Habitat preferences and simulation of physical habitat availability of Perlidae (Plecoptera) and Corydalidae (Megaloptera) in a neotropical river

Authors

  • Francisco Quesada-Alvarado Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional Author
  • Silvia Echeverría-Sáenz Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional Author
  • Anny Chaves-Quirós Instituto Costarricense de Electricidad (ICE), Author

DOI:

https://doi.org/10.15517/wykjtt15

Keywords:

aquatic insects, stoneflies, dobsonflies, hydrobiological model, river management

Abstract

Introduction: Habitat preferences represent the distribution and abundance of species among different habitat types. These preferences are highly relevant ecological information because they relate to the feeding strategies, offspring care and predator avoidance refuges of the organisms, therefore potentially influencing their fitness. Objective: To define the habitat preference of the nymphs of Anacroneuria spp. (Plecoptera) and larvae of Corydalus spp. (Megaloptera) with respect to current velocity and depth. Methods: We evaluated the abundance of Anacroneuria and Corydalus with information gathered through 15 field campaigns in three sites of the Savegre River, Costa Rica. Also, we used habitat preferences to create simulations of the physical habitat availability for these species through hydraulic models to determine habitat gain or loss due to variations in flow. Results: Anacroneuria (Plecoptera) nymphs preferred velocities of 0.9 m/s and depths between 23-36 cm, while Corydalus (Megaloptera) larvae preferred velocities between 0.6-0.8 m/s, and depths between 17-29 cm. As a case study, these preferences were modeled to determine optimal, regular or inadequate habitat availability for Anacroneuria and Corydalus given hypothetical flow variations in the Savegre River (Costa Rica). A discharge of < 8 m3/s resulted in a decrease in optimal habitat, mainly because it decreased water velocity below the preferred ranges. Also, a discharge of > 18 m3/s resulted in a decrease in optimal habitat because of the depth increase. Conclusions: This type of information is scarce or even absent for neotropical rivers, though necessary for a description of a healthy habitat. Furthermore, this habitat preference vs. modeled habitat availability approach is highly useful, -both in tropical and temperate rivers- for understanding the potential effects of any water derivation or exploitation.

Downloads

Download data is not yet available.

References

Alonso, P. (2009). Estudio de macroinvertebrados bentónicos del sistema ambiental regional del proyecto de aprovechamiento hidráulico paso de la Reina, Oaxaca [Manuscrito no publicado].

Angulo, A., Garita-Alvarado, C. A., Bussing, W. A., & López, M. I. (2013). Annotated checklist of the freshwater fishes of continental and insular Costa Rica: additions and nomenclatural revisions. Check List, 9(5), 987–1019. http://dx.doi.org/10.15560/9.5.987

Balian, E. V., Segers, H. H., Lévêque, C., & Martens, K. (2008). The freshwater animal diversity assessment: an overview of the results. Hydrobiologia, 595(1), 627–637. https://doi.org/10.1007/s10750-007-9246-3

Baptista, D. F., Buss, D. F., Dorvillé, L. F. M., & Nessimian, J. L. (2001). Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé River basin, Rio de Janeiro, Brazil. Revista Brasileira de Biologia, 61(2), 249–258. https://doi.org/10.1590/S0034-71082001000200007

Beyer, H. L., Haydon, D. T., Morales, J. M., Frair, J. L., Hebblewhite, M., Mitchell, M., & Matthiopoulos, J. (2010). The interpretation of habitat preference metrics under use-availability designs. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 365(1550), 2245–2254. https://doi.org/10.1098/rstb.2010.0083

Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annual Review of Entomology, 51(1), 495–523. http://dx.doi.org/10.1146/annurev.ento.51.110104.151124

Bravo, F., Romero, D., Gutiérrez-Fonseca, P. E., & Echeverría-Sáenz, S. (2019). The description of Anacroneuria suerre sp. nov. from Costa Rica (Plecoptera: Perlidae) and using nymphs in ecotoxicological studies. Zootaxa, 4608(2), 357–364. http://dx.doi.org/10.11646/zootaxa.4608.2.9

