00248-022-02080
Lorea, F., & Riba, R. (1990). Guía para la recolección y preparación de ejemplares para herbario de Pteridofitas. Consejo Nacional de la Flora de México.
Magurran, A. E. (1988). A variety of diversities. In A. E. Magurran (Ed.), Ecological diversity and its measurement (pp. 81–99). Princeton University Press.
Martínez-Rojas, V. (2015). Microorganismos del suelo y cinética de carbono en ecosistemas del Monte Tláloc [Tesis doctoral, Institución de enseñanza e investigación en ciencias agrícolas]. Colegio de Postgraduados. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/2897
Martínez-Salas, E., & Ramos, C. H. (2014). Biodiversidad de Pteridophyta en México. Revista Mexicana de Biodiversidad, 85, 110–113. https://doi.org/10.7550/rmb.31827
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
Mickel, J. T., & Smith, A. R. (2004). The Pteridophytes of Mexico. Memoirs of the New York Botanical Garden, 88, 1–1054.
Mitter, B., Brader, G., Afzal, M., Compant, S., Naveed, M., Trognitz, F., & Sessitsch, A. (2013). Advances in elucidating beneficial interactions between plants, soil, and bacteria. Advances in Agronomy, 121, 381–445. https://doi.org/10.1016/B978-0-12-407685-3.00007-4
Montero-Calasanz, M. C., Göker, M., Rohde, M., Spröer, C., Schumann, P., Busse, H. J., Schmid, M., Klenk, H. P., Tindall, B. J., & Camacho, M. (2014). Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Systematic and Applied Microbiology, 37(5), 342–350. https://doi.org/10.1016/j.syapm.2014.04.004
Moreno, A., García, V., Reyes, J. L., Vásquez, J., & Cano, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68–83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707
Moreno, E. C. (2001). Manual de métodos para medir la biodiversidad. Textos universitarios: Universidad Veracruzana.
Navarro-Noya, Y. E., Luna-Guido, M., & Dendooven, L. (2016). Cultivable nitrogen fixing bacteria from extremely alkaline-saline soils. Advances in Microbiology, 6, 412–423. http://dx.doi.org/10.4236/aim.2016.66041
Oseguera-Olalde, T. K., Bonilla-Valencia, L., Fonseca, R. M., Martínez-Orea, Y., Lorea-Hernández, F., & Castillo-Argüero, S. (2022). Fern diversity in altitude and anthropogenic gradients in a temperate forest in Mexico City, Mexico. Trees, Forests and People, 10, 100345. https://doi.org/10.1016/j.tfp.2022.100345
Palleroni, N. J. (2015). Pseudomonas. En M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey, & W. B. Whitman (Eds.), Bergey's manual of systematics of archaea and bacteria (pp. 1–105). Wiley. https://doi.org/10.1002/9781118960608.gbm01210
Pikovskaya, R. I. (1948) Mobilization of phosphorous in soil connection with the vital activity of some microbial species. Microbiology, 17, 362–370.
Ping, H., Yunqing, H., Ruirui, W., Yuan, G., Xudong, W., Xuanqin, C., Xianyan, L., Jin, Y., Jian, Y., & Rongtao, L. (2023). New tocopherol and acylphloroglucinol derivatives from Dryopteris crassirhizoma and their antimicrobial activities. Fitoterapia, 165, 105401. https://doi.org/10.1016/j.fitote.2022.105401
Qin, Y., Wang, D., Brandt, K. K., & Rensing, C. (2016). Two draft genome sequences of Pseudomonas jessenii strains isolated from a copper contaminated site in Denmark. Standards in Genomic Sciences, 3, 11–16. https:// doi: 10.1186/s40793-016-0200-8. PMID: 27833718
Qu, Q., Zhang, Z., Peijnenburg, W. J., Liu, W., Lu, T., Hu, B., Chen, J., Chen, J., Lin, Z., & Qian, H. (2020). Rhizosphere microbiome assembly and its impact on plant growth. Journal of Agricultural and Food Chemistry, 68(18), 5024–5038. https://doi: 10.1021/acs.jafc.0c00073
Quisehuatl-Tepexicuapan, E., Ferrera-Cerrato, R., Silva-Rojas, H. V., Rodriguez-Zaragoza, S., Alarcón, A., & Almaraz-Suárez, J. J. (2016). Free-living culturable bacteria and protozoa from the rhizoplanes of three floating aquatic plant species. Plant Biosystems, 150(5), 855–865. https://doi.org/10.1080/11263504.2014.989282
Ramírez-Gama, R. M., Urzúa, A., Camacho, G., Tsuzuki, R., & Esquievel, R. (2015). Técnicas básicas de microbiología y su fundamento. Editorial Trillas.
