Human disturbance promotes an increasing abundance of shrubby plants in the páramo landscape of Southern Ecuador

Authors

DOI:

https://doi.org/10.15517/rev.biol.trop..v73i1.61916

Keywords:

high Andes; woody plant encroachment; plant community composition; grasslands; biosphere reserve.

Abstract

Introduction: The páramo grassland ecosystem is an important center of plant diversity and endemism. However, human activities, such as burning and livestock grazing, are altering the plant composition of the páramos. These changes may be associated with an increase in the abundance of shrubby species and a corresponding decrease in native grass cover.

Objective: To evaluate the effects of human disturbance on the composition of woody plant species in páramo habitats.

Methods: We conducted 36 transects across the páramo landscape of the Macizo del Cajas Biosphere Reserve in Southern Ecuador between April 2017 and November 2019, recording woody plant species (e.g., bushes and shrubs) along each transect. To explore variations in woody plant composition, we employed non-metric multidimensional scaling, using the proportion of disturbed area, páramo grassland, and elevation as predictor variables.

Results: We recorded a total of 13 377 woody plants. The proportion of disturbed areas has an influence on the composition of the woody plant species. Shrubby species such as Diplostephium ericoides, Hypericum quitense, Valeriana microphylla, and Valeriana hirtella are more prevalent in transects with a greater proportion of disturbed areas.

Conclusion: There was a greater presence of fast-growing woody plant species in response to human-induced disturbance. This suggests that native herbaceous species are gradually being replaced by woody encroachment, particularly in human-accessible páramos. Conservation and restoration efforts should take this phenomenon into account to prevent the accelerated spread of woody encroachment and enhance the availability of páramo grassland habitats.

References

Ansaloni, R., Izco, J., Amigo, J., & Minga, D. (2022). Analysis of the páramo vascular flora in the Cajas National Park (Central Andes, Ecuador). Mediterranean Botany, 43, e76491. https://doi.org/10.5209/mbot.76491 DOI: https://doi.org/10.5209/mbot.76491

Astudillo, P. X., Barros, S., Mejía, D., Villegas, F. R., Siddons, D. C., & Latta, S. C. (2024). Using surrogate species and MaxEnt modeling to prioritize areas for conservation of a páramo bird community in a tropical high Andean biosphere reserve. Arctic, Antarctic, and Alpine Research, 56(1). https://doi.org/10.1080/15230430.2023.2299362 DOI: https://doi.org/10.1080/15230430.2023.2299362

Astudillo, P. X., Barros, S., Siddons, D. C., & Zárate, E. (2017). Influence of habitat modification by livestock on páramo bird abundance in southern Andes of Ecuador. Studies on Neotropical Fauna and Environment, 53(1), 29–37. https://doi.org/10.1080/01650521.2017.1382122 DOI: https://doi.org/10.1080/01650521.2017.1382122

Astudillo, P. X., Grass, I., Siddons, D. C., Schabo, D. G., & Farwig, N. (2020). Centrality in species-habitat networks reveals the importance of habitat quality for high-andean birds in Polylepis woodlands. Ardeola, 67(2), 307–324. https://doi.org/10.13157/arla.67.2.2020.ra5 DOI: https://doi.org/10.13157/arla.67.2.2020.ra5

Astudillo, P. X., Schabo, D. G., Siddons, D. C., & Farwig, N. (2019). Patch-matrix movements of birds in the páramo landscape of the southern Andes of Ecuador. Emu, 119(1), 53–60. https://doi.org/10.1080/01584197.2018.1512371 DOI: https://doi.org/10.1080/01584197.2018.1512371

Bagchi, R., Brown, L. M., Elphick, C. S., Wagner, D. L., & Singer, M. S. (2018). Anthropogenic fragmentation of landscapes: mechanisms for eroding the specificity of plant–herbivore interactions. Oecologia, 187(2), 521–533. https://doi.org/10.1007/s00442-018-4115-5 DOI: https://doi.org/10.1007/s00442-018-4115-5

Ballari, D., Giraldo, R., Campozano, L., & Samaniego, E. (2018). Spatial functional data analysis for regionalizing precipitation seasonality and intensity in a sparsely monitored region: unveiling the spatio-temporal dependencies of precipitation in Ecuador. International Journal of Climatology, 38(8), 3337–3354. https://doi.org/10.1002/joc.5504 DOI: https://doi.org/10.1002/joc.5504

Baquero, F., Sierra, R., Ordoñez, L., Tipán, M., Espinosa, L., Rivera, M. B., & Soria, P. (2004). La vegetación de los Andes del Ecuador: Memoria explicativa de los mapas de vegetación, potencial y remanente a escala 1:250 000 y del modelamiento predictivo con especies indicadoras (1a ed.). EcoCiencia; EcoPar; MAG SIGAGRO; CDC-Jatun Sacha; División Geográfica-IGM.

