Histomorphometry of the gastrointestinal tract of the fish Pseudoplatystoma magdaleniatum (Siluriformes: Pimelodidae)
DOI:
https://doi.org/10.15517/rev.biol.trop..v73i1.58796Keywords:
fish; Siluriformes; histology; histochemistry; goblet cells; mucins; digestive physiology; Magdalena River basin.Abstract
Introduction: Pseudoplatystoma magdaleniatum, commonly known as striped catfish, is an endemic species of the Magdalena River basin, characterized by its large size and high commercial value. Given its critical endangerment due to overfishing, understanding its gastrointestinal tract morphology is crucial for conservation efforts and management in fish stocking programs.
Objective: To characterize the morphology, histology, and histochemical qualities of the gastrointestinal tract of P. magdaleniatum, an endemic fish species in the Magdalena River basin, Colombia.
Methods: Measurements of body height and weight of 22 captured adult individuals were taken, as well as of the organs comprising the digestive tract (esophagus, stomach, and intestine), and accessory and glandular organs (liver and gonads). Histological techniques, such as Hematoxylin and Eosin staining, were performed to characterize the organs structurally. Histochemical techniques were employed to describe the dynamics of mucins, and transmission electron microscopy was used.
Results: The stomach and intestine exhibited four layers: mucosa, submucosa (absent in the esophagus), muscular, and serosa. The esophagus, with only three layers, was characterized by the presence of stratified squamous epithelium with goblet cells, club cells, and taste buds. Neutral mucins were detected along the esophagus, while acidic mucins were observed in the cranial and middle regions. The stomach featured a simple columnar epithelium with abundant gastric glands and exclusively neutral mucins. Finally, the intestine was characterized by a mucosal tunic of simple cylindrical epithelium composed of enterocytes and goblet cells, abundant folds, and the presence of sulfated and carboxylated neutral and acidic mucins.
Conclusions: P. magdaleniatum exhibited a relatively short intestine for its size and weight. The histology of the gastrointestinal tract further supports adaptations for a protein-rich diet. These findings provide valuable insights for understanding the digestive physiology of this endangered species, which may inform conservation efforts and management strategies.
References
Albus, U. (2012). Guide for the care and use of laboratory animals (8th ed.). Laboratory Animals, 46(3), 267–268. https://doi.org/10.1258/la.2012.150312 DOI: https://doi.org/10.1258/la.2012.150312
Al-Hussaini, A. H. (1949). On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits: Anatomy and histology. Journal of Cell Science, 90(10), 109–139. https://doi.org/10.1242/jcs.s3-90.10.109 DOI: https://doi.org/10.1242/jcs.s3-90.10.109
Anderson, T. A. (1986). Histological and cytological structure of the gastrointestinal tract of the luderick, Girella tricuspidata (pisces, Kyphosidae), in relation to diet. Journal of Morphology, 190(1), 109–119. https://doi.org/10.1002/jmor.1051900110 DOI: https://doi.org/10.1002/jmor.1051900110
Atencio, V. (2001). Producción de alevinos de especies nativas. Revista MVZ Córdoba, 6(1), 9–14. https://doi.org/10.21897/rmvz.1060 DOI: https://doi.org/10.21897/rmvz.1060
Ayala, L. (2022). Nuevas tecnologías y uso de herramientas tecnológicas en la producción piscícola con énfasis en sistemas biofloc y sistemas de producción IPRS. [Tesis de grado, Universidad Tecnológica de Pereira]. Repositorio Institucional de la Universidad Tecnológica de Pereira. https://hdl.handle.net/11059/14105
Bagenal, T. B., & Tesch, A. T. (1978). Conditions and growth patterns in freshwater habitats. In T. B. Bagenal (Ed.), Methods for assessment of fish production in fresh waters (pp. 101–136). Blackwell Scientific Publications.
Barnham, C., & Baxter, A. (1998). Condition factor, K, for salmonid fish. Fisheries Notes, State of Victoria, Department of Primary Industries.