Ratzke, C., & Gore, J. (2018). Modifying and reacting to the environmental pH can drive bacterial interactions. PLOS Biology, 16(3), e2004248. https://doi: 10.1371/journal.pbio.2004248
Reed, L., & Glick, B. R. (2023). The recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture, 13(5), 1089. https://doi.org/10.3390/agriculture13051089
Rennie, R. J. (1981). A single medium for the isolation of acetylene reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology, 27(1), 8–14. https://doi.org/10.1139/m81-002
Rincón-Molina, C. I., Martínez-Romero, E., Aguirre-Noyola, J. L., Manzano-Gómez, L. A., Zenteno-Rojas, A., Rogel, M. A., Rincón-Molina, F. A., Ruíz-Valdiviezo, V. M., & Rincón-Rosales, R. (2022). Bacterial community with plant growth-promoting potential associated to pioneer plants from an active mexican volcanic complex. Microorganisms, 10(8), 1568. https://doi.org/10.3390/microorganisms10081568
Rodríguez, F. H., & Rodríguez, A. F. (2015). Métodos de análisis de suelos y plantas: criterios de interpretación (3a Ed.). Trillas.
Rodríguez, L., Pacheco, L., & Zavala, J. A. (2008). Pteridofitas indicadoras de alteración ambiental en el bosque templado de San Jerónimo Amanalco, Texcoco, México. Revista de Biología Tropical, 56(2), 641–656.
Sah, S., & Singh, R. (2016). Phylogenetical coherence of Pseudomonas in unexplored soils of Himalayan region. 3 Biotech, 6(2), 170. https://doi.org/10.1007/s13205-016-0493-8
Sánchez, A., & López-Mata, L. (2003). Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología. Serie Botánica, 74(1), 47–71.
SAS. (2002). Statistical Analysis System. Software: the SAS System for Windows version 9.0 [Computer Software]. SAS Institute Inc., Cary, NC 25513, USA.
Sen, A., Battacharya, M. K., Prasad, H. K., & Sharma, G. D. (2018). Plant growth promoting activities of rhizosphere bacteria from two ferns Pronephrium nudatum (Roxb.) Holttum. and Bolbitis heteroclite (C. Presl) Ching: an analysis of ferns-rhizosphere relationship. Indian Journal of Experimental Biology, 56(4), 274–278.
Smercina, D. N., Evans, S. E., Friesen, M. L., & Tiemanna, L. K. (2019). To fix or not to fix controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology, 85(6), e02546-18. https://doi.org/10.1128/AEM.02546-18
Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
Vedder, E. B. (1951). Starch agar, a useful culture medium. The Journal of Infectious Diseases, 16(3), 385–388. https://doi.org/10.1093/infdis/16.3.385
Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003
Watrud, L. S., Maggard, S., Shiroyama, T., Coleman, C. G., Johnson, M. G., Donegan, K. K., Giovanni, G. D., Porteous, L. A., & Lee, E. H. (2003). Bracken (Pteridium aquilinum L.) frond biomass and rhizosphere microbial community characteristics are correlated to edaphic factors. Plant and Soil, 249(2), 359–371. https://doi.org/10.1023/A:1022885100254
Wollum, A. G. (1982). Cultural methods for soil microorganisms. In A. L. Page (Ed.), Chemical and microbiological properties-agronomy monograph (1a Ed., pp. 781–800). Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c37
Zboralski, A., & Filion, M. (2020). Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Computational and Structural Biotechnology Journal, 18, 3539–3554. https://doi.org/10.1016/j.csbj.2020.11.025
Zhang, J., Chen, J., Xu, W., Xia, Y., Zhu, H., Wang, J., Li, Y., Wang, G., Zhang, Y., & Chen, N. (2023). Undescribed phloroglucinol derivatives with antiviral activities from Dryopteris atrata (Wall. ex Kunze) Ching. Phytochemistry, 208, 113585. https://doi.org/10.1016/j.phytochem.2023.113585
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista de Biología Tropical

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 License (CC BY 4.0)
Attribution (BY) • (BY) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
