Association between the alga Spirogyra (Zygnemataceae) and heavy metals in sediments of the Chi River Basin in Northeast Thailand

Authors

  • Patarapong Kroeksakul Department of Environment in Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University Author
  • Arin Ngamniyom Department of Environment, Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University Author
  • Phanom Sutthisaksopon Department of Environment, Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University Author
  • Pakjirat Singhaboot Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University Author

DOI:

https://doi.org/10.15517/x61ae455

Keywords:

Spirogyra, sediment, heavy metals, Chi River Basin

Abstract

Introduction: Sediments act as major sinks of heavy metals from human activities, while algae such as Spirogyra interact with these sediments through nutrient uptake and biogeochemical cycling. In the Chi River Basin, Spirogyra (“Tao”) plays both ecological and socioeconomic roles, serving as food and a bioindicator of pollution. Objective: To evaluate heavy-metal concentrations in sediments and Spirogyra and assesses their potential human health risks. Methods: Water quality, Spirogyra, and sediment samples from the Chi River Basin were analyzed for heavy metals using ICP-OES, with human health risks assessed by THQ and HI, and sediment contamination evaluated through Igeo, EF, CF, PLI indices. Results: Heavy metals (Cd, Cu, Fe, Mn, Zn) in sediments and Spirogyra from the Chi River Basin were assessed under average water conditions (pH 7.49, EC 497 µS cm–2, NaCl 0.024 %, 24.9 ± 3.52 °C), showing concentrations in algae (Fe > Mn > Zn > Cu > Cd) with THQ and HI < 1 indicating low health risk, while sediments (Mn > Fe > Zn > Cu > Cd) exhibited Igeo < 0, EF < 2, CF < 1 except for Fe (CF = 8.31), PLI < 1, and significant correlations between Mn in algae with Cu and Mn in sediments, Cu with Fe in algae, and Cd in algae with Fe in sediments. Conclusions: The findings indicate no significant heavy-metal pollution in sediments or Spirogyra from the Chi River Basin. However, due to elevated Fe contamination in sediments, periodic monitoring is recommended to safeguard ecological and food safety.

Downloads

Download data is not yet available.

References

Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005

Abdullah, M. I. C., Sah, A. S. R. M., & Haris, H. (2020). Geoaccumulation index and enrichment factor of arsenic in surface sediment of Bukit Merah Reservoir, Malaysia. Tropical Life Sciences Research, 31(3), 109–125. https://doi.org/10.21315/tlsr2020.31.3.8

Akhtar, N., Syakir-Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660

Anabtawi, H. M., Lee, W. H., Al-Anazi, A., Mohamed, M. M., & Aly-Hassan, A. (2024). Advancements in biological strategies for controlling harmful algal blooms (HABs). Water, 16(2), 224. https://doi.org/10.3390/w16020224

Bhatt, P., Bhandari, G., Turco, R. F., Aminikhoei, Z., Bhatt, K., & Simsek, H. (2022). Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. Environmental Pollution, 309, 119688. https://doi.org/10.1016/j.envpol.2022.119688

Çakmakçı, S., Polatoğlu, B., & Çakmakçı, R. (2024). Foods of the future: Challenges, opportunities, trends, and expectations. Foods, 13(17), 2663. https://doi.org/10.3390/foods13172663

Czarnowska, K., & Gworek, B. (1990). Geochemical background values for trace elements in arable soils developed from sedimentary rocks of glacial origin. Environ Geochemistry and Health, 12, 289–290. https://doi.org/10.1007/BF01783453

de Oliveira, A. P., & Bragotto, A. P. A. (2022). Microalgae-based products: Food and public health. Future Foods, 6, 100157. https://doi.org/10.1016/j.fufo.2022.100157

Ewing, H. A., & Weathers, K. C. (2021). Element cycling. In C. Kathleen, K. C. Weathers, D. L. Strayer, & G. E. Likens (Eds.), Fundamentals of ecosystem science (2nd, pp. 115–130). Academic Press. https://doi.org/10.1016/B978-0-12-812762-9.00006-X

Fadlillah, L. N., Utami, S., Rachmawate, A. A., Jayato, G. D., & Widyastuti, M. (2023). Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia. Heliyon, 9(4), e15485. https://doi.org/10.1016/j.heliyon.2023.e15485

Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: Trends and explanation. Hydrological Processes, 10(2), 227–261. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-HYP357>3.0.CO;2-X

