Mangrove forest structure, water quality, and carbon storage at Palmares, northern Pacific coast of Costa Rica

Authors

  • Jimena Samper-Villarreal Centro de Investigaciones en Ciencias del mar y Limnología (CIMAR), Universidad de Costa Rica Author
  • Adriana Omaña-Angulo Centro de Investigaciones en Ciencias del mar y Limnología (CIMAR), Universidad de Costa Rica Author
  • Jorge Cortés Centro de Investigaciones en Ciencias del mar y Limnología (CIMAR), Universidad de Costa Rica Author

DOI:

https://doi.org/10.15517/n7rm2c60

Keywords:

Eastern Tropical Pacific; , Bahía Huevos; , blue carbon; , carbon sequestration

Abstract

Introduction: Mangroves provide many ecosystem services, yet they continue to be degraded and decline in numbers. Effective management strategies need baseline information to assess habitat condition and potential decline. In Costa Rica, mangroves on the North Pacific are the least studied. Objective: To provide the first characterization of forest structure and carbon content of the Palmares mangrove. Methods: A total of 58 square plots (5 × 5 m) were sampled between March 2022 and April 2023. In each plot, mangrove species, stem height, and circumference were quantified. Samples were collected to estimate interstitial water salinity, fine root content, and sediment grain size, bulk density, and carbon content. Mangrove biomass and organic carbon (OC) were calculated using allometric equations. Water quality was assessed at six sites in the main channel during the dry and rainy seasons of 2023. Results: Six mangrove species were identified at Palmares. Rhizophora spp. (55 % of plots) and Avicennia spp. (29 %) were the most abundant, while Laguncularia and Conocarpus were rare. Average tree height was 8 ± 7 m, width 11 ± 12 cm, and density 1 833 ± 1 757 stems ha-1. Rhizophora spp. were taller and wider than Avicennia spp. Interstitial water salinity at Palmares was 34 ± 14, which was higher during the dry season and in Avicennia spp. plots. Sediment was mainly composed of silt-clay (52 %), which was higher in Rhizophora spp. plots. Sediment bulk density was 0.8 ± 0.3 g cm-3 and fine roots < 1 %. Above-ground biomass OC averaged 224 ± 335 Mg ha-1 and was higher in Rhizophora spp. plots. Sediment OC was 8 ± 3 % and inorganic carbon 3 ± 1 %. OC was higher in sediments of Rhizophora spp., with higher silt-clay, larger mangroves, and lower densities. There was no clear pattern of variation in water parameters along the main channel. Conclusions: This first characterization of Palmares mangrove can serve as a baseline for further studies and effective management and conservation strategies.

Downloads

Download data is not yet available.

References

Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52−60. https://doi.org/10.1016/j.foreco.2017.08.016

Alfaro, E. J., & Cortés, J. (2012). Atmospheric forcing of cool subsurface water events in Bahía Culebra, Gulf of Papagayo, Costa Rica. Revista de Biología Tropical, 60(Supplement 2), 173−86.

Barrantes-Leiva, R. M., & Cerdas-Salas, A. C. (2015). Spatial distribution of mangrove species and their association with the substrate sediment types, estuarine sector Térraba-Sierpe National Wetlands, Costa Rica. Revista de Biología Tropical, 63(Supplement 1), 47−60. https://doi.org/10.15517/rbt.v63i1.23094

Benavides-Varela, C., Samper-Villarreal, J., & Cortés, J. (2016). Cambios en la cobertura de manglares en Bahía Culebra, Pacífico Norte de Costa Rica (1945-2010). Revista de Biología Tropical, 64(3), 955−964. https://doi.org/10.15517/rbt.v64i3.21464

Cambronero-Bolaños, R., Silva-Benavides, M., Samper-Villarreal, J., & Benavides-Varela, C. (2025). Cobertura, estructura vegetal y almacenamiento de carbono del manglar de Morales, Puntarenas, Costa Rica. Revista de Biología Tropical, 73(Supplement 1), e64042. https://doi.org/10.15517/rev.biol.trop..v73iS1.64042

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87−99. https://doi.org/10.1007/s00442-005-0100-x

