Bacterias asociadas con el alga Ulva lactuca (Ulvaceae) del Caribe colombiano y su actividad lacasa

Autores/as

DOI:

https://doi.org/10.15517/8pkmas90

Palabras clave:

algas marinas, diversidad bacteriana marina cultivable, sustancia biológica de interés, cribado de lacasas

Resumen

Introducción: Las macroalgas marinas, sus bacterias asociadas y el medio ambiente interactúan para producir compuestos que ayudan al holobionte a adaptarse a desafíos bióticos y abióticos. Estos compuestos incluyen enzimas novedosas con aplicaciones industriales y con un menor impacto ambiental que las reacciones químicas industriales. Las lacasas son enzimas que suscitan interés debido a sus aplicaciones y versatilidad, por lo que son objeto de investigación y exploración. A pesar de la gama de holobiontes macroalgales en el Caribe colombiano, poco se conoce sobre los microorganismos asociados a estos hospederos y su potencial biotecnológico. Objetivo: Evaluar las bacterias epibiontes y endobiontes asociadas a la macroalga Ulva lactuca presente en Santa Marta, Caribe colombiano, y buscar productores de lacasas. Métodos: Se emplearon técnicas de cultivo para aislar bacterias de U. lactuca recolectadas el 27 de febrero de 2023. Se secuenció la región 16S rRNA para determinar la identidad de los aislamientos. La actividad lacasa se comprobó inoculando los aislamientos en medio suplementado con guayacol y posteriormente se confirmó en agar nutritivo con 0.2 % de dimetoxifenol. Resultados: Se obtuvieron 118 aislamientos, siendo 64 bacterias epibiontes y 54 endobiontes. El 75 % de ellas se identificaron a nivel de género y especie. Los aislamientos epibiontes predominantes pertenecen a las Proteobacterias, en particular Vibrio, mientras que los Firmicutes, con Bacillus, tuvieron una mayor representación en los aislamientos endobiontes. Se encontró actividad lacasa en 42 aislamientos, incluidos Enterobacter, Halomonas, Paenibacillus, Priestia, Pseudomonas, Shewanella, y Vibrio. Entre ellos, los endobiontes afiliados a Bacillus presentaron el mayor número de aislamientos positivos para lacasas. Conclusiones: Proteobacterias y Firmicutes predominaron en la comunidad bacteriana cultivable de U. lactuca. Este estudio indica que varios géneros de bacterias asociadas a U. lactuca en el Caribe colombiano son positivas para actividad lacasa. Se requiere investigación adicional para explorar los potenciales usos de estas enzimas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abril, A. B., Torres, P. A., & Bucher, E. H. (2005). The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. Journal of Tropical Ecology, 21(1), 103–107. https://doi.org/10.1017/s0266467404001981

Agarwal, N., Solanki, V. S., Gacem, A., Hasan, M. A., Pare, B., Srivastava, A., Singh, A., Yadav, V. K., Yadav, K. K., Lee, C., Lee, W., Chaiprapat, S., & Jeon, B. H. (2022). Bacterial laccases as biocatalysts for the remediation of environmental toxic pollutants: A green and eco-friendly approach–a review. Water, 14(24), 4068. https://doi.org/10.3390/w14244068

Ahmed, E. F., Hassan, H. M., Rateb, M. E., Abdel-Wahab, N., Sameer, S., Aly-Taie, H. A., Abdel-Hameed, M. S., & Hammouda, O. (2016). A comparative biochemical study on two marine endophytes, bacterium SRCnm and Bacillus sp. JS, isolated from red sea algae. Pakistan Journal of Pharmaceutical Sciences, 29(1), 17–26.

Aktas, C., Ruzgar, D., Gurkok, S., & Gormez, A. (2022). Purification and characterization of Stenotrophomonas maltophilia chitinase with antifungal and insecticidal properties. Preparative Biochemistry & Biotechnology, 53(7), 797–806. https://doi.org/10.1080/10826068.2022.2142942

Albakosh, M. A., Naidoo, R. K., Kirby, B., & Bauer, R. (2016). Identification of epiphytic bacterial communities associated with the brown alga Splachnidium rugosum. Journal of Applied Phycology, 28(3), 1891–1901. https://doi.org/10.1007/s10811-015-0725-z

Ali, N. S., Huang, F., Qin, W., & Yang, T. C. (2022). Identification and characterization of a new Serratia proteamaculans strain that naturally produces significant amount of extracellular laccase. Frontiers in Microbiology, 13, 878360. https://doi.org/10.3389/fmicb.2022.878360

Armstrong, E., Yan, L., Boyd, K. G., Wright, P. C., & Burgess, J. G. (2001). The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461, 37–40. https://doi.org/10.1023/a:1012756913566

Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649–15654. https://doi.org/10.1073/pnas.2533483100

Azevedo, J. L., Maccheroni-Jr., W., Pereira, J. O., & de Araújo, W. L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3(1), 40–65. https://doi.org/10.2225/vol3-issue1-fulltext-4

Ba-Akdah, M. A., & Satheesh, S. (2021). Characterization and antifouling activity analysis of extracellular polymeric substances produced by an epibiotic bacterial strain Kocuria flava associated with the green macroalga Ulva lactuca. Acta Oceanologica Sinica, 40(4), 107–115. https://doi.org/10.1007/s13131-020-1694-x

Balasubramanian, V. K., Rai, K. M., Thu, S. W., Hii, M. M., & Mendu, V. (2016). Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Scientific Reports, 6, 34309. https://doi.org/10.1038/srep34309

