Biodisponibilidad y bioacumulación de microplásticos en el zooplancton marino de un área marina protegida del Caribe

Autores/as

  • María Isabel Criales-Hernández Universidad Nacional de Colombia - Sede Bogotá -Facultad de Ciencias - Departamento de Biología Autor/a
  • Rafael Cabanzo Hernández Universidad Industrial de Santander, Facultad de Ciencias, Escuela de Física Autor/a
  • Jenny Alejandra Ruiz-Jiménez Universidad Industrial de Santander, Facultad de Ciencias, Escuela de Biología Autor/a
  • Querubín Pinilla Parque Nacional Natural de Colombia, Corales de Profundidad Autor/a

DOI:

https://doi.org/10.15517/ax01dr94

Palabras clave:

contaminación plástica, Chaetognatha, Paracalanidae, tasa de encuentro, Colombia

Resumen

Introducción: Los microplásticos están presentes en todo el océano global y pueden ser ingeridos por muchas especies, incluyendo el zooplancton. Aunque se encuentran dentro del rango de tamaño de las presas del zooplancton, existen pocos estudios sobre la ingestión de microplásticos llevados a cabo in situ. Objetivo: evaluar la biodisponibilidad y la bioconcentración de microplásticos en siete grupos taxonómicos representativos del zooplancton en un Área Marina Protegida del Caribe (AMP). Métodos: Para entender la biodisponibilidad de los microplásticos en la columna de agua, se recolectaron muestras en doce estaciones mediante arrastres oblicuos, en dos periodos hidroclimáticos contrastantes, durante el 2022. En el laboratorio, se analizó el tamaño, la forma y la composición del polímero de cada muestra de agua utilizando estereoscopio y FTIR-ATR con una resolución de 4 cm- 1. Se escogieron siete grupos dominantes del zooplancton de diferentes niveles tróficos, para evaluar la ingestión y bioacumulación de microplásticos. Resultados: Se registró una biodisponibilidad mediana de microplásticos de 0.091 microplásticos/m³ (principalmente fibras y fragmentos de poliéster y PET) con diferencias significativas entre temporadas (Kruskal-Wallis, p = 1.5 × 10-⁹). El zooplancton ingirió principalmente fragmentos negros con una Tasa de Encuentro de 0 a 0.22 microplásticos/ind., y la bioconcentración observada en los grupos taxonómicos fue > 1, indicando bioacumulación directa o indirecta. Conclusión: La biodisponibilidad de los microplásticos en el AMP es menor que en otras regiones del mundo, la variabilidad temporal está modulada por la dinámica oceanográfica del Caribe y el aporte de los ríos que desembocan en la zona costera. Seis de los siete grupos de zooplancton analizados acumulan microplasticos, paracalanidae es el grupo que presentó el mayor factor de bioconcentración. Estos hallazgos refuerzan la necesidad de monitorear y mitigar los efectos de los microplásticos en los ecosistemas marinos para proteger tanto a las especies afectadas como los servicios ecosistémicos que proporcionan.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Acosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., & Olivero-Verbel, J. (2019). Quantification of microplastics along the Caribbean Coastline of Colombia: pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin, 146, 574–583. https://doi.org/10.1016/j.marpolbul.2019.06.084

Aldana-Arana, D., Oxenford, H. A., Medina, J., Delgado, G., Díaz, M. E., Samano, C., Castillo-Escalante, V., Bardet, M., Mouret, E., & Bouchon, C. (2022). Widespread microplastic pollution across the Caribbean Sea confirmed using queen conch. Marine Pollution Bulletin, 178, 113582. https://doi.org/10.1016/j.marpolbul.2022.113582

Alexander, D. E. (1999). Bioaccumulation, bioconcentration, biomagnification. In Environmental geology (pp. 43–44). Encyclopedia of Earth Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4494-1_31

Alfonso, M. B., Arias, A. H., & Piccolo, M. C. (2020). Microplastics integrating the zooplanktonic fraction in a saline lake of Argentina: Influence of water management. Environmental Monitoring and Assessment, 192(2), 117. https://doi.org/10.1007/s10661-020-8080-1

Alonso, D., Vides, M., Cedeño, C., Marrugo, M., Henao, A., Sánchez, J. A., Dueñas, L., Andrade, J. C., González, F., & Gómez, M. (2015). Parque Nacional Natural Corales de profundidad: Descripción de comunidades coralinas y fauna asociada. INVEMAR.

