Phenotypic differences in sun and shade leaves of Monstera deliciosa (Araceae)

Authors

  • Valeria Díaz-Valverde Escuela de Biología, Universidad de Costa Rica, 11501-2060 San Pedro, San José, Costa Rica Author https://orcid.org/0009-0007-7335-9216
  • Gerardo Avalos Escuela de Biología, Universidad de Costa Rica, 11501-2060 San Pedro, San José, Costa Rica. / The School for Field Studies, Center for Sustainable Development Studies, 100 Cummings Center, Suite 534G, Beverly, Massachusetts 01915, USA Author https://orcid.org/0000-0003-2663-4565
  • Julián Quesada-Fonseca Escuela de Biología, Universidad de Costa Rica, 11501-2060 San Pedro, San José, Costa Rica Author

DOI:

https://doi.org/10.15517/rev.biol.trop..v73i1.56794

Keywords:

functional traits; leaf dissection; phenotypic plasticity; plant morphology; stomatal density.

Abstract

Introduction: Leaves are among the most plastic organs in plants, and their structure, while shaped by phylogeny, can show considerable phenotypic plasticity within a species in response to environmental gradients. Monstera deliciosa, a tropical hemiepiphytic vine known for high leaf heteroblasty, adapts to diverse light conditions. This makes leaf structure a useful proxy for assessing whole-plant resource allocation strategies and adaptations to environmental changes.

Objective: To measure the morphological and structural differences in sun and shade leaves using nine leaf traits (petiole length, leaf width and length, effective leaf area, fenestrated area, leaf perimeter, lobulation ratio, stomatal density, and specific leaf area -SLA-).

Methods: We selected 20 widely separated M. deliciosa plants on the University of Costa Rica campus in 2022, positioned in contrasting sun and shade conditions, and measured one mature leaf per plant (ten per light environment).

Results: Sun leaves had higher fenestrated area, perimeter, and stomatal density, suggesting structural adaptations to high light. These traits may enhance thermal regulation by facilitating heat dissipation. Sun leaves had lower SLA, indicating thicker, denser leaves better suited to high light and wind exposure. Lobulation ratios (leaf dissection) were not different between sun and shade conditions. A principal component analysis explained 82.88% of the variation in the leaf traits, with 39 % of the variation attributed to fenestrated area, leaf perimeter, and effective leaf area. Correlation analyses showed that fenestrated area, perimeter, and stomatal density were positively associated (and negatively related to SLA), emphasizing the functional convergence of these traits, adapting the leaf phenotype to light differences.

Conclusions: M. deliciosa modulates leaf morphology and structure to adapt to distinctive light conditions, with fenestration, stomatal density, and SLA emerging as crucial traits. These findings underscore the significance of environmental differences in driving leaf shape and structure.

References

Andrade, I. M., Mayo, S. J., Kirkup, D., & Van Den Berg, C. (2008). Comparative morphology of populations of Monstera Adans. (Araceae) from natural forest fragments in Northeast Brazil using elliptic Fourier Analysis of leaf outlines. Kew Bulletin, 63(2), 193–211. http://dx.doi.org/10.1007/s12225-008-9032-z DOI: https://doi.org/10.1007/s12225-008-9032-z

Avalos, G., & Mulkey, S. S. (1999). Photosynthetic acclimation of the liana Stigmaphyllon lindenianum to light changes in a tropical dry forest canopy. Oecologia, 120, 475–484. https://doi.org/10.1007/s004420050880 DOI: https://doi.org/10.1007/s004420050880

Avalos, G., & Mulkey, S. S. (2014). Photosynthetic and morphological acclimation of seedlings of tropical lianas to changes in the light environment. American Journal of Botany, 101, 2088–2096. https://doi.org/10.3732/ajb.1400127 DOI: https://doi.org/10.3732/ajb.1400127

Balding, F. R., & Cunningham, G. L. (1976). A comparison of heat transfer characteristics of simple and pinnate leaf models. Botanical Gazette, 137(1), 65–74. DOI: https://doi.org/10.1086/336843

Bradshaw, A. D. (2006). Unravelling phenotypic plasticity–why should we bother? New Phytologist, 170(4), 644–648. https://doi.org/10.1111/j.1469-8137.2006.01761.x DOI: https://doi.org/10.1111/j.1469-8137.2006.01761.x

Brooks, J. R., Sprugel, D. G., & Hinckley, T. M. (1996). The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis foliage within the canopy. Oecologia, 107, 21–32. https://doi.org/10.1007/BF00582231 DOI: https://doi.org/10.1007/BF00582231

Cedeño-Fonseca, M., Díaz, P., Zuluaga, A. & Blanco, M. A. (2020). A comparison of Monstera deliciosa and M. tacanaensis, with comments on Monstera section Tornelia (Araceae). Journal of the International Aroid Society, 43(1–2), 32–73.