Barbato, M., Vacchini, V., Engelen, A. H., Patania, G., Mapelli, F., Borin, S., & Crotti, E. (2022). What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria. AMB Express, 12, 98. https://doi.org/10.1186/s13568-022-01440-8

Barber-Zucker, S., Mateljak, I., Goldsmith, M., Kupervaser, M., Alcalde, M., & Fleishman, S. J. (2022). Designed high-redox potential laccases exhibit high functional diversity. ACS Catalysis, 12(21), 13164–13173. https://doi.org/10.1021/acscatal.2c03006

Bell, J. J. (2008). The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 79(3), 341–353. https://doi.org/10.1016/j.ecss.2008.05.002

Beygmoradi, A., & Homaei, A. (2017). Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatalysis and Agricultural Biotechnology, 11, 131–152. https://doi.org/10.1016/j.bcab.2017.06.013

Bollinger, A., Thies, S., Katzke, N., & Jaeger, K. E. (2020). The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microbial Biotechnology, 13(1), 19–31. https://doi.org/10.1111/1751-7915.13288

Bonthond, G., Bayer, T., Krueger-Hadfield, S. A., Stärck, N., Wang, G., Nakaoka, M., Künzel, S., & Weinberger, F. (2021). The role of host promiscuity in the invasion process of a seaweed holobiont. The ISME Journal, 15(6), 1668–1679. https://doi.org/10.1038/s41396-020-00878-7

Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biology, 13(8), e1002226. https://doi.org/10.1371/journal.pbio.1002226

Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., Wilkins, M. J., Wrighton, K. C., Williams, K. H., & Banfield, J. F. (2015). Unusual biology across a group comprising more than 15 % of domain Bacteria. Nature, 523, 208–211. https://doi.org/10.1038/nature14486

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., & Thomas, T. (2011). Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences, 108(34), 14288–14293. https://doi.org/10.1073/pnas.1101591108

Busetti, A., Maggs, C. A., & Gilmore, B. F. (2017). Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity. European Journal of Phycology, 52(4), 452–465. https://doi.org/10.1080/09670262.2017.1376709

Camacho, O., & Montaña-Fernández, J. (2012). Cultivo experimental en el mar del alga roja Hypnea musciformis en el área de Santa Marta, Caribe Colombiano. Boletín de Investigaciones Marinas y Costeras, 41(1), 29–46. https://doi.org/10.25268/bimc.invemar.2012.41.1.71

Cavallo, R., Acquaviva, M., Stabili, L., Cecere, E., Petrocelli, A., & Narracci, M. (2013). Antibacterial activity of marine macroalgae against fish pathogenic Vibrio species. Central European Journal of Biology, 8(7), 646–653. https://doi.org/10.2478/s11535-013-0181-6

Chakraborty, K., Thilakan, B., & Raola, V. K. (2018). Previously undescribed antibacterial polyketides from heterotrophic Bacillus amyloliquefaciens associated with seaweed Padina gymnospora. Applied Biochemistry and Biotechnology, 184, 716–732. https://doi.org/10.1007/s12010-017-2562-9

Chakraborty, K., Thilakan, B., Raola, V. K., & Joy, M. (2017). Antibacterial polyketides from Bacillus amyloliquefaciens associated with edible red seaweed Laurenciae papillosa. Food Chemistry, 218, 427–434. https://doi.org/10.1016/j.foodchem.2016.09.066

Chandra, R., & Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science: Processes & Impacts, 17(2), 326–342. https://doi.org/10.1039/c4em00627e

Chen, I. A., Chu, K., Palaniappan, K., Ratner, A., Huang, J., Huntemann, M., Hajek, P., Ritter, S. J., Varghese, N., Seshadri, R., Roux, S., Woyke, T., Eloe‐Fadrosh, E. A., Ivanova, N. N., & Kyrpides, N. C. (2020). The IMG/M data management and analysis system v.6.0: New tools and advanced capabilities. Nucleic Acids Research, 49(D1), D751–D763. https://doi.org/10.1093/nar/gkaa939

Chen, J., Zang, Y., Yang, Z., Qu, T., Sun, T., Liang, S., Zhu, M., Wang, Y., & Tang, X. (2022). Composition and functional diversity of epiphytic bacterial and fungal communities on marine macrophytes in an intertidal zone. Frontiers in Microbiology, 13, 839465. https://doi.org/10.3389/fmicb.2022.839465

Chen, L., Luo, S., Li, X., Wan, Y., Chen, J., & Liu, C. (2014). Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology & Biochemistry, 68, 300–308. https://doi.org/10.1016/j.soilbio.2013.10.021

Cho, H. Y., Lee, C., Hwang, S., Park, Y. C., Lim, H. L., & Jang, C. S. (2014). Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene, 552(1), 98–105. https://doi.org/10.1016/j.gene.2014.09.018

Cho, K. M., Hong, S. Y., Lee, S. M., Kim, Y. H., Kahng, G. G., Lim, Y. P., Kim, H., & Yun, H. D. (2007). Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microbial Ecology, 54, 341–351. https://doi.org/10.1007/s00248-007-9208-3

Chun, J., Lee, J. -H., Jung, Y., Kim, M., Kim, S., Kim, B. K., & Lim, Y. W. (2007). EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2259–2261. https://doi.org/10.1099/ijs.0.64915-0

Colin, R., Ni, B., Laganenka, L., & Sourjik, V. (2021). Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiology Reviews, 45(6), fuab038. https://doi.org/10.1093/femsre/fuab038