Chave, J., Réjou‐Méchain, A., Búrquez, E., Chidumayo, M. S., Colgan, W. B. C., Delitti, A., Duque, T., Eid, P. M., Fearnside, R. C., Goodman, M., Henry, A., Martínez-Yrízar, W. A., Mugasha, H. C., Muller-Landau, M., Mencuccini, B. W., Nelson, A., Ngomanda, E. M., Nogueira, E., Ortiz-Malavassi, R., … & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177−3190. https://doi.org/10.1111/gcb.12629

Chou, M. Q., Lin, W. J., Lin, C. W., Wu, H. H., & Lin, H. J. (2022). Allometric equations may underestimate the contribution of fine roots to mangrove carbon sequestration. Science of the Total Environment, 833, 155032. https://doi.org/10.1016/j.scitotenv.2022.155032

Cifuentes-Jara, M., Brenes, C., Leandro, P., Molina, O., Romero, T. E., & Torres, D. (2018). Manual Centroamericano para la medición de carbono azul en Manglares. Programa de Bosques, Biodiversidad y Cambio Climático. Turrialba, Costa Rica.

Cintrón, G., & Schaeffer-Novelli, Y. (1984). Methods for studying mangrove structure. In S. C. Snedaker, & J. G. Snedaker (Eds.), The mangrove ecosystem: research methods, Monographs on oceanographic methodology (N° 8, pp. 91−113). UNESCO.

Cordero-Murillo, A. L., Acosta-Vargas, L. G., Pineda-Gómez, J. A., & Torres-Gómez, D. (2023). Estructura, composición y contenido de carbono de manglares en los humedales Níspero y San Buenaventura-Colorado, Golfo de Nicoya, Costa Rica. Revista Forestal Mesoamericana Kurú, 20(46), 64−73.

Córdoba-Muñoz, R., Romero-Araya, J. C., & Windevoxhel-Lora, N. J. (1998). Inventario de los humedales de Costa Rica [Technical Report]. UICN, MINAE, SINAC, Embajada Real de los Países Bajos. San José, Costa Rica.

Cortés, J. (2016a). The Caribbean coastal and marine ecosystems. In M. Kappelle (Ed.), Costa Rican ecosystems (pp. 591−617). University of Chicago Press.

Cortés, J. (2016b). The Pacific coastal and marine ecosystems. In M. Kappelle (Ed.), Costa Rican ecosystems (pp. 97−138). University of Chicago Press.

Cortés, J., Fonseca, A. C., Nivia-Ruiz, J., Nielsen-Muñoz, V., Samper-Villarreal, J., Salas, E., Martínez, S., & Zamora-Trejos, P. (2010). Monitoring coral reefs, seagrasses and mangroves in Costa Rica (CARICOMP). Revista de Biología Tropical, 58(Supplement 3), 1−22. https://doi.org/10.15517/RBT.V58I0.20036

Davenport, J., & Davenport, J. L. (2006). The impact of tourism and personal leisure transport on coastal environments: A review. Estuarine, Coastal and Shelf Science, 67(1-2), 280−292. https://doi.org/10.1016/j.ecss.2005.11.026

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293−297.

Duke, N. C. (2020). A systematic revision of the vulnerable mangrove genus Pelliciera (Tetrameristaceae) in Equatorial America. Blumea-Biodiversity, Evolution and Biogeography of Plants, 65(2), 107−120. https://doi.org/10.3767/blumea.2020.65.02.04

Espinosa-Sepúlveda, A. R. (1992). Evaluación de la estructura y composición del bosque de manglar y lineamientos para su manejo silvícola en la reserva forestal de Térraba-Sierpe [Master´s thesis]. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Repositorio CATIE.

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia, 115(1-2), 39–53. https://doi.org/10.1007/s004420050489

Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89(2), 237−250. https://doi.org/10.1016/j.aquabot.2007.12.009

Godoy, M. D. P., & de-Lacerda, L. D. (2015). Mangroves response to climate change: A review of recent findings on mangrove extension and distribution. Anais Da Academia Brasileira de Ciências, 87(2), 651−667. https://doi.org/10.1590/0001-3765201520150055

Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101−110. https://doi.org/10.1023/A:1008119611481

Hernández-Blanco, M., Costanza, R., & Cifuentes-Jara, M. (2018). Valoración económica de los servicios ecosistémicos provistos por los manglares del Golfo de Nicoya [Technical Report]. Conservación Internacional, Costa Rica.

Hogarth, P. J. (1999). The biology of mangroves. Oxford University Press.

