Biogeographical analysis of the Central American clade of Sechium (Cucurbitaceae)

Authors

DOI:

https://doi.org/10.15517/sy4jvh88

Keywords:

domesticated species; machine learning; diversity; endemism; soil types

Abstract

Introduction: The genus Sechium P. Brown (Cucurbitaceae) includes 11 species, of which two are domesticated and nine grow in the wild. The Central American clade of Sechium has six species distributed in Panama and Costa Rica. These species have characteristics that can be transferred from wild to domesticated species. Objective: To use three machine learning stacking algorithms and multivariate tools to describe geographic distribution, diversity degree, and endemism, to identify major conservation areas and to promote research for the improvement of the domesticated species. Methods: Two hundred and nine occurrence records were retrieved from the Global Biodiversity Information Facility. Raster values extracted from 21 bioclimatic variables were analyzed with descriptive and multivariate statistics. The species distribution algorithms were assembled with the SSDM library from R software. Results: Most species are distributed in type A and C climates, mainly in volcanic soils, with abundant organic matter. These species can grow at altitudes exceeding 2 000 m and tolerate low temperatures and high humidity levels. K-medoids established two groups and a 0.39 average silhouette coefficient, which indicates a low clustering trend. The stacked distribution models recorded good performance in areas under the curve (AUC) (> 0.75) and true skill statistic (> 0.75). Conclusions: The main variables that supported the models were elevation, soil types, and precipitation. The main endemism and species diversity areas were in the Cordillera de Talamanca, the Cordillera de Guanacaste, the Cordillera de Tilarán, and the Central Volcanic Range (Costa Rica). These species thrive under similar environmental conditions; however, the diverse areas have significantly different precipitation and soil types.

References

Aguiñiga-Sánchez, I., Soto-Hernández, M., Cadena-Iñiguez, J., Ruíz-Posadas, L. del M., Cadena-Zamudio, J. D., González-Ugarte, A. K., Steider, B. W., & Santiago-Osorio, E. (2015). Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells. Nutrition and Cancer, 67(2), 250–257. https://doi.org/10.1080/01635581.2015.989370

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Avendaño-Arrazate, C. H., Cadena-Iñiguez, J., Arévalo-Galarza, M. L. C., Cisneros-Solano, V. M., Morales-Flores, F. J., & Ruiz-Posadas, L. M. (2014). Mejoramiento genético participativo en chayote. AgroProductividad, 7, 30–39.

Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854–866 https://doi.org/10.3390/e11040854

Barrera-Guzmán, L. A., Legaria-Solano, J. P., Cadena-Iñiguez, J., & Sahagún-Castellanos, J. (2021). Phylogenetic relationships among Mexican species of the genus Sechium (Cucurbitaceae). Turkish Journal of Botany, 45(4), 302–314. https://doi.org/10.3906/bot-2007-18

Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A., & Bailey, J. K. (2022). Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales. Communications Biology, 5(1), 1213. https://doi.org/10.1038/s42003-022-04131-z

Beck, J. (2012). Predicting climate change effects on agriculture from ecological niche modeling: Who profits, who loses? Climatic Change, 116(1–2), 177–189.

Bedair, H., Shaltout, K., & Halmy, M. W. A. (2023). Stacked machine learning models for predicting species richness and endemism for Mediterranean endemic plants in the Mareotis subsector in Egypt. Plant Ecology, 224(12), 1113–1126. https://doi.org/10.1007/s11258-023-01366-6

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R package for cluster validation. Journal of Statistical Software, 25(4), 1–22. https://doi.org/10.18637/jss.v025.i04

Cadena-Iñiguez, J., Avendaño-Arrazate, C. H., Soto-Hernández, M., Ruiz-Posadas, L. M., Aguirre-Medina, J. F., & Arévalo-Galarza, L. (2008). Infraspecific variation of Sechium edule (Jacq.) Sw. In the state of Veracruz, Mexico. Genetic Resources and Crop Evolution, 55(6), 835–847. https://doi.org/10.1007/s10722-007-9288-4