Comba-González, N., Ramírez-Hoyos, M. L., López-Kleine, L., & Montoya-Castaño, D. (2018). Production of enzymes and siderophores by epiphytic bacteria isolated from the marine macroalga Ulva lactuca. Aquatic Biology, 27, 107–118. https://doi.org/10.3354/ab00700

Deutsch, Y., Gur, L., Berman-Frank, I., & Ezra, D. (2021). Endophytes from algae, a potential source for new biologically active metabolites for disease management in aquaculture. Frontiers in Marine Science, 8, 636636. https://doi.org/10.3389/fmars.2021.636636

Devarajan, A. K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Kizhaeral S. S., Panneerselvam, P., & Kuttalingam-Gopalasubramanian, S. (2021). The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in Oryza sativa (L.). Plants, 10(2), 387. https://doi.org/10.3390/plants10020387

Diaz-Pulido, G., & Díaz-Ruíz, M. (2003). Diversity of benthic marine algae of the Colombian Atlantic. Biota Colombiana, 4(2), 203–246.

Dittmer, N. T., & Kanost, M. R. (2010). Insect multicopper oxidases: Diversity, properties, and physiological roles. Insect Biochemistry and Molecular Biology, 40(3), 179–188. https://doi.org/10.1016/j.ibmb.2010.02.006

Dutta, S., Choi, S. Y., & Lee, Y. H. (2022). Temporal dynamics of endogenous bacterial composition in rice seeds during maturation and storage, and spatial dynamics of the bacteria during seedling growth. Frontiers in Microbiology, 13, 877781. https://doi.org/10.3389/fmicb.2022.877781

Dwivedi, U. N., Singh, P., Pandey, V. P., & Kumar, A. (2011). Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic, 68(2), 117–128. https://doi.org/10.1016/j.molcatb.2010.11.002

Edoamodu, C. E., & Nwodo, U. U. (2021). Enterobacter sp. AI1 produced a thermo-acidic-tolerant laccase with a high potential for textile dyes degradation. Biocatalysis and Agricultural Biotechnology, 38, 102206. https://doi.org/10.1016/j.bcab.2021.102206

Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The seaweed holobiont: Understanding seaweed-bacteria interactions. FEMS Microbiology Reviews, 37(3), 462–476. https://doi.org/10.1111/1574-6976.12011

Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T., & Kyrpides, N. C. (2016). Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nature Microbiology, 1, 15032. https://doi.org/10.1038/nmicrobiol.2015.32

Elvira‐Recuenco, M., & van Vuurde, J. W. L. (2000). Natural incidence of endophytic bacteria in pea cultivars under field conditions. Canadian Journal of Microbiology, 46(11), 1036–1041. https://doi.org/10.1139/w00-098

Ethica, S. N., Zilda, D. S., Oedjijono, O., Muhtadi, M., Patantis, G., Darmawati, S., Dewi, S. S., Sabdono, A., & Uria, A. R. (2023). Biotechnologically potential genes in a polysaccharide-degrading epibiont of the Indonesian brown algae Hydroclathrus sp. Journal of Genetic Engineering and Biotechnology, 21(1), 18. https://doi.org/10.1186/s43141-023-00461-5

Fernández, V. C., & Gómez-Dégano, M. J. H. (2017). Biocatálisis aplicada. Las enzimas como herramientas útiles en síntesis orgánica. Anales de Química, 113(1), 27–35.

Fitri, D., Pangastuti, A., Susilowati, A., & Sutarno, S. (2017). Endophytic bacteria producing antibacterial against methicillinresistant Staphylococcus aureus (MRSA) in seagrass from Rote Ndao, East Nusa Tenggara, Indonesia. Biodiversitas, 18(2), 733–740. https://doi.org/10.13057/biodiv/d180244

Flewelling, A. J., Ellsworth, K. T., Sanford, J., Forward, E., Johnson, J. A., & Gray, C. A. (2013). Macroalgal endophytes from the Atlantic coast of Canada: a potential source of antibiotic natural products? Microorganisms, 1(1), 175–187. https://doi.org/10.3390/microorganisms1010175

Florez, J. Z., Camus, C., Hengst, M. B., & Buschmann, A. H. (2017). A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Frontiers in Microbiology, 8, 2561. https://doi.org/10.3389/fmicb.2017.02561

Froelich, B., Ayrapetyan, M., & Oliver, J. D. (2013). Integration of Vibrio vulnificus into marine aggregates and its subsequent uptake by Crassostrea virginica oysters. Applied and Environmental Microbiology, 79(5), 1454–1458. https://doi.org/10.1128/aem.03095-12

Fu, H., Jiang, P., Zhao, J., & Wu, C. (2018). Comparative genomics of Pseudomonas sp. strain SI-3 associated with macroalga Ulva prolifera, the causative species for green tide in the Yellow Sea. Frontiers in Microbiology, 9, 1458. https://doi.org/10.3389/fmicb.2018.01458

Fuertes-Perez, S., Vogel, R. F., & Hilgarth, M. (2021). Comparative genomics of Photobacterium species from terrestrial and marine habitats. Current Research in Microbial Sciences, 2, 100087. https://doi.org/10.1016/j.crmicr.2021.100087

Fürnkranz, M., Wanek, W., Richter, A., Abell, G., Rasche, F., & Sessitsch, A. (2008). Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal, 2, 561–570. https://doi.org/10.1038/ismej.2008.14

Gałązka, A., Jankiewicz, U., & Szczepkowski, A. (2023). Biochemical characteristics of laccases and their practical application in the removal of xenobiotics from water. Applied Sciences, 13(7), 4394. https://doi.org/10.3390/app13074394