Friedl, T., Brinkmann, N., & Mohr, K. I. (2011). Algae (Eukaryotic). In J. Reitner, & V. Thiel. (Eds.), Encyclopedia of geobiology. Encyclopedia of earth sciences series (pp. 10–20). Springer. https://doi.org/10.1007/978-1-4020-9212-1_7

Galanakis, C. M. (2024). The future of food. Foods, 13(4), 506. https://doi.org/10.3390/foods13040506

Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., Yang, Y., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197. https://doi.org/10.1016/j.chemosphere.2017.10.151

Guerra, F., Trevizam, A. R., MuraokaIII, T., Chaves-Marcante, N., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60. https://doi.org/10.1590/S0103-90162012000100008

Hannon, M., Gimpel, J., Tran, M., Rasala, B., & Mayfield, S. (2010). Biofuels from algae: Challenges and potential. Biofuels, 1(5), 763–784. https://doi.org/10.4155/bfs.10.44

Javed, M., & Usmani, N. (2016). Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatusinhabiting, thermal power plant effluent loaded canal. SpringerPlus, 5(1), 776. https://doi.org/10.1186/s40064-016-2471-3

Kaštovský, J., Fučíková, K., Veselá, J., Carías, C. B., & Vegas-Vilarrúbia, T. (2019). Algae. In V. Rull, T. Vegas-Vilarrúbia, O. Huber, & C. Señaris (Eds.), Biodiversity of Pantepui: The pristine “lost world” of the neotropical Guiana Highlands (pp. 95–118). Academic Press.

Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One, 10(2), e0118985. https://doi.org/10.1371/journal.pone.0118985

Kroeksakul, P., Ngamniyom, A., Silprasit, K., & Singhaboot, P. (2023). Relationship between potential trace elements contamination in sediment and macrofauna in the Upper Gulf of Thailand. Journal of Environmental and Public Health, 2023, 1-9. 4231930. https://doi.org/10.1155/2023/4231930

Land Development Department. (2012). Data for soil management [Dataset]. https://www.ldd.go.th/Web_Soil/polluted.htm

Liber, Y., Mourier, B., Marchand, P., Bichon, E., Perrodin, Y., & Bedell, J. P. (2019). Past and recent state of sediment contamination by persistent organic pollutants (POPs) in the Rhône River: Overview of ecotoxicological implications. The Science of the Total Environment, 646, 1037–1046. https://doi.org/10.1016/j.scitotenv.2018.07.340

Lobus, N. V., & Kulikovskiy, M. S. (2023). The co-evolution aspects of the biogeochemical role of phytoplankton in aquatic ecosystems: A review. Biology, 12(1), 92. https://doi.org/10.3390/biology12010092

Machado, A. A., Valiaparampil, J. G., & Mulky, L. (2024). Unlocking the potential of algae for heavy metal remediation. Water, Air, & Soil Pollution, 235, 629. https://doi.org/10.1007/s11270-024-07436-3

Matos, A. P., Novelli, E., & Tribuzi, G. (2022). Use of algae as food ingredient: Sensory acceptance and commercial products. Frontiers in Food Science and Technology, 2, 989801. https://doi.org/10.3389/frfst.2022.989801

Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25(3), 113–152. https://doi.org/10.1080/07388550500248571

Miller, J. R. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58(2-3), 101–118. https://doi.org/10.1016/S0375-6742(96)00073-8

Mohite, A., Jyoti-Bora, B., Sharma, P., Medhi, B. J., Barik, D., Balasubramanian, D., Nguyen, V. G., Josephin, F., Le, H. C., Kamalakannan, J., Varuvel, E. G., & Cao, D. N. (2024). Maximizing efficiency and environmental benefits of an algae biodiesel-hydrogen dual fuel engine through operational parameter optimization using response surface methodology. International Journal of Hydrogen Energy, 52(Part D.), 1395–1407.