Amin, R. M., Sohaimi, E. S., Anuar, S. T., & Bachok, Z. (2020). Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Marine Pollution Bulletin, 150, 110616. http://dx.doi.org/10.1016/j.marpolbul.2019.110616

Aytan, U., Esensoy, F. B., & Senturk, Y. (2022). Microplastic ingestion and egestion by copepods in the Black Sea. The Science of the Total Environment, 806(4), 150921. http://dx.doi.org/10.1016/j.scitotenv.2021.150921

Boltovskoy, D. (1999). South Atlantic zooplankton (2nd ed.). Backhuys Publisher.

Botterell, Z. L., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R. C., & Lindeque, P. K. (2019). Bioavailability and effects of microplastics on marine zooplankton: A review. Environmental Pollution, 245, 98–110. http://dx.doi.org/10.1016/j.envpol.2018.10.065

Botterell, Z. L., Bergmann, M., Hildebrandt, N., Krumpen, T., Steinke, M., Thompson, R. C., & Lindeque, P. K. (2022). Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Science of the Total Environment, 831, 154886. https://doi.org/10.1016/j.scitotenv.2022.154886

Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity. Ray Society.

Canino, M. F., & Grant, G. C. (1985). The feeding and diet of Sagitta tenuis (Chaetognatha) in the lower Chesapeake Bay. Journal of Plankton Research, 7(2), 175–188.

Carretero, O., Gago, J., & Viñas, L. (2021). From the coast to the shelf: microplastics in Rías Baixas and Miño River shelf sediments (NW Spain). Marine Pollution Bulletin, 162, 111814. https://doi.org/10.1016/j.marpolbul.2020.111814

Chen, M. R., & Hwang, J. S. (2010). Diet of the copepod Calanus sinicus Brodsky, 1962 (Copepoda, Calanoida, Calanidae) in northern coastal waters of Taiwan during the northeast monsoon period. Crustaceana, 83(7), 851-864.

Chenillat, F., Huck, T., Maes, C., Grima, N., & Blanke, B. (2021). Fate of floating plastic debris released along the coasts in a global ocean model. Marine Pollution Bulletin, 165, 112116. https://doi.org/10.1016/j.marpolbul.2021.112116

Clark, J. R., Cole, M., Lindeque, P. K., Fileman, E., Blackford, J., Lewis, C., Lenton, T. M., & Galloway, T. S. (2016). Marine microplastic debris: A targeted plan for understanding and quantifying interactions with marine life. Frontiers in Ecology and the Environment, 14(6), 317–324. https://doi.org/10.1002/fee.1297

Coral-Chamorro, L. S., Ruiz-Jiménez, J. A., Criales-Hernández, M. I., & Cabanzo-Hernández, R. (2024). Assessment of techniques for the digestion and extraction of microplastics ingestion by marine zooplankton. Boletín de Investigaciones Marinas y Costeras-INVEMAR, 53(1), 175–186. https://doi.org/10.25268/bimc.invemar.2024.53.1.1277

Criales-Hernández, M. I., Jerez-Guerrero, M., Rodríguez-Rubio, E., & Benavides-Serrato, M. (2021). Zooplankton community associated with mesophotic coral reefs in the Colombian Caribbean Sea. Regional Studies in Marine Science, 45, 101843. http://dx.doi.org/10.1016/j.rsma.2021.101843

Defontaine, S., Sous, D., Tesan, J., Monperrus, M., Lenoble, V., & Lanceleur, L. (2020). Microplastics in a salt-wedge estuary: vertical structure and tidal dynamics. Marine Pollution Bulletin, 160, 111688. https://doi.org/10.1016/j.marpolbul.2020.111688