Galić, M., Stajić, M., Vukojević, J., & Ćilerdžić, J. (2021). Obtaining cellulose-available raw materials by pretreatment of common agro-forestry residues with Pleurotus spp. Frontiers in Bioengineering and Biotechnology, 9, 720473. https://doi.org/10.3389/fbioe.2021.720473

Gao, X., Zheng, T., Yuan, X., Li, Z., & Wei, Y. (2021). Draft genome sequence of an epiphytic strain, Bacillus sp. strain WL1, isolated from the surface of Nostoc flagelliforme colonies in Yinchuan, Ningxia, China. Microbiology Resource Announcements, 10(30), e00382-21. https://doi.org/10.1128/mra.00382-21

García-Hoyos, L. M., Franco-Herrera, A., Ramírez-Barón, J. S., & López-Cerón, D. A. (2016). Dinámica océano-atmósfera y su influencia en la biomasa fitoplanctónica, en la zona costera del Departamento del Magdalena, Caribe Colombiano. Boletín de Investigaciones Marinas y Costeras, 39(2), 307–335. https://doi.org/10.25268/bimc.invemar.2010.39.2.152

García, C. B., & Diaz-Pulido, G. (2006). Dynamics of a macroalgal rocky intertidal community in the Colombian Caribbean. Boletín de Investigaciones Marinas y Costeras, 35(1), 7–18. https://doi.org/10.25268/bimc.invemar.2006.35.0.213

Ge, H., Ni, Q., Chen, Z., Li, J., & Zhao, F. (2019). Effects of short period feeding polysaccharides from marine macroalga, Ulva prolifera on growth and resistance of Litopenaeus vannamei against Vibrio parahaemolyticus infection. Journal of Applied Phycology, 31(3), 2085–2092. https://doi.org/10.1007/s10811-018-1663-3

Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B., Huse, S., McHardy, A. C., Knight, R., Joint, I., Somerfield, P., Fuhrman, J. A., & Field, D. (2012). Defining seasonal marine microbial community dynamics. The ISME Journal, 6(2), 298–308. https://doi.org/10.1038/ismej.2011.107

Goecke, F., Labes, A., Wiese, J., & Imhoff, J. F. (2010). Chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series, 409, 267–299. https://doi.org/10.3354/meps08607

González, A. J., Cleenwerck, I., De Vos, P., & Fernández-Sanz, A. M. (2013). Pseudomonas asturiensis sp. nov., isolated from soybean and weeds. Systematic and Applied Microbiology, 36(5), 320–324. https://doi.org/10.1016/j.syapm.2013.04.004

Guo, S., Zhang, Z., & Guo, L. (2022). Antibacterial molecules from marine microorganisms against aquatic pathogens: A concise review. Marine Drugs, 20(4), 230. https://doi.org/10.3390/md20040230

Guyomar, C., Legeai, F., Jousselin, E., Mougel, C., Lemaitre, C., & Simon, J. C. (2018). Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches. Microbiome, 6, 181. https://doi.org/10.1186/s40168-018-0562-9

Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293–320. https://doi.org/10.1128/mmbr.00050-14

Harris, A. (2017). Laccase: Applications, investigations and insights. Nova Science Publishers, Incorporated.

Hassenrück, C., Hofmann, L. C., Bischof, K., & Ramette, A. (2014). Seagrass biofilm communities at a naturally CO2-rich vent at Papua New Guinea. PANGAEA, S835369. https://doi.org/10.1594/pangaea.836359

He, K. Y., Zhang, C., Duan, Y. R., Huang, G. L., Yang, C. Y., Lu, X. R., Zheng, C. J., & Chen, G. Y. (2017). New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. The Journal of Antibiotics, 70, 823–827. https://doi.org/10.1038/ja.2017.52

Hood, M. A., & Winter, P. A. (1997). Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiology Ecology, 22(3), 215–223. https://doi.org/10.1111/j.1574-6941.1997.tb00373.x

Horta, A., Alves, C., Pinteus, S., Lopes, C., Fino, N., Silva, J., Ribeiro, J., Rodrigues, D., Francisco, J., Rodrigues, A., & Pedrosa, R. (2019). Identification of Asparagopsis armata‐associated bacteria and characterization of their bioactive potential. MicrobiologyOpen, 8(11), e00824. https://doi.org/10.1002/mbo3.824

Horta, A., Pinteus, S., Alves, C., Fino, N., Silva, J., Fernandez, S., Rodrigues, A., & Pedrosa, R. (2014). Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Marine Drugs, 12(3), 1676–1689. https://doi.org/10.3390/md12031676

Ismail, M. M., & Mohamed, S. E. (2017). Differences between some species of the genus Ulva, revealed by morphological, genetic and biochemical analysis. Journal of Genetics and Breeding, 21(3), 360–367. https://doi.org/10.18699/vj17.253

Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczynski, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966

Jeon, J. R., & Chang, Y. S. (2013). Laccase-mediated oxidation of small organics: Bifunctional roles for versatile applications. Trends in Biotechnology, 31(6), 335–341. https://doi.org/10.1016/j.tibtech.2013.04.002

Kannadan, S., & Rudgers, J. A. (2008). Endophyte symbiosis benefits a rare grass under low water availability. Functional Ecology, 22(4), 706–713. https://doi.org/10.1111/j.1365-2435.2008.01395.x

Kaur, M., Saini, K. C., Mallick, A., & Bast, F. (2023). Seaweed-associated epiphytic bacteria: Diversity, ecological and economic implications. Aquatic Botany, 189, 103698. https://doi.org/10.1016/j.aquabot.2023.103698.