Barros, S., Astudillo, P. X., Landázuri, B. O., Porras, P., Siddons, D. C., & Latta, S. C. (2020). Habitat heterogeneity rather than the limits of protected areas influence bird communities in an Andean biosphere reserve. Ecología Austral, 30(3), 454–464. https://doi.org/10.25260/ea.20.30.3.0.1068 DOI: https://doi.org/10.25260/EA.20.30.3.0.1068

Beltrán, K., Salgado, S., Cuesta, F., León-Yánez, S., Romoleroux, K., Ortiz, E., Cárdenas, A., & Velástegui, A. (2009). Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador. EcoCiencia; Proyecto Páramo Andino; Herbario QCA. https://biblio.flacsoandes.edu.ec/libros/digital/43576.pdf

Brandt, J. S., Haynes, M. A., Kuemmerle, T., Waller, D. M., & Radeloff, V. C. (2013). Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 158, 116–127. https://doi.org/10.1016/j.biocon.2012.07.026 DOI: https://doi.org/10.1016/j.biocon.2012.07.026

Caballero-Villalobos, L., Fajardo-Gutiérrez, F., Calbi, M., & Silva-Arias, G. A. (2021). Climate change can drive a significant loss of suitable habitat for Polylepis quadrijuga, a treeline species in the sky islands of the northern Andes. Frontiers in Ecology and Evolution, 9, 661550. https://doi.org/10.3389/fevo.2021.661550 DOI: https://doi.org/10.3389/fevo.2021.661550

Cárdenas-Calle, S., Cárdenas, J. D., Landázuri, B. O., Mogrovejo, G., Crespo, A. M., Breitbach, N., Schleuning, M., & Tinoco, B. A. (2020). Pollinator effectiveness in the mixed-pollination system of a Neotropical Proteaceae, Oreocallis grandiflora. Journal of Pollination Ecology, 26. https://doi.org/10.26786/1920-7603(2020)601 DOI: https://doi.org/10.26786/1920-7603(2020)601

Carrillo-Rojas, G., Silva, B., Rollenbeck, R., Celleri, R., & Bendix, J. (2019). The breathing of the Andean highlands: net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agricultural and Forest Meteorology, 265, 30–47. https://doi.org/10.1016/j.agrformet.2018.11.006 DOI: https://doi.org/10.1016/j.agrformet.2018.11.006

Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007). Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrological Processes, 21(24), 3316–3327. https://doi.org/10.1002/hyp.6575 DOI: https://doi.org/10.1002/hyp.6575

Chao, A. (1984). Nonparametric restimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4), 265–270.

Chao, A., Ma, K. H., & Hsieh, T. C. (2024). iNEXT: Interpolation and Extrapolation for Species Diversity, version 3.0.1 [Software]. Anne Chao’s website. http://chao.stat.nthu.edu.tw/wordpress/software_download/

Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C. X., Chazdon, R. L., & Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044 DOI: https://doi.org/10.1093/jpe/rtr044

Crespo, A., Aguilar, J. M., Pintado, K., & Tinoco, B. A. (2022). Key plant species to restore plant–hummingbird pollinator communities in the southern Andes of Ecuador. Restoration Ecology, 30(4), e13557. https://doi.org/10.1111/rec.13557 DOI: https://doi.org/10.1111/rec.13557

Domic, A. I., & Capriles, J. M. (2021). Distribution shifts in habitat suitability and hotspot refugia of Andean tree species from the last glacial maximum to the Anthropocene. Neotropical Biodiversity, 7(1), 297–309. https://doi.org/10.1080/23766808.2021.1957652 DOI: https://doi.org/10.1080/23766808.2021.1957652

Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1–2), 73–106. https://doi.org/10.1016/S0012-8252(01)00056-3 DOI: https://doi.org/10.1016/S0012-8252(01)00056-3

García, V. J., Márquez, C. O., Rodríguez, M. V., Orozco, J. J., Aguilar, C. D., & Ríos, A. C. (2020). Páramo ecosystems in Ecuador’s southern region: conservation state and restoration. Agronomy, 10(12), 1922. https://doi.org/10.3390/agronomy10121922 DOI: https://doi.org/10.3390/agronomy10121922