Deibel, D., & Lowen, B. (2012). A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions. ICES Journal of Marine Science, 69(3), 358-369. http://dx.doi.org/10.1093/icesjms/fsr159

Desforges, J. P. W., Galbraith, M., & Ross, P. S. (2015). Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology, 69(3), 320–330. https://doi.org/10.1007/s00244-015-0172-5

Di Mauro, R., Kupchik, M. J., & Benfield, M. C. (2017). Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico. Environmental Pollution, 230(5), 798–809. http://dx.doi.org/10.1016/j.envpol.2017.07.030

Díaz, J. M., Barrios, L. M., Cendales, M. H., Garzón-Ferreira, J., Geister, J., López-Victoria, M., Ospina, G. H., Parra-Velandia, F., Vargas-Angel, B., & Zea, S. (2000). Áreas coralinas de Colombia (No. 5). INVEMAR.

Eo, S., Hong, S. H., Song, Y. K., Han, G. M., Seo, S., & Shim, W. J. (2021). Prevalence of small high-density microplastics in the continental shelf and deep sea waters of East Asia. Water Research, 200(5), 117238. http://dx.doi.org/10.1016/j.watres.2021.117238

Galindo-Montero, A. A. G., Costa-Redondo, L. C., Vasco-Echeverri, O., & Arana, V. A. (2023). Microplastic pollution in coastal areas of Colombia. Marine Environmental Research, 190, 106027. https://doi.org/10.1016/j.marenvres.2023.106027

Garcés-Ordóñez, O., Espinosa, L. F., Costa-Muniz, M., Salles-Pereira, L. B., & Meigikos-dos Anjos, R. (2021). Abundance, distribution, and characteristics of microplastics in coastal surface waters of the Colombian Caribbean and Pacific. Environmental Science and Pollution Research, 28(32), 43431–43442.

Gómez-Giraldo, A., Osorio, A. F., Toro, F. M., Osorio, J. D., Álvarez, O. A., & Arrieta, A. (2009). Patrón de circulación en bahía Barbacoas y su influencia sobre el transporte de sedimentos hacia las islas del Rosario. Avances en Recursos Hidráulicos, 20, 21–39.

Gunaalan, K., Nielsen, T. G., Rodríguez-Torres, R., Lorenz, C., Vianello, A., Andersen, C. A., Vollertsen, J., & Almeda, R. (2023). Is zooplankton an entry point of microplastics into the marine food web? Environmental Science & Technology, 57(31), 11643–11655. https://doi.org/10.1021/acs.est.3c02575

He, M., Yan, M., Chen, X., Wang, X., Gong, H., Wang, W., & Wang, J. (2022). Bioavailability and toxicity of microplastics to zooplankton. Gondwana Research, 108, 120–126. http://dx.doi.org/10.1016/j.gr.2021.07.021

Johnsen, S. (2014). Hide and seek in the open sea: Pelagic camouflage and visual countermeasures. Annual Review of Marine Science, 6(1), 369–392. https://doi.org/10.1146/annurev-marine-010213-135018

Kaiser, D., Kowalski, N., & Waniek, J. J. (2017). Effects of biofouling on the sinking behavior of microplastics. Environmental Research Letters, 12, 124003. http://dx.doi.org/10.1088/1748-9326/aa8e8b

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank.

Kooi, M., Van Nes, E. H., Scheffer, M., & Koelmans, A. A. (2017). Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environmental Science & Technology, 51(14), 7963–7971. https://doi.org/10.1021/acs.est.6b04702

Kosore, C., Ojwang, L., Maghanga, J., Kamau, J., Kimeli, A., Omukoto, J., Ngisiag´e, N., Mwaluma, J., Ong´ada, H., Magori, C., & Ndirui, E. (2018). Occurrence and ingestion of microplastics by zooplankton in Kenya's marine environment: First documented evidence. African Journal of Marine Science, 40(3), 225–234. https://doi.org/10.2989/1814232X.2018.1492969