Kennedy, J., Marchesi, J. R., & Dobson, A. D. W. (2008). Marine metagenomics: Strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microbial Cell Factories, 7, 27. https://doi.org/10.1186/1475-2859-7-27

Korsten, L., De Jager, E. S., De Villiers, E. E., Lourens, A., Kotzé, J. M., & Wehner, F. C. (1995). Evaluation of bacterial epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado postharvest diseases. Plant Disease, 79(11), 1149–1156. https://doi.org/10.1094/pd-79-1149

Krimm, U., Abanda-Nkpwatt, D., Schwab, W., & Schreiber, L. (2005). Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): Identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiology Ecology, 53(3), 483–492. https://doi.org/10.1016/j.femsec.2005.02.004

Kumar, J., Singh, D., Ghosh, P., & Kumar, A. (2017). Endophytic and epiphytic modes of microbial interactions and benefits. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (1st ed., pp. 227–253). Springer.

Kumar, P., Verma, A., Sundharam, S. S., Ojha, A. K., & Krishnamurthi, S. (2022). Exploring diversity and polymer degrading potential of epiphytic bacteria isolated from marine macroalgae. Microorganisms, 10(12), 2513. https://doi.org/10.3390/microorganisms10122513

Kumar, R., Mishra, A., & Jha, B. (2019). Bacterial community structure and functional diversity in subsurface seawater from the western coastal ecosystem of the Arabian Sea, India. Gene, 701, 55–64. https://doi.org/10.1016/j.gene.2019.02.099

Kurian, J. K., & Kumar, N. V. (2015). Sequence analysis and homology modeling of a bacterial laccase from Pseudomonas pseudoalcaligenes. Journal of Advanced Bioinformatics Applications and Research, 6(2), 23–32.

Lage, O. M., & Graça, A. P. (2016). Biofilms: an extra coat on macroalgae. In N. Thajuddin, & D. Dhanasekaran (Eds.), Algae-organisms for imminent biotechnology. InTech.

Leiva, S., Alvarado, P., Huang, Y., Wang, J., & Garrido, I. (2015). Diversity of pigmented gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiology Letters, 362(24), fnv206. https://doi.org/10.1093/femsle/fnv206

Li, H. L., Li, X. M., Yang, S. Q., Meng, L. H., Li, X., & Wang, B. G. (2019). Prenylated phenol and benzofuran derivatives from Aspergillus terreus EN-539, an endophytic fungus derived from marine red alga Laurencia okamurai. Marine Drugs, 17(11), 605. https://doi.org/10.3390/md17110605

Li, X., Tseng, H. T., Hemmings, G., Omolehin, O., Taylor, C., Taylor, A., Kong, P., Daughtrey, M., Gouker, F., & Hong, C. (2023). Characterization of boxwood shoot bacterial communities and potential impact from fungicide treatments. Microbiology Spectrum, 11(2), e04163-22. https://doi.org/10.1128/spectrum.04163-22

Li, Y. Q., Li, L., Fu, Y. S., Cui, Z. Q., Duan, Y. Q., Salam, N., Guo, J. W., Chen, W., & Li, W. J. (2016). Pseudoclavibacter endophyticus sp. nov., isolated from roots of Glycyrrhiza uralensis. International Journal of Systematic and Evolutionary Microbiology, 66(3), 1287–1292. https://doi.org/10.1099/ijsem.0.000876

Liang, M., Davis, E., Gardner, D., Cai, X., & Wu, Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 224(5), 1185–1196. https://doi.org/10.1007/s00425-006-0300-6

Lozanova, E., Savova, E., Lateva, V., & Teneva-Angelova, T. (2022). Endophytic microflora from Ficus carica L. leaves-isolation, characterization and potential for application. BIO Web of Conferences, 45, 02004. https://doi.org/10.1051/bioconf/20224502004

Lyons, M. M., Lau, Y. T., Carden, W. E., Ward, J. E., Roberts, S. B., Smolowitz, R., Vallino, J., & Allam, B. (2007). Characteristics of marine aggregates in shallow-water ecosystems: Implications for disease ecology. Ecohealth, 4, 406–420. https://doi.org/10.1007/s10393-007-0134-0

Maharsiwi, W., Astuti, R. I., Meryandini, A., & Wahyudi, A. T. (2020). Screening and characterization of sponge-associated bacteria from Seribu Island, Indonesia producing cellulase and laccase enzymes. Biodiversitas, 21(3), 975–981. https://doi.org/10.13057/biodiv/d210317

Mangott, A., Nappi, J., Carini, A. D. P., Goncalves, P., Hua, K., Domingos, J. A., de Nys, R., & Thomas, T. (2020). Ulva lactuca as a functional ingredient and water bioremediator positively influences the hepatopancreas and water microbiota in the rearing of Litopenaeus vannamei. Algal Research, 51, 102040. https://doi.org/10.1016/j.algal.2020.102040

Márquez, G., & Patiño, F. (1986). Aspectos ecológicos en la producción primaria de algas y comunidades bénticas vegetales de la región de Santa Marta, Caribe Colombiano. Acta Biológica Colombiana, 1(2), 35–62.