Cedeño-Fonseca, M. V., Hay, A., & Blanco Coto, M. A. (2022). A taxonomic revision of Monstera Adans (Araceae: Monsteroideae) in Costa Rica. Journal of the International Aroid Society, 45(1), 4–198.

de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., da Silva, P. M., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D., & Harrison, P. A. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19(10), 2873–2893. http://dx.doi.org/10.1007/s10531-010-9850-9 DOI: https://doi.org/10.1007/s10531-010-9850-9

Cornelissen, J. H., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Steege, H. T., Morgan, H. D., Van der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335–380. http://dx.doi.org/10.1071/BT02124 DOI: https://doi.org/10.1071/BT02124

Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A., Dickie, J. B., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489 DOI: https://doi.org/10.1038/nature16489

Francis, B., & Gilman, R. T. (2019). Light intensity affects leaf morphology in a wild population of Adenostyles alliariae (Asteraceae). Italian Botanist, 8, 35–45. http://dx.doi.org/10.3897/italianbotanist.8.39393 DOI: https://doi.org/10.3897/italianbotanist.8.39393

Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A., Williams, L., & Wright, J. P. (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews of the Cambridge Philosophical Society, 92(2), 1156–1173. http://dx.doi.org/10.1111/brv.12275 DOI: https://doi.org/10.1111/brv.12275

Givnish, T. J. (1979). On the adaptive significance of leaf form. In O.T. Solbrig, S. Jain, G. B. Johnson, & P. H. Raven (Eds.), Topics in plant population biology (pp. 375–407). Columbia University Press. DOI: https://doi.org/10.1007/978-1-349-04627-0_17

Givnish, T. J. (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist, 106(1), 131–160. DOI: https://doi.org/10.1111/j.1469-8137.1987.tb04687.x

Grayum, M. H. (2004). Araceae. In B. E. Hammel, M. H. Grayum, C. Herrera, & N. Zamora (Eds.), Manual de Plantas de Costa Rica (Vol. 3, pp. 59–200). Missouri Botanical Garden Press.

Hay, A. (2019). Durianology, discovery, and saltation-the evolution of aroids. Gardens’ Bulletin Singapore, 71(Suppl 2), 259–316. DOI: https://doi.org/10.26492/gbs71(suppl.2).2019-20

Herrera, S. W., & Gómez, L. D. (1993). Mapa de unidades bióticas de Costa Rica [Mapa] (Escala 1:685.000). TNC, INCAFO, CBCCR & INBio.

Holdridge, L. R., & Grenke, W. C. (1971). Forest environments in tropical life zones: a pilot study. Pergamon Press.

Kidner, C. A., & Umbreen, S. (2010). Why is leaf shape so variable. International Journal of Plant Developmental Biology, 4(1), 64–75.

Kincaid, D. T., & Schneider, R. M. (1983). Quantification of leaf shape with a microcomputer and Fourier transformation. Canadian Journal of Botany, 61, 2333–2342. https://doi.org/10.1139/b83-256 DOI: https://doi.org/10.1139/b83-256

Klingenberg, C., Duttke, S., Whelan, S., & Kim, M. (2012). Developmental plasticity, morphological variation and evolvability: A multilevel analysis of morphometric integration in the shape of compound leaves. Journal of Evolutionary Biology, 25(1), 115–129. https://doi.org/10.1111/j.1420-9101.2011.02410.x DOI: https://doi.org/10.1111/j.1420-9101.2011.02410.x

Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., Jia, W., & Wang, Z. (2020). Spatiotemporal variation in leaf size and shape in response to climate. Journal of Plant Ecology, 13(1), 87–96. https://doi.org/10.1093/jpe/rtz053 DOI: https://doi.org/10.1093/jpe/rtz053

López-Portillo, J., Ewers, F. W., Angeles, G., & Fisher, J. B. (2000). Hydraulic architecture of Monstera acuminata: evolutionary consequences of the hemiepiphytic growth form. New Phytologist, 145(2), 289–299. https://doi.org/10.1046/j.1469-8137.2000.00578.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00578.x

Madison, M. (1977). A revision of Monstera (Araceae). Contributions from the Gray Herbarium of Harvard University, 207, 3–100. DOI: https://doi.org/10.5962/p.336443

Martín-Sánchez, R., Sancho-Knapik, D., Alonso-Forn, D., López-Ballesteros, A., Ferrio, J. P., Hipp, A. L., Peguero-Pina, J. J., & Gil-Pelegrín, E. (2024). Oak leaf morphology may be more strongly shaped by climate than by phylogeny. Annals of Forest Science, 81(14), 1–18. https://doi.org/10.1186/s13595-024-01232-z DOI: https://doi.org/10.1186/s13595-024-01232-z

Meinzer, F. C. (2003). Functional convergence in plant responses to the environment. Oecologia, 134, 1–11. https://doi.org/10.1007/s00442-002-1088-0 DOI: https://doi.org/10.1007/s00442-002-1088-0

Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2015). Plant thermoregulation: Energetics, trait-environment interactions, and carbon economics. Trends in Ecology and Evolution, 30(12), 714–724. https://doi.org/10.1016/j.tree.2015.09.006 DOI: https://doi.org/10.1016/j.tree.2015.09.006

Muir, C. D. (2013). How did the Swiss cheese plant get its holes? American Naturalist, 181(2), 273–281. https://doi.org/10.1086/668819 DOI: https://doi.org/10.1086/668819

Nicotra, A. B., Cosgrove, M. J., Cowling, A., Schlichting, C. D., & Jones, C. S. (2008). Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 154, 625–635. https://doi.org/10.1007/s00442-007-0865-1 DOI: https://doi.org/10.1007/s00442-007-0865-1

Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & Van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 DOI: https://doi.org/10.1016/j.tplants.2010.09.008

Nobel, P. S. (1999). Physicochemical and environmental plant physiology. Academic Press.

Pérez-Bueno, M. L., Illescas-Miranda, J., Martín-Forero, A. F., de Marcos, A., Barón, M., Fenoll, C., & Mena, M. (2022). An extremely low stomatal density mutant overcomes cooling limitations at supra-optimal temperature by adjusting stomatal size and leaf thickness. Frontiers in Plant Science, 13, 919299. https://doi.org/10.3389/fpls.2022.919299 DOI: https://doi.org/10.3389/fpls.2022.919299

Pierce, S., Maffi, D., Faoro, F., Cerabolini, B. E., & Spada, A. (2022). The leaf anatomical trade-offs associated with plant ecological strategy variation. Plant Ecology, 223(2), 1233–1246. DOI: https://doi.org/10.1007/s11258-022-01270-5

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182(3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x DOI: https://doi.org/10.1111/j.1469-8137.2009.02830.x

Poorter, H., Lambers, H., & Evans, J. R. (2014). Trait correlation networks: A whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201(2), 378–382. https://doi.org/10.1111/nph.12547 DOI: https://doi.org/10.1111/nph.12547

Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511806384

Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences, 94(25), 13730–13734. https://doi.org/10.1073/pnas.94.25.13730 DOI: https://doi.org/10.1073/pnas.94.25.13730

Reich, P. B., Ellsworth, D. S., & Walters, M. B. (1998). Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations: Evidence from within and across species and functional groups. Functional Ecology, 12(6), 948–958. https://doi.org/10.1046/j.1365-2435.1998.00274.x DOI: https://doi.org/10.1046/j.1365-2435.1998.00274.x

Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164(S3), S143–S164. https://doi.org/10.1086/374368 DOI: https://doi.org/10.1086/374368

Rozendaal, D. M. A., Hurtado, V. H., & Poorter, L. (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20(2), 207–216. https://doi.org/10.1111/j.1365-2435.2006.01105.x DOI: https://doi.org/10.1111/j.1365-2435.2006.01105.x

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. http://dx.doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089

Sperotto, P., Acevedo-Rodríguez, P., Vasconcelos, T. N., & Roque, N. (2020). Towards a standardization of terminology of the climbing habit in plants. The Botanical Review, 86, 180–210. https://doi.org/10.1007/s12229-020-09218-y DOI: https://doi.org/10.1007/s12229-020-09218-y

Sultan, S. E. (1987). Evolutionary implications of phenotypic plasticity in plants. In M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary biology (pp. 127–178). Springer. DOI: https://doi.org/10.1007/978-1-4615-6986-2_7

Villar, R., Ruiz-Robleto, J., Ubera, J. L., & Poorter, H. (2013). Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. American Journal of Botany, 100(10), 1969–1980. https://doi.org/10.3732/ajb.1200562 DOI: https://doi.org/10.3732/ajb.1200562

Vogel, S. (2009). Leaves in the lowest and highest winds: Temperature, force and shape. New Phytologist, 183(1), 13–26. https://doi.org/10.1111/j.1469-8137.2009.02854.x DOI: https://doi.org/10.1111/j.1469-8137.2009.02854.x

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P., & Wright, I. J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33(1), 125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 DOI: https://doi.org/10.1146/annurev.ecolsys.33.010802.150452

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, É., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. http://dx.doi.org/10.1038/nature02403 DOI: https://doi.org/10.1038/nature02403

Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R., Jacobs, B., Kooyman, R., Law, E. A., Leishman, M., Niinemets, Ü., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357(6354), 917–921. https://doi.org/10.1126/science.aal4760 DOI: https://doi.org/10.1126/science.aal4760

Zotz, G. (2013). “Hemiepiphyte”: A confusing term and its history. Annals of Botany, 111(6), 1015–1020. https://doi.org/10.1093/aob/mct085 DOI: https://doi.org/10.1093/aob/mct085

Published

2025-07-10