Kühn, S., Van Oyen, A., Booth, A. M., Meijboom, A., & Van Franeker, J. A. (2018). Marine microplastic: preparation of relevant test materials for laboratory assessment of ecosystem impacts. Chemosphere, 213, 103–113. https://doi.org/10.1016/j.chemosphere.2018.09.032

La Daana, K. K., Asmath, H., & Gobin, J. F. (2022). The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020. Environmental Pollution, 300, 118919. http://dx.doi.org/10.1016/j.envpol.2022.118919

Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8, 15611. http://dx.doi.org/10.1038/ncomms15611

Lima, C. D. M., Junior, M. M., Schwamborn, S. H. L., Kessler, F., Oliveira, L. A., Ferreira, B. P., Mugrabe, G., Frias, J., & Neumann-Leitão, S. (2023). Zooplankton exposure to microplastic contamination in an estuarine plume-influenced region, in northeast Brazil. Environmental Pollution, 322, 121072. https://doi.org/10.1016/j.envpol.2023.121072

Lo, H. K. A., & Chan, K. Y. K. (2018). Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environmental Pollution, 233(Supplement), S588–S595. http://dx.doi.org/10.1016/j.envpol.2017.10.095

Lozano-Duque, Y., Vidal, L. A., Navas, G. R., & Instituto de Investigaciones Marinas y Costeras (2010). La comunidad fitoplanctónica en el mar Caribe colombiano. En G. R. Navas, C. Segura-Quintero, M. Garrido-Linares, M. Benavides-Serrato, & D. Alonso (Eds.), Biodiversidad del margen continental del Caribe colombiano (Vol. 20, pp. 86–118). INVEMAR.

Marrugo-Pascuales, P., & Martínez-Ledesma, C. A. (2016). Plan de manejo del Parque Nacional Natural Corales de Profundidad 2016-2021. Parques Nacionales Naturales de Colombia.

Miller, M. E., Hamann, M., & Kroon, F. J. (2020). Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS ONE, 15(10), e0240792. https://doi.org/10.1371/journal.pone.0240792

Miller, M. E., Motti, C. A., Hamann, M., & Kroon, F. J. (2023). Assessment of microplastic bioconcentration, bioaccumulation, and biomagnification in a simple coral reef food web. Science of The Total Environment, 858, 159615. https://doi.org/10.1016/j.scitotenv.2022.159615

Morales-Giraldo, D. F., Gutiérrez, V. L. R., & Posada, B. O. P. (2017). Geomorfología de los fondos submarinos del Parque Nacional Natural Corales de Profundidad, mar Caribe colombiano. Boletín de Investigaciones Marinas y Costeras-INVEMAR, 46(2), 73–90. https://doi.org/10.25268/bimc.invemar.2017.46.2.727

Motoda, S. (1959). Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries Hokkaido University, 7(1-2), 73–94.

Orona-Návar, C., García-Morales, R., Loge, F. J., Mahlknecht, J., Aguilar-Hernández, I., & Ornelas-Soto, N. (2022). Microplastics in Latin America and the Caribbean: A review on current status and perspectives. Journal of Environmental Management, 309, 114698. https://doi.org/10.1016/j.jenvman.2022.114698

Osborn, A. M., & Stojkovic, S. (2014). Marine microbes in the plastic age. Microbiology Australia, 35(4), 207.

Parolini, M., Stucchi, M., Ambrosini, R., & Romano, A. (2023). A global perspective on microplastic bioaccumulation in marine organisms. Ecological Indicators, 149(3), 110179. http://dx.doi.org/10.1016/j.ecolind.2023.110179

Postel, L., Fock, H., & Hagen, W. (2000). Biomass and abundance. En R. Harris, H. R. Skjoldal, J. Lenz, P. Wiebe, & M. Huntley (Eds.), ICES zooplankton methodology manual (pp. 83–192). Academic Press.