Mathews, S. L., Smithson, C. E., & Grunden, A. M. (2016). Purification and characterization of a recombinant laccase‐like multi‐copper oxidase from Paenibacillus glucanolyticus SLM 1. Journal of Applied Microbiology, 121(5), 1335–1345. https://doi.org/10.1111/jam.13241

McInroy, J. A., & Kloepper, J. W. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil, 173, 337–342. https://doi.org/10.1007/bf00011472

Mei, X., Wu, C., Zhao, J., Yan, T., & Jiang, P. (2019). Community structure of bacteria associated with drifting Sargassum horneri, the causative species of golden tide in the Yellow Sea. Frontiers in Microbiology, 10, 1192. https://doi.org/10.3389/fmicb.2019.01192

Meyer, J. L., Paul, V. J., & Teplitski, M. (2014). Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS ONE, 9(6), e100316. https://doi.org/10.1371/journal.pone.0100316

Millas, O. P., & France, I. A. (2020). Poblaciones epifitas de Pseudomonas syringae en cerezo [INIA Technical Report No. 420]. Instituto de Investigaciones Agropecuarias INIA. https://hdl.handle.net/20.500.14001/6891

Mina, D., Pereira, J. A., Lino-Neto, T., & Baptista, P. (2020). Epiphytic and endophytic bacteria on olive tree phyllosphere: Exploring tissue and cultivar effect. Microbial Ecology, 80, 145–157. https://doi.org/10.1007/s00248-020-01488-8

Miral, A., Jargeat, P., Mambu, L., Rouaud, I., Tranchimand, S., & Tomasi, S. (2022). Microbial community associated with the crustose lichen Rhizocarpon geographicum L. (DC.) living on oceanic seashore: A large source of diversity revealed by using multiple isolation methods. Environmental Microbiology Reports, 14(6), 856–872. https://doi.org/10.1111/1758-2229.13105

Montalvo, N. F., Davis, J., Vicente, J., Pittiglio, R., Ravel, J., & Hill, R. T. (2014). Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS ONE, 9(3), e90517. https://doi.org/10.1371/journal.pone.0090517

Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry (Moscow), 72(10), 1136–1150. https://doi.org/10.1134/s0006297907100112

Moyes, A. B., Kueppers, L. M., Pett‐Ridge, J., Carper, D. L., Vandehey, N., O’Neil, J., & Frank, A. C. (2016). Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist, 210(2), 657–668. https://doi.org/10.1111/nph.13850

Mukherjee, S., Stamatis, D., Bertsch, J., Ovchinnikova, G., Sundaramurthi, J. C., Lee, J., Kandimalla, M., Chen, I. A., Kyrpides, N. C., & Reddy, T. B. K. (2021). Genomes online database (GOLD) v.8: Overview and updates. Nucleic Acids Research, 49(D1), D723–D733. https://doi.org/10.1093/nar/gkaa983

Mulet, M., Lalucat, J., & Garcı́a-Valdés, E. (2010). DNA sequence‐based analysis of the Pseudomonas species. Environmental Microbiology, 12(6), 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x

Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D., & Meyer, A. S. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24. https://doi.org/10.1016/j.biotechadv.2014.12.008

Muthukumarasamy, N. P., Jackson, B., Raj, A. J., & Sevanan, M. (2015). Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate. Biochemistry Research International, 2015, 765190. https://doi.org/10.1155/2015/765190

Nasrolahi, A., Stratil, S. B., Jacob, K. J., & Wahl, M. (2012). A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment. FEMS Microbiology Ecology, 81(3), 583–595. https://doi.org/10.1111/j.1574-6941.2012.01384.x

Nei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press.

Neifar, M., Chouchane, H., Mahjoubi, M., Jaouani, A., & Cherif, A. (2016). Pseudomonas extremorientalis BU118: A new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech, 6, 107. https://doi.org/10.1007/s13205-016-0425-7

Newman, D. J., & Cragg, G. M. (2015). Endophytic and epiphytic microbes as ¨sources¨ of bioactive agents. Frontiers in Chemistry, 3, 34. https://doi.org/10.3389/fchem.2015.00034

Niño-Corredor, A. N., Comba-González, N. B., Acelas M., & Montoya-Castaño, D. (2023). Genome of the epiphytic bacterium Achromobacter denitrificans strains EPI24, isolated from a macroalga located in the Colombian Caribbean. Biotechnology Reports, 37, e00788. https://doi.org/10.1016/j.btre.2023.e00788

Oie, S., Kiyonaga, H., Matsuzaka, Y., Maeda, K., Masuda, Y., Tasaka, K., Aritomi, S., Yamashita, A., & Kamiya, A. (2008). Microbial contamination of fruit and vegetables and their disinfection. Biological & Pharmaceutical Bulletin, 31(10), 1902–1905. https://doi.org/10.1248/bpb.31.1902

Oliveros, J. C. (2007). Venny: An interactive tool for comparing lists with Venn’s diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html

Ortega-Morales, B. O., Chan-Bacab, M. J., Miranda-Tello, E., Fardeau, M.-L., Carrero, J. C., & Stein, T. (2008). Antifouling activity of sessile bacilli derived from marine surfaces. Journal of Industrial Microbiology & Biotechnology, 35(1), 9–15. https://doi.org/10.1007/s10295-007-0260-2

Papaleo, M. C., Fondi, M., Maida, I., Perrin, E., Lo-Giudice, A., Michaud, L., Mangano, S., Bartolucci, G., Romoli, R., & Fani, R. (2012). Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 30(1), 272–293. https://doi.org/10.1016/j.biotechadv.2011.06.011

Pita, L., Rix, L., Slaby, B. M., Franke, A., & Hentschel, U. (2018). The sponge holobiont in a changing ocean: From microbes to ecosystems. Microbiome, 6, 46. https://doi.org/10.1186/s40168-018-0428-1