Chang, A., Wu, T., Li, B., Jiao, D., Wang, Y., He, D., Jiang, Z., & Fan, Z. (2024). Distribution pattern of species richness of endemic genera in mountainous areas of Southwest China and its influencing factors. Sustainability, 16(9), 3750. https://doi.org/10.3390/su16093750

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 1–36. https://doi.org/10.18637/jss.v061.i06

Cross, H., Lira, S. R., & Motley, T. J. (2006). Origin and diversification of chayote. In T. J. Motley, N. Zerega, & H. Cross (Eds.), Darwin’s harvest: New approaches to the origins, evolution, and conservation of crops (pp. 171–194). Columbia University Press.

Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J. P., & Guisan, A. (2011). Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17(6), 1122–1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fischer, G., van Velthuizen, H., & Shah, M. (2002). Global agro-ecological assessment for agriculture in the 21st century: Methodology and results. International Institute for Applied Systems Analysis (IIASA) & Food and Agriculture Organization of the United Nations (FAO).

Global Biodiversity Information Facility. (2024). GBIF Occurrence Download. https://www.gbif.org/es/

Gelfand, A. E. (2022). Spatial modeling for the distribution of species in plant communities. Spatial Statistics, 50, 100582. https://doi.org/10.1016/j.spasta.2021.100582

Hijmans, R. J. (2020). raster: Geographic data analysis and modeling. R package (Version 3.3-13) [Software]. https://CRAN.R-project.org/package=raster

Hijmans, R. J., & Elith, J. (2013). Species distribution modeling with R. R CRAN Project.

Kassambara, A. (2017). Multivariate analysis I. Practical guide to cluster analysis in R. Unsupervised Machine Learning (1st ed.). STHDA.

La Sorte, F. A., & Jetz, W. (2010). Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society B: Biological Sciences, 277(1699), 3401–3410. https://doi.org/10.1098/rspb.2010.0612

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01

Lira, R., Caballero, J., & Dávila, P. (1997). A contribution to the generic delimitation of Sechium (Cucurbitaceae, Sicyinae). Taxon, 46(2), 269–282. https://doi.org/10.2307/1224097

Lira, R., & Nee, M. (1994). A new species of Sechium sect. Frantzia (Cucurbitaceae, Sicyeae, Sicyinae) from México. Brittonia, 51(2), 204–209. https://doi.org/10.2307/2666628

Lira, S. R. (1995). Estudios taxonómicos en el género Sechium P. Br. Cucurbitaceae [Doctoral thesis, Universidad Nacional Autónoma de México]. UNAM Repository. https://repositorio.unam.mx/contenidos/82785

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2007). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

Mateo, R. G., Felicísimo, A. M., & Muñoz, J. (2011). Species distributions models: A synthetic revision. Revista Chilena de Historia Natural, 84, 217–240. http://dx.doi.org/10.4067/S0716-078X2011000200008

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2019). E1071: Misc functions of the department of statistics (E1071), probability theory group (formerly: E1071) TU Wien. R package (Version 1.7) [Software]. https://CRAN.R-project.org/package=e1071

Monge, J. E., & Loría, M. (2017). Caracterización de frutos de cinco genotipos de tacaco [Sechium tacaco (Pittier) C. Jeffrey] en Costa Rica. Tecnología en Marcha, 30(3), 71–84. https://doi.org/10.18845/tm.v30i3.3274

Morales, A. J. (1994). Morfología general del tacaco, Sechium tacaco (Cucurbitaceae). Revista de Biología Tropical, 42(1-2), 59-71. https://archivo.revistas.ucr.ac.cr/index.php/rbt/article/view/22462

Munson, S. M., & Sher, A. A. (2015). Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. American Journal of Botany, 102(8), 1268–1276. https://doi.org/10.3732/ajb.1500156

Newstrom, L. E. (1990). Origin and evolution of chayote, Sechium edule. In C. Jeffrey (Ed.), Biology and utilization of the Cucurbitaceae (pp. 141–149). Cornell University Press.

Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S. B., Linder, H. P., & Schneeweiss, G. M. (2018). Hotspots within a global biodiversity hotspot—Areas of endemism are associated with high mountain ranges. Scientific Reports, 8(1), 10345. https://doi.org/10.1038/s41598-018-28504-9

Olguín-Hernández, G., Valdovinos-Ponce, G., Cadena-Iñiguez, J., & Arévalo-Galarza, M. L. C. (2013). Etiología de la marchitez de plantas de chayote (Sechium edule) en el Estado de Veracruz. Revista Mexicana de Fitopatología, 31(2), 161–169.

Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach. The Journal of Open Source Software, 6(61), 3167. https://doi.org/10.21105/joss.03167

Peñas, J., Pérez-García, F. J., & Mota, J. F. (2005). Patterns of endemic plants and biogeography of the Baetic high mountains (south Spain). Acta Botanica Gallica, 152(3), 347–360. https://doi.org/10.1080/12538078.2005.10515494

Phillips, S. J. (2010). A brief tutorial on Maxent. Lessons in Conservation, 3, 108–135.

Qazi, A. W., Saqib, Z., & Zaman-ul-Haq, M. (2022). Trends in species distribution modelling in context of rare and endemic plants: A systematic review. Ecological Processes, 11(1), 40. https://doi.org/10.1186/s13717-022-00384-y

QGIS Development Team. (2020). QGIS Geographic Information System. Open-Source Geospatial Foundation Project (Version 3.16.2) [Software]. https://www.qgis.org/en/site/

R Core Team. (2020). R: A language and environment for statistical computing (Version 1.3.1093) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/

Revelle, W. (2020). psych: Procedures for psychological, psychometric, and personality research. R package (Version 2.0.9) [Software]. Northwestern University. https://CRAN.R-project.org/package=psych

Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F., & Birnbaum, P. (2017). SSDM: An R package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution, 8(12), 1795–1803. https://doi.org/10.1111/2041-210X.12841

Sebastian, P., Schaefer, H., Lira, R., Telford, I. R. H., & Renner, S. S. (2012). Radiation following long-distance dispersal: The contributions of time, opportunity and diaspore morphology in Sicyos (Cucurbitaceae). Journal of Biogeography, 39(8), 1427–1438. https://doi.org/10.1111/j.1365-2699.2012.02695.x

Shipley, B. R., & McGuire, J. L. (2022). Interpreting and integrating multiple endemism metrics to identify hotspots for conservation priorities. Biological Conservation, 265, 109403. https://doi.org/10.1016/j.biocon.2021.109403

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley.

Villanueva-Jiménez, J. A. (2012). Las variedades del chayote (Sechium edule (Jacq.) Sw) y su comercio mundial. Agricultura, Sociedad y Desarrollo, 9(4), 481–482.

Wani, Z. A., Akhter, F., Ridwan, Q., Rawat, Y. S., Ahmad, Z., & Pant, S. (2023). A bibliometric analysis of studies on plant endemism during the period of 1991–2022. Journal of Zoological and Botanical Gardens, 4(4). 692–710. https://doi.org/10.3390/jzbg4040049

Wunderlin, R. P. (1976). Two new species and a new combination in Frantzia (Cucurbitaceae). Brittonia, 28(2), 239–244. https://doi.org/10.2307/2805833

Yilan, L., & Rutong, Z. (2015). clustertend: Check the clustering tendency. R package (Version 1.4.) [Software]. https://CRAN.R-project.org/package=clustertend

Zwiener, V. P., & Alves, V. A. (2023). Community-level predictions in a megadiverse hotspot: Comparison of stacked species distribution models to forest inventory data. Journal of Plant Ecology, 16(3), 099. https://doi.org/10.1093/jpe/rtac099

Published

2025-09-18