Gareca, E. E., Hermy, M., Fjeldså, J., & Honnay, O. (2010). Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation, 19, 3327–3346. https://doi.org/10.1007/s10531-010-9895-9 DOI: https://doi.org/10.1007/s10531-010-9895-9

González, A., Chase, J. M., & O’Connor, M. I. (2023). A framework for the detection and attribution of biodiversity change. Philosophical Transactions of the Royal Society B, 378(1881), 20220182. https://doi.org/10.1098/rstb.2022.0182 DOI: https://doi.org/10.1098/rstb.2022.0182

Hazlehurst, J., Cardenas, S., Tinoco, B., & Karubian, J. (2016). Pollination ecology of Oreocallis grandiflora (Proteaceae) at the northern and southern ends of its geographic range. Journal of Pollination Ecology, 19, 71–80. https://doi.org/10.26786/1920-7603(2016)4 DOI: https://doi.org/10.26786/1920-7603(2016)4

He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983–2010. https://doi.org/10.1111/brv.12544 DOI: https://doi.org/10.1111/brv.12544

Hofstede, R. G. M., Coppus, R., Mena-Vásconez, P., Segarra, P., Wolf, J. H. D., & Sevink, J. (2002). El estado de conservación de los páramos de Pajonal en el Ecuador. Ecotropicos, 15(1), 3–18.

Hofstede, R. G. M., Groenendijk, J. P., Coppus, R., Fehse, J. C., & Sevink, J. (2002). Impact of pine plantations on soils and vegetation in the Ecuadorian high Andes. Mountain Research and Development, 22(2), 159–167. https://doi.org/10.1659/0276-4741(2002)022[0159:IOPPOS]2.0.CO;2 DOI: https://doi.org/10.1659/0276-4741(2002)022[0159:IOPPOS]2.0.CO;2

Hofstede, R. G., & Llambí, L. D. (2020). Plant diversity in Páramo-Neotropical high mountain humid grasslands. In M. I. Goldstein, & D. A. DellaSala (Eds.), Encyclopedia of the World’s Biomes (vol. 1–5, pp. 362–372). Elsevier. http://dx.doi.org/10.1016/B978-0-12-409548-9.11858-5 DOI: https://doi.org/10.1016/B978-0-12-409548-9.11858-5

Hudson, L. N., Newbold, T., Contu, S., Hill, S. L., Lysenko, I., De Palma, A., Phillips, H. R. P., Senior, R. A., Bennett, D. J., Booth, H., Choimes, A., Correia, D. L. P., Day, J., Echeverría-Londoño, S., Garon, M., Harrison, M. L. K., Ingram, D. J., Jung, M., Kemp, V., ... & Purvis, A. (2014). The predicts database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 4(24), 4701–4735. https://doi.org/10.1002/ece3.1303 DOI: https://doi.org/10.1002/ece3.1303

Jantz, N., & Behling, H. (2012). A Holocene environmental record reflecting vegetation, climate, and fire variability at the páramo of Quimsacocha, southwestern Ecuadorian Andes. Vegetation History and Archaeobotany, 21(3), 169–185. https://doi.org/10.1007/s00334-011-0327-x DOI: https://doi.org/10.1007/s00334-011-0327-x

Jiménez-Rivillas, C., García, J. J., Quijano-Abril, M. A., Daza, J. M., & Morrone, J. J. (2018). A new biogeographical regionalisation of the Páramo biogeographic province. Australian Systematic Botany, 31(4), 296–310. https://doi.org/10.1071/SB18008 DOI: https://doi.org/10.1071/SB18008

Jørgensen, P. M., Ulloa, C., León, B., Leon-Yánez, S., Beck, S. G., Nee, M., Zarucchi, J. L., Celis, M., Bernal, R., & Gradstein, R. (2011). Regional patterns of vascular plant diversity and endemism. In S. K. Herzog, R. Martínez, P. M. Jørgensen, & H. Tiessen (Eds.), Climate change and diodiversity in the Tropical Andes (pp. 192–203). IAI and SCOPE.

Llambí, L. D., Soto-W, A., Celleri, R., De Bievre, B., Ochoa, B., & Borja, P. (2012). Ecología, hidrología y suelos de páramos (1a ed.). Proyecto Páramo Andino; CONDESAN; GEF-UNEP.