Molinuevo-Salces, B., Riaño, B., Hernández, D., & García-González, M. C. (2019). Microalgae and wastewater treatment: Advantages and disadvantages. In M. Alam, & Z. Wang (Eds.), Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 505–534). Springer. https://doi.org/10.1007/978-981-13-2264-8_20

Muller, G. (1980). Schwermetalle in sedimenten des staugeregelten neckars. Naturwissenschaften, 67, 308–309. https://doi.org/10.1007/BF01153502

Naik, B., Mishra, R., Kumar, V., Mishra, S., Gupta, U., Rustagi, S., Gupta, A. K., Preet, M. S., Bhatt, S. C., & Rizwanuddin, S. (2024). Micro-algae: Revolutionizing food production for a healthy and sustainable future. Journal of Agriculture and Food Research, 15, 100939. https://doi.org/10.1016/j.jafr.2023.100939

Neeti, K., Gaurav, K., & Singh, R. (2023). The potential of algae biofuel as a renewable and sustainable bioresource. Engineering Proceedings, 37(1), 22. https://doi.org/10.3390/ECP2023-14716

Ni, L., Gu, G., Rong, S., Hu, L., Wang, P., Li, S., Li, D., Liu, X., Wang, Y., & Achary, K. (2019). Effects of cyanobacteria decomposition on the remobilization and ecological risk of heavy metals in Taihu Lake. Environmental Science and Pollution Research, 26, 35860–35870. https://doi.org/10.1007/s11356-019-06649-y

Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253–264. https://doi.org/10.1016/j.ecss.2009.12.019

Omar, W. M. (2010). Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to malaysian freshwater ecosystems. Tropical Life Sciences Research, 21(2), 51–67.

Park, C. S., & Hwang, E. K. (2010). An investigation of the relationship between sediment particles size and the development of green algal mats (Ulva prolifera) on the intertidal flats of Muan, Korea. Journal of Applied Phycology, 23, 515–522. https://doi.org/10.1007/s10811-010-9620-9

Pollution Control Department. (2022). Announcement of the national environment board on the determination of sediment quality standards in surface water sources, B.E. 2565 [Technical report]. National Environment Board.

Potipat, J., Tangkrock-olan, N., & Helander, H. F. (2015). Distribution of selected heavy metals in sediment of the river basin of coastal area of Chanthaburi province, Gulf of Thailand. EnvironmentAsia, 8(1), 133–143. https://doi.org/10.14456/ea.2015.16

Rahman, M. S., Ahmed, Z., Seefat, S. M., Alam, R., Islam, A. R. Md. T., Choudhury, T. R., Begum, B. A., & Idris, A. M. (2022). Assessment of heavy metal contamination in sediment at the newly established tannery industrial estate in Bangladesh: A case study. Environmental Chemistry and Ecotoxicology, 4, 1–12. https://doi.org/10.1016/j.enceco.2021.10.001

Rajfur, M., Kłos, A., & Wacławek, M. (2010). Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water. Bioelectrochemistry, 80(1), 81–86. https://doi.org/10.1016/j.bioelechem.2010.03.005

Saragih, H. T., Muhamad, A. A. K., Alfianto, A., Viniwidihastuti, F., Untari, L. F., Lesmana, I., Widyatmoko, H., & Rohmah, Z. (2019). Effects of Spirogyra jaoensis as a dietary supplement on growth, pectoralis muscle performance, and small intestine morphology of broiler chickens. Veterinary World, 12(8), 1233–1239. https://doi.org/10.14202/vetworld.2019.1233-1239

Sarma, U., Hoque, M. E., Thekkangil, A., Venkatarayappa, N., & Rajagopal, S. (2024). Microalgae in removing heavy metals from wastewater-An advanced green technology for urban wastewater treatment. Journal of Hazardous Materials Advances, 15, 100444. https://doi.org/10.1016/j.hazadv.2024.100444

Schulte, P., Weber, A., Keßels, J., Lehmkuhl, F., Schüttrumpf, H., Esser, V., & Wolf, S. (2024). Morphodynamics and heavy metal accumulation in an artificially built near-natural river (Inde, Germany). Journal of Sedimentary Environments, 9, 117–133. https://doi.org/10.1007/s43217-023-00160-8

Sheng, P. X., Ting, Y. P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275(1), 131–141. https://doi.org/10.1016/j.jcis.2004.01.036

Shing, W. L., Hwang, T. Y., Yi, K. W., Han, L. J., & Hock, O. G. (2018). Using the responses of green algae Spirogyra as bioindicator for metals and pesticides pollution. Journal of Environmental Science and Management, 21(2), 1–6. https://doi.org/10.47125/jesam/2018_2/01

Sitthiwong, N. (2019). Pigment and nutritional value of Spirogyra spp. in Sakon Nakhon, Nakhon Phanom and Mukdahan Provinces. Progress in Applied Science and Technology (PAST), 9(1), 10–21.