Howard, J., Hoyt, S., Isensee, K., Telszewski, M., & Pidgeon, E. (2014). Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses [Technical Report]. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, & International Union for Conservation of Nature.

International Union for Conservation of Nature. (2024). Red list of mangrove ecosystems. https://iucn.org/resources/conservation-tool/iucn-red-list-ecosystems/red-list-mangrove-ecosystems

Jiménez, J. A. (1984). A hypothesis to explain the reduced distribution of the mangrove Pelliciera rhizophorae Tr. & Pl. Biotropica, 16(4), 304−308.

Jiménez, J. A., & Soto, R. (1985). Patrones regionales en la estructura y composición florística de los manglares de la costa Pacífica de Costa Rica. Revista de Biología Tropical, 33(1), 25−37.

Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81−251. https://doi.org/10.1016/S0065-2881(01)40003-4

Kauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon Stocks in mangrove forests [Working Paper 86]. CIFOR.

Kauffman, J. B, Arifanti, V. B., Hernandez Trejo, H., García, M. del C. J., Norfolk, J., Cifuentes, M., Hadriyanto, D., & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: Carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4), 183−188. https://doi.org/10.1002/fee.1482

Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128−137. https://doi.org/10.1016/j.aquabot.2007.12.006

Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471−477. https://doi.org/10.1017/S0266467405002476

Leal, M., & Spalding, M. D. (2024). The state of the world´s mangroves. Global Mangrove Alliance. https://doi.org/10.5479/10088/119867

Lonard, R. I., Judd, F. W., DeYoe, H. R., & Stalter, R. (2021a). Biology and ecology of the halophyte Laguncularia racemosa (L.) Gaertn. f.: A review. In M. N. Grigore (Ed.), Handbook of halophytes (pp. 1−16). Springer International Publishing.

Lonard, R. I., Judd, F. W., DeYoe, H. R., & Stalter, R. (2021b). Biology of the mangal halophyte Conocarpus erectus L.: A review. In M. N. Grigore (Ed.), Handbook of halophytes (pp. 1−13). Springer International Publishing.

Loría-Naranjo, M., Samper-Villarreal, J., & Cortés, J. (2015). Structural complexity and species composition of Potrero Grande and Santa Elena mangrove forests in Santa Rosa National Park, North Pacific of Costa Rica. Revista de Biología Tropical, 62(Supplement 4), 33−41. https://doi.org/10.15517/rbt.v62i4.20030

Loría-Naranjo, M., Sibaja-Cordero, J. A., & Cortés, J. (2019). Mangrove leaf litter decomposition in a seasonal tropical environment. Journal of Coastal Research, 35(1), 122−129. https://doi.org/10.2112/JCOASTRES-D-17-00095.1

MacKenzie, R., Sharma, S., & Rovai, A. R. (2021). Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests. In F. Sidik, & D. A. Fries (Eds.), Dynamic Sedimentary Environments of Mangrove Coasts (pp. 275−294). Elsevier.

Mainardi, V. (1996). El manglar de Térraba-Sierpe en Costa Rica [Technical Report No. 284]. Proyecto Conservación para el Desarrollo Sostenible en América Central. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Costa Rica.

Manrow-Villalobos, M., & Vilchez-Alvarado, B. (2012). Estructura, composición florística, biomasa y carbono arriba del suelo en los manglares Laguna de Gandoca y Estero Moín, Limón, Costa Rica. Revista Forestal Mesoamericana Kurú, 9(23), 1−18.

Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552−560. https://doi.org/10.1890/110004

Morrow, L., & Nickerson, N. H. (1973). Salt concentrations in ground waters beneath Rhizophora mangle and Avicennia germinans. Rhodora, 75(801), 102−106.

Naidoo, G. (2006). Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany, 97, 1095−1101. https://doi.org/10.1093/aob/mcl064

Parida, A. K., & Jha, B. (2010). Salt tolerance mechanisms in mangroves: A review. Trees, 24(2), 199−217. https://doi.org/10.1007/s00468-010-0417-x

Pizarro, F., & Angulo, H. (1994). Diagnóstico de los manglares de la costa Pacífica de Costa Rica. In D. O. Suman (Ed.), El ecosistema de manglar en América Latina y la cuenca del Caribe: Su manejo y conservación (pp. 34−63). Rosentiel School of Marine and Atmospheric Science, University of Miami & The Tinker Foundation.