Buitrago-Suárez, U. A., & Burr, B. M. (2007). Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa, 1512(1), 1–38. https://doi.org/10.11646/zootaxa.1512.1.1 DOI: https://doi.org/10.11646/zootaxa.1512.1.1
Cao, X. J., & Wang, W. M. (2009). Histology and mucin histochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco. Anatomia, Histologia, Embryologia, 38(4), 254–261. https://doi.org/10.1111/j.1439-0264.2009.00932.x DOI: https://doi.org/10.1111/j.1439-0264.2009.00932.x
Carrassón, M., Grau, A., Dopazo, L. R., & Crespo, S. (2006). A histological, histochemical and ultrastructural study of the digestive tract of Dentex dentex (pisces, Sparidae). Histology and Histopathology, 21(6), 579–593. https://doi.org/10.14670/HH-21.579
Chivers, D. P., Wisenden, B. D., Hindman, C. J., Michalak, T. A., Kusch, R. C., Kaminskyj, S. G. W., Jack, K. L., Ferrari, M. C. O., Pollock, R. J., Halbgewachs, C. F., Pollock, M. S., Alemadi, S., James, C. T., Savaloja, R. K., Goater, C. P., Corwin, A., Mirza, R. S., Kiesecker, J. M., Brown, G. E., ... Mathis, A. (2007). Epidermal ‘alarm substance’ cells of fishes maintained by non-alarm functions: Possible defence against pathogens, parasites and UVB radiation. Proceedings of the Royal Society B: Biological Sciences, 274(1625), 2611–2619. https://doi.org/10.1098/rspb.2007.0709 DOI: https://doi.org/10.1098/rspb.2007.0709
Cortés-Millán, G. A. (2003). Guía para el manejo, cría y conservación del Bagre Rayado: Pseudoplatystoma fasciatum (Linnaeus, 1766). Convenio Andrés Bello.
Day, R. D., Tibbetts, I. R., & Secor, S. M. (2014). Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes. Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, 184(4), 497–512. https://doi.org/10.1007/s00360-014-0813-4 DOI: https://doi.org/10.1007/s00360-014-0813-4
de Matos, L. V., Braga de Oliveira, M. I., de Oliveira-Malta, J. C., & da Silva, G. S. (2021). Digestive tube of an herbivorous fish (Rhytiodus microlepis) from the Amazonian floodplain lakes: A morphological and histochemical study. Anatomia, Histologia, Embryologia, 50(6), 897–907. https://doi.org/10.1111/ahe.12733 DOI: https://doi.org/10.1111/ahe.12733
de Oliveira-Felizardo, V., Solis-Murgas, L. D., Ulbricht-Winkaler, E., Pereira, G. J. M., Drumond, M. M., & de Souza-Andrade, E. (2011). Fator de condição relacionado a aspectos reprodutivos da piapara (Leporinus obtusidens) (Characiformes: Anostomidae) coletadas a jusante da usina hidroelétrica do funil, minas gerais, Brasil. Ciência Animal Brasileira, 12(3), 471–477. https://doi.org/10.5216/cab.v12i3.6122 DOI: https://doi.org/10.5216/cab.v12i3.6122
de Oliveira-Ribeiro, C. A., & Fanta, E. (2000). Microscopic morphology and histochemistry of the digestive system of a tropical freshwater fish Trichomycterus brasiliensis (Lütken) (Siluroidei, Trichomycteridae). Revista Brasileira de Zoologia, 17(4), 953–971. https://doi.org/10.1590/S0101-81752000000400007 DOI: https://doi.org/10.1590/S0101-81752000000400007