Sojka, M., & Jaskuła, J. (2022). Heavy metals in river sediments: contamination, toxicity, and source identification-A case study from Poland. International Journal of Environmental Research and Public Health, 19(17), 10502. https://doi.org/10.3390/ijerph191710502

Spohn, M., Aburto, F., Ehlers, T. A., Farwig, N., Frings, P. J., Hartmann, H., Hoffmann, T., Larsen, A., & Oelmann, Y. (2021). Terrestrial ecosystems buffer inputs through storage and recycling of elements. Biogeochemistry, 156, 51–373. https://doi.org/10.1007/s10533-021-00848-x

Thailand Board of Investment. (2025, July, 1). General information: population data. https://www.boi.go.th/index.php?page=demographic

Thummajitsakul, S., Subsinsungnern, R., Treerassapanich, N., Kunsanprasit, N., Puttirat, L., Kroeksakul, P., & Silprasit, K. (2018). Pesticide and heavy metal contamination: Potential health risks of some vegetables and fruits from a local market and family farm in Ongkharak district of Nakhon Nayok province, Thailand. Pertanika Journal Tropical Agricultural Science, 41(3), 987–1001.

U.S. Department of Health and Human Services. (2025). Nutrient recommendations and databases [Database]. https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx

U.S. Environmental Protection Agency. (1998). Manganese (CASRN 7439-96-5): Integrated Risk Information System (IRIS) chemical assessment summary. National Center for Environmental Assessment.

Wang, Y., Gu, W., Liu, X., Liu, H., Tang, G., & Yang, C. (2023). Combined impacts of algae-induced variations in water soluble organic matter and heavy metals on bacterial community structure in sediment from Chaohu Lake, a eutrophic shallow lake. Science of The Total Environment, 874, 162481. https://doi.org/10.1016/j.scitotenv.2023.162481

Wijaya, A., Ahmad, N., Hanum, L., Melwita, E., & Lesbani, A. (2025). Spirogyra sp. macro-algae-supported NiCr-LDH adsorbent for enhanced remazol red dye removal. Results in Surfaces and Interfaces, 18, 100427. https://doi.org/10.1016/j.rsurfi.2025.100427

Wu, J. Y., Tso, R., Teo, H. S., & Haldar, S. (2023). The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Frontiers in Nutrition, 10, 1277343. https://doi.org/10.3389/fnut.2023.1277343

Xiang, R., Zheng, B., & Jia, H. (2023). Effects of dissolved organic matter from sediment and soil samples on the growth and physiology of four bloom-forming algal species. Ecotoxicology and Environmental Safety, 263, 115266. https://doi.org/10.1016/j.ecoenv.2023.115266

Xue, S., Jiang, S. Q., Li, R. Z., Jiao, Y. Y., Kang, Q., Zhao, L. Y., Li, Z. H., & Chen, M. (2024). The decomposition of algae has a greater impact on heavy metal transformation in freshwater lake sediments than that of macrophytes. Science of the Total Environment, 906, 167752. https://doi.org/10.1016/j.scitotenv.2023.167752

Yongkhamcha, B., & Buddhakala, N. (2023). Phytochemical compositions, nutritional contents, cytotoxicity and anti-inflammatory activity of different extracts from Spirogyra neglecta (Hassall) Kützing. Trends in Sciences, 20(4), 6528. https://doi.org/10.48048/tis.2023.6528

Zada, S., Lu, H., Khan, S., Iqbal, A., Ahmad, A., Ahmad, A., Ali, H., Fu, P., Dong, H., & Zhang, X. (2021). Biosorption of iron ions through microalgae from wastewater and soil: Optimization and comparative study. Chemosphere, 265, 129172. https://doi.org/10.1016/j.chemosphere.2020.129172

Zha, X., Deng, L., Jiang, W., An, J., Wang, H., & Tian, Y. (2024). Source analysis and distribution prediction of soil heavy metals in a typical area of the Qinghai-Tibet Plateau. Ecological Indicators, 166, 112460. https://doi.org/10.1016/j.ecolind.2024.112460

Zhao, L., Hu, M., Muslim, H., Hou, T., Bian, B., Yang, Z., Yang, W., & Zhang, L. (2022). Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production. Chemisphere, 287(Part 2), 132145. https://doi.org/10.1016/j.chemosphere.2021.132145

Published

2025-12-08