Pizarro, F., Piedra, L., Bravo, J., Asch, J., & Asch, C. (2004). Manual de procedimientos para el manejo de los manglares. EFUNA.

Pool, D. J., Snedaker, S. C., & Lugo, A. E. (1977). Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica. Biotropica, 9(3), 195. https://doi.org/10.2307/2387881

R Core Team. (2024). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Rueda, C., Contreras, M., & Madrinan, S. (2024). Pelliciera rhizophorae. The IUCN Red List of Threatened Species, e.T233987400A152068879. https://dx.doi.org/10.2305/IUCN.UK.2024-1.RLTS.T233987400A152068879.en

Saliu, I. S., Satyanarayana, B., Fisol, M. A. B., Wolswijk, G., Decannière, C., Lucas, R., Otero, V., & Dahdouh-Guebas, F. (2021). An accuracy analysis of mangrove tree height mensuration using forestry techniques, hypsometers and UAVs. Estuarine, Coastal and Shelf Science, 248, 106971. https://doi.org/10.1016/j.ecss.2020.106971

Sabrina-Geppert, M. S. (2012). Evaluación de carbono en el humedal nacional Térraba-Sierpe [Technical Report]. Proyecto Biodiversidad Marino Costera en Costa Rica, Desarrollo de Capacidades y Adaptación al Cambio Climático, San José, Costa Rica.

Samper-Villarreal, J., Cortés, J., & Benavides-Varela, C. (2012). Description of the Panamá and Iguanita mangrove stands of Bahía Culebra, North Pacific coast of Costa Rica. Revista de Biología Tropical, 60(Supplement 2), 109−120. https://doi.org/10.15517/rbt.v60i2.19973

Samper-Villarreal, J., & Silva-Benavides, A. M. (2015). Complejidad estructural de los manglares de Playa Blanca, Escondido y Rincón de Osa, Golfo Dulce, Costa Rica. Revista de Biología Tropical, 63(Supplement 1), 199−208. http://dx.doi.org/10.15517/rbt.v63i1.23103

Silva-Benavides, A. M. (2009). Mangroves. In I. S. Wehrtmann, & J. Cortés (Eds.), Marine biodiversity of Costa Rica, Central America (pp. 123−130). Monographiae Biologicae, 86. Springer Science & Business Media B. V.

Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40−45. https://doi.org/10.1038/s41561-018-0279-1

Sistema Nacional de Áreas de Conservación. (2019). Estrategia regional para el manejo y conservación de los manglares en el Golfo de Nicoya-Costa Rica 2019-2030. Programa Nacional de Humedales, Sistema Nacional de Áreas de Conservación, Costa Rica.

Sistema Nacional de Áreas de Conservación. (2021). Mapa de ecosistemas de manglar 2021. SINAC, CATIE & PEW. https://www.sinac.go.cr/ES/bimapas/Paginas/ecomanglar.aspx & https://storymaps.arcgis.com/stories/2dda39902299463085723bb35ace3c32.

Sistema Nacional de Áreas de Conservación. (2023). Sitios de monitoreo dentro de ecosistemas de manglar (Versión 2023). Ministerio de Ambiente y Energía (MINAE), Sistema Nacional de Áreas de Conservación (SINAC), Departamento de Información y Regularización del Territorio. https://www.sinac.go.cr/

Smith III, T. J. (1992). Forest structure. In A. I. Roberston, & D. M. Alongi (Eds.), Tropical mangrove ecosystems, Coastal and Estuarine Series (N° 41, pp. 101−136). American Geophysical Union.

Soto, R., & Jiménez, J. A. (1982). Análisis fisonómico estructural del manglar de Puerto Soley, La Cruz, Guanacaste, Costa Rica. Revista de Biología Tropical, 30(2), 161−168.

Suárez, N., & Medina, E. (2005). Salinity effect on plant growth and leaf demography of the mangrove, Avicennia germinans L. Trees, 19(6), 722−728. https://doi.org/10.1007/s00468-005-0001-y

Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove forests: One of the world’s threatened major tropical environments. BioScience, 51(10), 807−815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2

Zamora-Trejos, P., & Cortés, J. (2009). Los manglares de Costa Rica: El Pacífico Norte. Revista de Biología Tropical, 57(3), 473−488. https://doi.org/10.15517/rbt.v57i3.5469

Published

2026-02-06