Díaz, A. O., García, A. M., & Goldemberg, A. L. (2008). Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: A histochemical study. Acta Histochemica, 110(1), 76–85. https://doi.org/10.1016/j.acthis.2007.08.002 DOI: https://doi.org/10.1016/j.acthis.2007.08.002
dos Santos, M. L., Arantes, F. P., Pessali, T. C., & dos Santos, J. E. (2015). Morphological, histological and histochemical analysis of the digestive tract of Trachelyopterus striatulus (Siluriformes: Auchenipteridae). Zoologia (Curitiba), 32(4), 296–305. https://doi.org/10.1590/S1984-46702015000400005 DOI: https://doi.org/10.1590/S1984-46702015000400005
Esmaeili, H. R., Asrar, T., & Sayyadzadeh, G. (2024). Morphology and chronology of critical events for early-life history survival of an old world killifish, Esmaeilius shirini (Teleostei: Aphaniidae): A conservation management approach. Acta Zoologica, 106(2), 1–2. https://doi.org/10.1111/azo.12524 DOI: https://doi.org/10.1111/azo.12524
Faccioli, C. K., Chedid, R. A., do Amaral, A. C., Franceschini-Vicentini, I. B., & Vicentini, C. A. (2014). Morphology and histochemistry of the digestive tract in carnivorous freshwater Hemisorubim platyrhynchos (Siluriformes: Pimelodidae). Micron, 64, 10–19. https://doi.org/10.1016/j.micron.2014.03.011 DOI: https://doi.org/10.1016/j.micron.2014.03.011
Gonçalves, M., Lopes, C., & Silva, P. (2024). Comparative histological description of the intestine in platyfish (Xiphophorus maculatus) and swordtail fish (Xiphophorus helleri). Tissue and Cell, 87, 102306. https://doi.org/10.1016/j.tice.2024.102306 DOI: https://doi.org/10.1016/j.tice.2024.102306
Gosavi, S. M., Verma, C. R., Kharat, S. S., Pise, M., & Kumkar, P. (2019). Structural adequacy of the digestive tract supports dual feeding habit in catfish Pachypterus khavalchor (Siluriformes: Horabagridae). Acta Histochemica, 121(4), 437–449. https://doi.org/10.1016/j.acthis.2019.03.006 DOI: https://doi.org/10.1016/j.acthis.2019.03.006
Hassan, A. A. (2013). Anatomy and histology of the digestive system of the carnivorous fish, the brown-spotted grouper, Epinephelus chlorostigma (pisces; Serranidae) from the Red Sea. Life Science Journal, 10(2), 2149–2164.
Hernández, D. R., Pérez-Gianeselli, M., & Domitrovic, H. A. (2009). Morfología, histología e histoquímica del tubo digestivo del bagre sudamericano (Rhamdia quelen). International Journal of Morphology, 27(1), 105–111. https://doi.org/10.4067/S0717-95022009000100019 DOI: https://doi.org/10.4067/S0717-95022009000100019
Herrera-Cruz, E. E., Aristizabal-Regino, J. L., Yepes-Blandón, J. A., Estrada-Posada, A. L., Espinosa-Araujo, J. A., & Atencio-García, V. J. (2019). Criopreservación de semen de bagre rayado Pseudoplatystoma magdaleniatum con tres diferentes crioprotectores. Revista Colombiana de Biotecnología, 21(2), 55–62. https://doi.org/10.15446/rev.colomb.biote.v21n2.77847 DOI: https://doi.org/10.15446/rev.colomb.biote.v21n2.77847
Hisao, O. (1985). Digestive physiology of fish. Shanghai Scientific and Technical Publisher Press.