Purahong, W., & Hyde, K. D. (2010). Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Diversity, 47, 1–7. https://doi.org/10.1007/s13225-010-0083-8

Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick-Jr., W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736

Rodicio, M. del R., & Mendoza, M. del C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: Fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiología Clínica, 22(4), 238–245. https://doi.org/10.1016/s0213-005x(04)73073-6

Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., Berg, G., van der Lelie, D., & Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7(7), 514–525. https://doi.org/10.1038/nrmicro2163

Saha, M., & Weinberger, F. (2019). Microbial “gardening” by a seaweed holobiont: Surface metabolites attract protective and deter pathogenic epibacterial settlement. Journal of Ecology, 107(5), 2255–2265. https://doi.org/10.1111/1365-2745.13193

Sampaio, A., Silva, V., Poeta, P., & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2), 97. https://doi.org/10.3390/d14020097

Sánchez-Rodríguez, D. B., Ortiz-Aguirre, I., Aguila-Ramírez, R. N., Rico-Virgen, E. G., González-Acosta, B., & Hellio, C. (2018). Marine bacteria from the Gulf of California with antimicrofouling activity against colonizing bacteria and microalgae. Revista de Biología Tropical, 66(4), 1649–1663. https://doi.org/10.15517/rbt.v66i4.31963

Sarr, P. S., Yamakawa, T., Asatsuma, S., Fujimoto, S., & Sakai, M. (2010). Investigation of endophytic and symbiotic features of Ralstonia sp. TSC1 isolated from cowpea nodules. African Journal of Microbiology Research, 4(19), 1959–1963.

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583–1594. https://doi.org/10.1111/jam.14506

Schuett, C., & Doepke, H. (2010). Endobiotic bacteria and their pathogenic potential in cnidarian tentacles. Helgoland Marine Research, 64, 205–212. https://doi.org/10.1007/s10152-009-0179-2

Shah, S. A. A., Hassan, S. S. U., Bungau, S., Si, Y., Xu, H., Rahman, M. H., Behl, T., Gitea, D., Pavel, F. -M., Corb-Aron, R. A., Pasca, B., & Nemeth, S. (2020). Chemically diverse and biologically active secondary metabolites from marine phylum Chlorophyta. Marine Drugs, 18(10), 493. https://doi.org/10.3390/md18100493

Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23, 823–832. https://doi.org/10.1007/s11274-006-9305-3

Singh, G., Bhalla, A., Kaur, P., Capalash, N., & Sharma, P. (2011). Laccase from prokaryotes: A new source for an old enzyme. Reviews in Environmental Science and Bio/Technology, 10, 309–326. https://doi.org/10.1007/s11157-011-9257-4

Singh, G., Kaur, K., Puri, S., & Sharma, P. (2014). Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Applied Microbiology and Biotechnology, 99, 155–164. https://doi.org/10.1007/s00253-014-6219-0

Singh, R. P., & Reddy, C. R. K. (2014). Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213–230. https://doi.org/10.1111/1574-6941.12297

Singh, R. P., Baghel, R. S., Reddy, C. R. K., & Jha, B. (2015). Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura. Frontiers in Plant Science, 6, 117. https://doi.org/10.3389/fpls.2015.00117

Sinirlioglu, Z. A., Sinirlioglu, D., & Akbas, F. (2013). Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresource Technology, 146, 807–811. https://doi.org/10.1016/j.biortech.2013.08.032

Sorroza-Ochoa, L., Campoverde, M. I., & Santacruz-Reyes, R. A. (2017). Estudio preliminar del extracto de dos plantas medicinales con efecto antibacteriano para uso en acuicultura. AquaTIC, 49, 1–7.

Steen, A. D., Crits-Christoph, A., Carini, P., DeAngelis, K. M., Fierer, N., Lloyd, K. G., & Thrash, J. C. (2019). High proportions of bacteria and archaea across most biomes remain uncultured. The ISME Journal, 13(12), 3126–3130. https://doi.org/10.1038/s41396-019-0484-y

Sterjiades, R., Dean, J. F. D., & Eriksson, K. -E. L. (1992). Laccase from Sycamore Maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiology, 99(3), 1162–1168. https://doi.org/10.1104/pp.99.3.1162

Subash, M. C., & Muthiah, P. (2021). Eco-friendly degumming of natural fibers for textile applications: A comprehensive review. Cleaner Engineering and Technology, 5, 100304. https://doi.org/10.1016/j.clet.2021.100304

Sun, X., Guo, L. -D. & Hyde, K. D. (2011). Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity, 47, 85–95. https://doi.org/10.1007/s13225-010-0086-5

Tadych, M., & White, J. F. (2009). Endophytic microbes. In M. Schaechter (Ed.), Encyclopedia of microbiolgy (3rd ed., pp. 431–442). Academic Press.