Rangel-Buitrago, N. (2011). Geomorfología, sedimentos, intervenciones antropogénicas y amenazas naturales. En E. Zarza-González (Ed.), El entorno ambiental del Parque Nacional Natural Corales del Rosario y de San Bernardo (pp. 55–66). Parques Nacionales Naturales de Colombia.

Rodrigues, S. M., Elliott, M., Almeida, C. M. R., & Ramos, S. (2021). Microplastics and plankton: knowledge from laboratory and field studies to distinguish contamination from pollution. Journal of Hazardous Materials, 417, 126057. https://doi.org/10.1016/j.jhazmat.2021.126057

Sánchez, J. A., Gómez-Corrales, M., Gutiérrez-Cala, L., Vergara, D. C., Roa, P., González-Zapata, F. L., Gnecco, M., Puerto-Rueda, D. N., Neira-Ramírez, L., & Sarmiento-Segura, A. (2019). Steady decline of corals and other benthic organisms in the SeaFlower Biosphere Reserve (Southwestern Caribbean). Frontiers in Marine Science, 6, 73. http://dx.doi.org/10.3389/fmars.2019.00073

Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185, 77–83. http://dx.doi.org/10.1016/j.envpol.2013.10.013

Suhaimi, H., Mustafa-Kamal, A. H., Mazlan, A. G., Yusoff, F. M., Rasdi, N. W., Habib, A., Ikhwanuddin, M., & Yuslan, A. (2022). Effect of diet on productivity and body composition of Moina macrocopa (Straus, 1820) (Branchiopoda, Cladocera, Anomopoda). Crustaceana, 95(1), 1–28. http://dx.doi.org/10.1163/15685403-bja10160

Sun, X., Li, Q., Zhu, M., Liang, J., Zheng, S., & Zhao, Y. (2017). Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine Pollution Bulletin, 115(1), 217–224. http://dx.doi.org/10.1016/j.marpolbul.2016.12.004

Sun, X., Liang, J., Zhu, M., Zhao, Y., & Zhang, B. (2018). Microplastics in seawater and zooplankton from the Yellow Sea. Environmental Pollution, 242, 585–595. https://doi.org/10.1016/j.envpol.2018.07.014

Tekman, M. B., Wekerle, C., Lorenz, C., Primpke, S., Hasemann, C., Gerdts, G., & Bergmann, M. (2020). Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the Hausgarten Observatory. Environmental Science & Technology, 54(7), 4079–4090. https://doi.org/10.1021/acs.est.9b06981

Viršek, M. K., Palatinus, A., Koren, Š., Peterlin, M., Horvat, P., & Kržan, A. (2016). Protocol for microplastics sampling on the sea surface and sample analysis. Journal of Visualized Experiments, 16(118), 55161. https://doi.org/10.3791/55161

Vroom, R. J., Koelmans, A. A., Besseling, E., & Halsband, C. (2017). Aging of microplastics promotes their ingestion by marine zooplankton. Environmental Pollution, 231, 987–996. http://dx.doi.org/10.1016/j.envpol.2017.08.088

WoRMS Editorial Board (2024). World Register of Marine Species [database]. https://www.marinespecies.org/

Zavala-Alarcón, F. L., Huchin-Mian, J. P., González-Muñoz, M. D. P., & Kozak, E. R. (2023). In situ microplastic ingestion by neritic zooplankton of the central Mexican Pacific. Environmental Pollution, 319, 120994. https://doi.org/10.1016/j.envpol.2022.120994

Zhang, Y., Pu, S., Lv, X., Gao, Y., & Ge, L. (2020). Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400, 123110. http://dx.doi.org/10.1016/j.jhazmat.2020.123110

Zitouni, N., Bousserrhine, N., Missawi, O., Boughattas, I., Chèvre, N., Santos, R., Belbekhouche, S., Alphonse, V., Tisserand, F., Balmassiere, L., Pereira-Dos-Santos, S., Mokni, M., Guerbej, H., & Banni, M. (2021). Uptake, tissue distribution, and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. Journal of Hazardous Materials, 403, 124055. http://dx.doi.org/10.1016/j.jhazmat.2020.124055

Publicado

2025-11-28