Kapoor, B. G., Smit, H., & Verighina, I. A. (1976). The alimentary canal and digestion in Teleosts. In F. S. Russell, & M. Yonge (Eds.), Advances in marine biology (Vol. 13, pp. 109–239). Academic Press. https://doi.org/10.1016/S0065-2881(08)60281-3 DOI: https://doi.org/10.1016/S0065-2881(08)60281-3
Kotzé, S. H., & Huysseune, A. (2020). Mucin histochemistry as a tool to assess rostral digestive tract health in a teleost model (Danio rerio). Journal of Fish Diseases, 43(12), 1603–1606. https://doi.org/10.1111/jfd.13252 DOI: https://doi.org/10.1111/jfd.13252
Kozarić, Z., Kuzir, S., Petrinec, Z., Gjurcević, E., & Bozić, M. (2008). The development of the digestive tract in larval European catfish (Silurus glanis L.). Anatomia, Histologia, Embryologia, 37(2), 141–146. https://doi.org/10.1111/j.1439-0264.2007.00812.x DOI: https://doi.org/10.1111/j.1439-0264.2007.00812.x
Kramer, D. L., & Bryant, M. J. (1995). Intestine length in the fishes of a tropical stream: 2. Relationships to diet-the long and short of a convoluted issue. Environmental Biology of Fishes, 42, 129–141. https://doi.org/10.1007/BF00001991 DOI: https://doi.org/10.1007/BF00001991
Lasso, C. A., Agudelo-Córdoba, E. A., Jiménez-Segura, L. F., Ramírez-Gil, H., Morales-Betancourt, M., Ajiaco-Martínez, R. E., de Paula-Gutiérrez, F., Usma-Oviedo, J. S., Muñoz-Torres, S. E., & Sanabria-Ochoa, A. I. (Eds.). (2011). I. Catálogo de los recursos pesqueros continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Matheus, V. A., Faccioli, C. K., Chedid, R. A., Senhorini, J. A., Franceschini-Vicentini, I. B., & Vicentini, C. A. (2021). Morphological and histochemical features of the digestive tract of Leiarius marmoratus (Gill, 1870). Journal of Fish Biology, 99(5), 1622–1631. https://doi.org/10.1111/jfb.14868 DOI: https://doi.org/10.1111/jfb.14868
Mitu, N. R. (2017). Reproductive biology of the female asian striped dwarf catfish Mystus tengara (Hamilton, 1822) (Siluriformes: Bagridae) in the Ganges River of Rajshahi, Northwestern Bangladesh. Turkish Journal of Fisheries and Aquatic Sciences, 17(3), 589–598. http://doi.org/10.4194/1303-2712-v17_3_15 DOI: https://doi.org/10.4194/1303-2712-v17_3_15
Mojica, J. I., Usma-Oviedo, J. S., Álvarez-León, R., & Lasso, C. A. (Eds.). (2012). Libro rojo de peces dulceacuícolas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Muller-Gomiero, L. M., Villares Jr., G. A., & Naous, F. (2008). Relação peso-comprimento e fator de condição de Cichla kelberi (Perciformes, Cichlidae) introduzidos em um lago artificial no sudeste Brasileiro. Acta Scientiarum: Biological Sciences, 30(2), 173–178. https://doi.org/10.4025/actascibiolsci.v30i2.300 DOI: https://doi.org/10.4025/actascibiolsci.v30i2.300
Naguib, S. A. A., Ei-Shabaka, H. A., & Ashour, F. (2011). Comparative histological and ultrastructural studies on the stomach of Schilbe mystus and the intestinal swelling of Labeo niloticus. Journal of American Science, 7(8), 251–263.
Nandita, S., & Ujjania, N. (2017). Length-weight relationship and condition factor of Indian major carps of Vallabhsagar Reservoir, Gujarat, India. Indian Journal of Fisheries, 64(Special Issue), 186–189. https://doi.org/10.21077/ijf.2017.64.special-issue.76263-27 DOI: https://doi.org/10.21077/ijf.2017.64.special-issue.76263-27
Nunes, A. L., Shizuo-Owatari, M., Andrare-Rodrigues, R., Fantini, L. E., Dichofss-Kasai, R. Y., Martins, M. L., Pedreira-Mouriño, J. L., & de Campos, C. M. (2020). Effects of Bacillus subtilis C-3102-supplemented diet on growth, non-specific immunity, intestinal morphometry and resistance of hybrid juvenile Pseudoplatystoma sp. challenged with Aeromonas hydrophila. Aquaculture International, 28(6), 2345–2361. https://doi.org/10.1007/s10499-020-00586-1 DOI: https://doi.org/10.1007/s10499-020-00586-1
Petrinec, Z., Nejedli, S., kužir, S., & Opačak, A. (2005). Mucosubstances of the digestive tract mucosa in northern pike (Esox lucius L.) and european catfish (Silurus glanis L.). Veterinarski Arhiv, 75(4), 317–327.