Takemura, A. F., Chien, D. M., & Polz, M. F. (2014). Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Frontiers in Microbiology, 5, 38. https://doi.org/10.3389/fmicb.2014.00038

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7) 3022–3027. https://doi.org/10.1093/molbev/msab120

Theron, J., & Cloete, T. E. (2000). Molecular techniques for determining microbial diversity and community structure in natural environments. Critical Reviews in Microbiology, 26(1), 37–57. https://doi.org/10.1080/10408410091154174

Thompson, F. L., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431. https://doi.org/10.1128/mmbr.68.3.403-431.2004

Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19–26. https://doi.org/10.1099/13500872-140-1-19

Tobimatsu, Y., & Schuetz, M. (2019). Lignin polymerization: how do plants manage the chemistry so well? Current Opinion in Biotechnology, 56, 75–81. https://doi.org/10.1016/j.copbio.2018.10.001

Tujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., & Kjelleberg, S. (2010). Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME Journal, 4(2), 301–311. https://doi.org/10.1038/ismej.2009.107

Ulrich, J. F., Gräfe, M. S., Dhiman, S., Wienecke, P., Arndt, H. D., & Wichard, T. (2022). Thallusin quantification in marine bacteria and algae cultures. Marine Drugs, 20(11), 690. https://doi.org/10.3390/md20110690

van der Loos, L. M., Eriksson, B. K., & Falcão-Salles, J. (2019). The macroalgal holobiont in a changing sea. Trends in Microbiology, 27(7), 635–650. https://doi.org/10.1016/j.tim.2019.03.002

Vega, F. E., Pava-Ripoll, M., Posada, F., & Buyer, J. S. (2005). Endophytic bacteria in Coffea arabica L. Journal of Basic Microbiology, 45(5), 371–380. https://doi.org/10.1002/jobm.200410551

Velupillaimani, D., & Muthaiyan, A. (2019). Potential of Bacillus subtilis from marine environment to degrade aromatic hydrocarbons. Environmental Sustainability, 2, 381–389. https://doi.org/10.1007/s42398-019-00080-2

Voříšková, J., & Baldrian, P. (2012). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116

Wahl, M., Goecke, F., Labes, A., Dobretsov, S., & Weinberger, F. (2012). The second skin: Ecological role of epibiotic biofilms on marine organisms. Frontiers in Microbiology, 3, 292. https://doi.org/10.3389/fmicb.2012.00292

Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., & Kogel, K. H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102(38), 13386–13391. https://doi.org/10.1073/pnas.0504423102

Wang, G., Shuai, L., Li, Y., Lin, W., Zhao, X., & Duan, D. (2008). Phylogenetic analysis of epiphytic marine bacteria on Hole-Rotten diseased sporophytes of Laminaria japonica. Journal of Applied Phycology, 20, 403–409. https://doi.org/10.1007/s10811-007-9274-4

Wang, M., Noor, S., Huan, R., Liu, C., Li, J., Shi, Q., Zhang, Y. J, Wu, C., & He, H. (2020). Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ, 8, e10060. https://doi.org/10.7717/peerj.10060

War Nongkhla, F. M., & Joshi, S. R. (2014). Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Revista de Biología Tropical, 62(4), 1295–1308. https://doi.org/10.15517/rbt.v62i4.12138

Weiland-Bräuer, N., Prasse, D., Brauer, A., Jaspers, C., Reusch, T. B. H., & Schmitz, R. A. (2020). Cultivable microbiota associated with Aurelia aurita and Mnemiopsis leidyi. MicrobiologyOpen, 9(9), e1094. https://doi.org/10.1002/mbo3.1094

Williams, S. L., & Smith, J. E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology Evolution and Systematics, 38, 327–359. https://doi.org/10.1146/annurev.ecolsys.38.091206.095543

Xiao, S., Chen, N., Chai, Z., Zhou, M., Xiao, C., Zhao, S., & Yang, X. (2022). Secondary metabolites from marine-derived Bacillus: A comprehensive review of origins, structures, and bioactivities. Marine Drugs, 20(9), 567. https://doi.org/10.3390/md20090567

Xiong, Y., Yang, R., Sun, X., Yang, H., & Chen, H. (2018). Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. Journal of Applied Phycology, 30, 1225–1237. https://doi.org/10.1007/s10811-017-1279-z

Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., & Solomon, E. I. (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1292(2), 303–311. https://doi.org/10.1016/0167-4838(95)00210-3

Yang, J., Li, W., Ng, T. B., Deng, X., Lin, J., & Ye, X. (2017). Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Frontiers in Microbiology, 8, 832. https://doi.org/10.3389/fmicb.2017.00832

Zhang, J., Wang, P., Tian, H., Jiang, H., Wang, Y., & Yan, C. (2018). Identification of interior salt-tolerant bacteria from ice plant Mesembryanthemum crystallinum and evaluation of their promoting effects. Symbiosis, 76, 243–252. https://doi.org/10.1007/s13199-018-0551-6

Zhang, J., Wang, P., Tian, H., Tao, Z., & Guo, T. (2020). Transcriptome analysis of ice plant growth-promoting endophytic bacterium Halomonas sp. strain MC1 to identify the genes involved in salt tolerance. Microorganisms, 8(1), 88. https://doi.org/10.3390/microorganisms8010088

Zhao, L., Xu, Y., Lai, X. -H, Shan, C., Deng, Z., & Ji, Y. (2015). Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Brazilian Journal of Microbiology, 46(4), 977–989. https://doi.org/10.1590/s1517-838246420140024

Zhao, Q., Nakashima, J., Chen, F., Yin, Y., Fu, C., Yun, J., Shao, H., Wang, X., Wang, Z. Y., & Dixon, R. A. (2013). Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. The Plant Cell, 25(10), 3976–3987. https://doi.org/10.1105/tpc.113.117770

Ziemert, N., Alanjary, M., & Weber, T. (2016). The evolution of genome mining in microbes-a review. Natural Product Reports, 33(8), 988–1005. https://doi.org/10.1039/c6np00025h

Zoccarato, L., Sher, D., Miki, T., Segrè, D., & Grossart, H. -P. (2022). A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Communications Biology, 5, 276. https://doi.org/10.1038/s42003-022-03184-4

Publicado

2025-10-28