Loughlin, N. J. D., Gosling, W. D., Mothes, P., & Montoya, E. (2018). Ecological consequences of post-Columbian indigenous depopulation in the Andean–Amazonian corridor. Nature Ecology & Evolution, 2(8), 1233–1236. https://doi.org/10.1038/s41559-018-0602-7 DOI: https://doi.org/10.1038/s41559-018-0602-7

Madriñán, S., Cortés, A. J., & Richardson, J. E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 4, 1–7. https://doi.org/10.3389/fgene.2013.00192 DOI: https://doi.org/10.3389/fgene.2013.00192

Matson, E., & Bart, D. J. (2013). Interactions among fire legacies, grazing and topography predict shrub encroachment in post-agricultural páramo. Landscape Ecology, 28(9), 1829–1840. https://doi.org/10.1007/s10980-013-9926-5 DOI: https://doi.org/10.1007/s10980-013-9926-5

Matson, E., & Bart, D. J. (2014). Plant-community responses to shrub cover in a páramo grassland released from grazing and burning. Austral Ecology, 39(8), 918–928. https://doi.org/10.1111/aec.12157 DOI: https://doi.org/10.1111/aec.12157

McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14(11), 450–453. https://doi.org/10.1016/S0169-5347(99)01679-1 DOI: https://doi.org/10.1016/S0169-5347(99)01679-1

Minga, D., Ansaloni, R., Verdugo, A., & Ulloa-Ulloa, C. (2016). Flora del páramo del Cajas, Ecuador. Universidad del Azuay. Editorial Don Bosco-Centro Gráfico Salesiano. http://dspace.uazuay.edu.ec/handle/datos/8786

Montalvo, J., Minga, D., Verdugo, A., López, J., Guazhambo, D., Pacheco, D., Siddons, D., Crespo, A., & Zárate, E. (2018). Características morfológico-funcionales, diversidad arbórea, tasa de crecimiento y de secuestro de carbono en especies y ecosistemas de Polylepis del sur de Ecuador. Ecología Austral, 28(1-bis), 249–261. https://doi.org/10.25260/EA.18.28.1.1.557 DOI: https://doi.org/10.25260/EA.18.28.1.1.557

Montané, F., Rovira, P., & Casals, P. (2007). Shrub enroachment into mesic mountain grasslands in the Iberian Peninsula: effects of plant and quality and temperature on soil C and N stocks. Global Biogeochemical Cycles, 21(4), 1–10. https://doi.org/10.1029/2006GB002853 DOI: https://doi.org/10.1029/2006GB002853

Montaño-Centellas, F., Fuentes, A. F., Cayola, L., Macía, M. J., Arellano, G., Loza, M. I., Nieto-Ariza, B., Tello, J. S. (2024). Elevational range sizes of woody plants increase with climate variability in the Tropical Andes. Journal of Biogeography, 51(5), 814–826. https://doi.org/10.1111/jbi.14783 DOI: https://doi.org/10.1111/jbi.14783

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501 DOI: https://doi.org/10.1038/35002501

Neill, D. A. (1999). Vegetación. In P. M. Jørgensen & S. León-Yánez (Eds.), Catalogue of the vascular plants of Ecuador (pp. 13–25). Monographs in Systematic Botany from the Missouri Botanical Garden.

Nivelo-Villavicencio, C., Timbe, B., & Astudillo, P. X. (2021). Observaciones de forrajeo en recursos florales por Phyllotis haggardi (Rodentia: Cricetidae) en un ecosistema de páramo al sur del Ecuador. Neotropical Biodiversity, 7(1), 376–378. https://doi.org/10.1080/23766808.2021.1964912 DOI: https://doi.org/10.1080/23766808.2021.1964912

Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., ... & Borman, T. (2024). Vegan: community ecology package, R package, version 2.6-6.1 [Software]. CRAN. https://doi.org/10.32614/CRAN.package.vegan DOI: https://doi.org/10.32614/CRAN.package.vegan

Pinos, J. (2020). Challenges and conservation implications of woodlands in the Andean region: defining actions for sustainable management. Hacquetia, 19(2), 143–153. https://doi.org/10.2478/hacq-2020-0001 DOI: https://doi.org/10.2478/hacq-2020-0001

Quispe-Melgar, H. R., Sevillano-Ríos, C. S., Navarro-Romo, W. C., Ames-Martínez, F. N., Camel, V., Fjeldså, J., & Kessler, M. (2020). The Central Andes of Peru: a key area for the conservation of Polylepis forest biodiversity. Journal of Ornithology, 161(1), 217–228. https://doi.org/10.1007/s10336-019-01703-5 DOI: https://doi.org/10.1007/s10336-019-01703-5