Purushothaman, K., Lau, D., Saju, J. M., Musthaq Sk, S., Lunny, D. P., Vij, S., & Orbán, L. (2016). Morpho-histological characterisation of the alimentary canal of an important food fish, asian seabass (Lates calcarifer). PeerJ, 4, e2377. https://doi.org/10.7717/peerj.2377 DOI: https://doi.org/10.7717/peerj.2377
Radkhah, A., & Eagderi, S. (2015). Length-weight and length-length relationships and condition factor of six cyprinid fish species of Zarrineh River (Urmia Lake basin, Iran). Iranian Journal of Ichthyology, 2(1), 61–64. https://doi.org/10.22034/iji.v2i1.12
Raji, A. R., & Norouzi, E. (2010). Histological and histochemical study on the alimentary canal in walking catfish (Claris batrachus) and piranha (Serrasalmus nattereri). Iranian Journal of Veterinary Research, 11(3), 255–261.
Revathi, P., Iyapparaj, P., Munuswamy, N., & Krishnan, M. (2012). Vitellogenesis during the ovarian development in freshwater female prawn Macrobrachium rosenbergii (De Man). International Journal of Aquatic Science, 3(2), 13–27.
Santos, C. M., Duarte, S., Souza, T. G. L., Ribeiro, T. P., Sales, A., & Araújo, F. G. (2007). Histologia e caracterização histoquímica do tubo gastrintestinal de Pimelodus maculatus (Pimelodidae, Siluriformes) no reservatório de Funil, Rio de Janeiro, Brasil. Iheringia. Série Zoologia, 97(4), 411–417. https://doi.org/10.1590/S0073-47212007000400009 DOI: https://doi.org/10.1590/S0073-47212007000400009
Sukkhee, N., Senarat, S., Charoenphon, N., Kaneko, G., Kettratad, J., Angsujinda, K., Kongtueng, P., Mitparian, T., Kanjanarakha, T., & Ampawong, S. (2024). Histological structure of the digestive tract, liver, and pancreas of Ambassis nalua (Hamilton, 1822) with ultrastructural details of the gastric gland. Journal of Fish Biology, 104(1), 113–124. https://doi.org/10.1111/jfb.15566 DOI: https://doi.org/10.1111/jfb.15566
Ward-Campbell, B. M. S., Beamish, F. W. H., & Kongchaiya, C. (2005). Morphological characteristics in relation to diet in five coexisting Thai fish species. Journal of Fish Biology, 67(5), 1266–1279. https://doi.org/10.1111/j.1095-8649.2005.00821.x DOI: https://doi.org/10.1111/j.1095-8649.2005.00821.x
Wilson, J. M., & Castro, L. F. C. (2010). 1-Morphological diversity of the gastrointestinal tract in fishes. In M. Grosell, A. P. Farrell, & C. J. Brauner (Eds.), Fish physiology (Vol. 30, pp. 1–55). Academic Press. https://doi.org/10.1016/S1546-5098(10)03001-3 DOI: https://doi.org/10.1016/S1546-5098(10)03001-3
Xiong, D., Zhang, L., Yu, H., Xie, C., Kong, Y., Zeng, Y., Huo, B., & Liu, Z. (2011). A study of morphology and histology of the alimentary tract of Glyptosternum maculatum (Sisoridae, Siluriformes). Acta Zoologica, 92(2), 161–169. https://doi.org/10.1111/j.1463-6395.2010.00458.x DOI: https://doi.org/10.1111/j.1463-6395.2010.00458.x
Yun-Chieng, C. C., Daud, H. M., Yusoff, F. M., Thompson, K. D., & Abdullah, M. (2020). Mucosal responses of brown-marbled grouper Epinephelus fuscoguttatus (Forsskål, 1775) following intraperitoneal infection with Vibrio harveyi. Journal of Fish Diseases, 43(10), 1249–1258. https://doi.org/10.1111/jfd.13222 DOI: https://doi.org/10.1111/jfd.13222
Published
Issue
Section
License
Copyright (c) 2025 Revista de Biología Tropical

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 License (CC BY 4.0)
Attribution (BY) • (BY) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).