R Core Team. (2024). A Language and Environment for Statistical Computing, version 4.4.1 [Software]. R Foundation for Statistical Computing. https://www.r-project.org/

Renison, D., Hensen, I., Suárez, R., & Cingolani, A. M. (2006). Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? Journal of Biogeography, 33(5), 876–887. https://doi.org/10.1111/j.1365-2699.2006.01455.x DOI: https://doi.org/10.1111/j.1365-2699.2006.01455.x

Rodríguez, S., Rodas, F., Schubert, A., & Vasco, S. (2014). Área de biosfera macizo del Cajas, experiencias de desarrollo sostenible para el buen vivir/ GAD Cuenca, ETAPA EP, SENPLADES zona 6, MAE (Ministerio del Ambiente de Ecuador), zona 6, Cooperación Alemana GIZ (1a ed.). Gobierno Autónomo Descentralizado Municipal de Cuenca.

Sarango-Cobos, J., Muñoz, J., Muñoz, L., & Aguirre, Z. (2019). Impacto ecológico de un incendio forestal en la flora del páramo antrópico del Parque Universitario “Francisco Vivar Castro”, Loja, Ecuador. Bosques Latitud Cero, 9(2), 101–114.

Sarmiento, F. O. (2000). Breaking mountain paradigms: ecological effects on human impacts in man-aged tropandean landscapes. AMBIO: A Journal of the Human Environment, 29(7), 423–431. https://doi.org/10.1579/0044-7447-29.7.423 DOI: https://doi.org/10.1579/0044-7447-29.7.423

Sklenár, P., & Ramsay, P. M. (2001). Diversity of zonal páramo plant communities in Ecuador. Diversity and Distributions, 7(3), 113–124. https://doi.org/10.1046/j.1472-4642.2001.00101.x DOI: https://doi.org/10.1046/j.1472-4642.2001.00101.x

Sklenár, P., Luteyn, J., Ulloa-Ulloa, C., Jørgensen, P. M., & Dillon, M. O. (2005). Flora genérica de los Páramos: guía ilustrada de las Plantas vasculares (Memoirs of the New York Botanical Garden, 92). The New York Botanical Garden Press. https://academic.oup.com/botlinnean/article/154/4/609/2420189 DOI: https://doi.org/10.1111/j.1095-8339.2007.00655.x

Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G., Maskell, L. C., & Firbank, L. G. (2006). Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Royal Society B: Biological Sciences, 273(1601), 2659–2665. https://doi.org/10.1098/rspb.2006.3630 DOI: https://doi.org/10.1098/rspb.2006.3630

Suárez, E., & Medina, G. (2001). Vegetation structure and soil properties in Ecuadorian páramo grasslands with different histories of burning and grazing. Arctic, Antarctic, and Alpine Research, 33(2), 158–164. https://doi.org/10.2307/1552216 DOI: https://doi.org/10.1080/15230430.2001.12003418

Suárez, E., Chimbolema, S., Jaramillo, R., Zurita-Arthos, L., Arellano, P., Chimner, R. A., Stanovick, J. S., & Lilleskov, E. A. (2022). Challenges and opportunities for restoration of high-elevation Andean peatlands in Ecuador. Mitigation and Adaptation Strategies for Global Change, 27(4), 1–17. https://doi.org/10.1007/s11027-022-10006-9 DOI: https://doi.org/10.1007/s11027-022-10006-9

Sylvester, S. P., Heitkamp, F., Sylvester, M. D. P. V., Jungkunst, H. F., Sipman, H. J. M., Toivonen, J. M., Gonzáles-Inca, C. A., Ospina, J. C., & Kessler, M. (2017). Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-03500-7 DOI: https://doi.org/10.1038/s41598-017-03500-7

Toivonen, J. M., Kessler, M., Ruokolainen, K., & Hertel, D. (2011). Accessibility predicts structural variation of Andean Polylepis forests. Biodiversity and Conservation, 20(8), 1789–1802. https://doi.org/10.1007/s10531-011-0061-9 DOI: https://doi.org/10.1007/s10531-011-0061-9

Vargas-Ríos, O., & Ávila-Rodríguez, L. A. (2021). Dinámica de la vegetación de los páramos. In O. Vargas-Ríos (Ed.), Bases ecológicas y sociales para la restauración de los páramos (1a ed., pp. 87–141). Facultad de Ciencias, Universidad Nacional de Colombia.

Published

2025-07-10