Chapra, S. C., Camacho, L. A., & McBride, G. B. (2021). Impact of global warming on dissolved oxygen and BOD assimilative capacity of the world’s rivers: modeling analysis. Water, 13(17), 2408–2408. https://doi.org/10.3390/w13172408

Chavarría-Pizarro, L., Watson-Hernández, F., Quesada-Alvarado, F., Serrano-Núñez, V., Bustos-Vásquez, A. L., Fernández-Chévez, K., Chacón-Gutierrez, J., & Guzmán-Arias, I. (2024). Determination of environmental flow using a holistic methodology in three river paths in the Tempisque River Basin, Costa Rica. Hydrology, 11(10), 159. https://doi.org/10.3390/hydrology11100159

Chaves, A., Krasovskaia, I., & Gottschalk, L. (2006, November). Environmental demands for sustainable regulation schemes in the humid tropics: Climate variability and change—hydrological impacts [Conference session]. Proceedings of the Fifth FRIEND World Conference held at Havana, Cuba. IAHS Press.

Chaves, A., Pacheco, A., Krasovskaia, I., & Gottschalk, L. (2010). RANA-ICE, a methodology to estimate compensatory runoff in Costa Rica. Hydrological Sciences Journal, 55(1), 198–199.

Contreras, A., & Harris, S. (1998). The immature stages of Platyneuromus (Corydalidae), with a key to the genera of larva Megaloptera of Mexico. Journal of the North American Benthological Society, 17(4), 489–517. http://dx.doi.org/10.2307/1468368

Cortes, R., Ferreira, M. T., Varandas-Oliveira, S., & Oliveira, D. (2002). Macroinvertebrate community structure in a regulated river segment with different flow conditions. River Research and Applications, 18(4), 367–382. https://doi.org/10.1002/rra.679

Cover, M. R., & Resh, V. H. (2007). Global diversity of dobsonflies, fishflies, and alderflies (Megaloptera; Insecta) and spongillaflies, nevrorthids, and osmylids (Neuroptera; Insecta) in freshwater. In E.V. Balian, C. Lévêque, H. Segers, K. Martens (Eds.), Freshwater Animal Diversity Assessment. Developments in Hydrobiology (Vol. 198). Springer. https://doi.org/10.1007/978-1-4020-8259-7_42

Holdridge, L. R. (1964). Life zone ecology. Tropical Science Center.

Dijkstra, K. D. B., Monaghan, M. T., & Pauls, S. U. (2014). Freshwater biodiversity and aquatic insect diversification. Annual Review of Entomology, 59, 143–163. https://doi.org/10.1146/annurev-ento-011613-161958

Dodds, W. K. (2002). Freshwater Ecology. Concepts and environmental applications. Academic Press.

Extence, C., Balbi, D., & Chadd, R. (1999). River flow indexing using British benthic macroinvertebrates: A framework for setting hydroecological objectives. Regulated Rivers: Research & Management, 15(6), 543–574. https://doi.org/10.1002/(SICI)1099-1646(199911/12)15:6<543::AID-RRR564>3.0.CO;2-W

Espinoza-Cisneros, E. (2021). Percepciones sobre calidad del agua fluvial en administradores de unidades productivas de la cuenca del río Savegre, Costa Rica. Revista de Ciencias Ambientales, 55(2), 71–90. https://dx.doi.org/10.15359/rca.55-2.4

Genkai-Kato, M., Mitsuhashi, H., Kohmatsu, Y., Miyasaka, H., Nozaki, K., & Nakanishi, M. (2005). A seasonal change in the distribution of a stream-dwelling stonefly nymph reflects oxygen supply and water flow. Ecological Research, 20(2), 223–226. https://doi.org/10.1007/s11284-004-0029-2

Gore, J., Layzer, J., & Mead, J. (2001). Macroinvertebrate instream flow studies after 20 years: a role in stream management and restoration. Regulated Rivers Research & Management, 17(4–5), 527–542. https://doi.org/10.1002/rrr.650

Gutiérrez-Fonseca, P. E. (2010). Capítulo 6: Plecoptera. Revista de Biología Tropical, 58(Supplement 4), S139–S148.

Gutiérrez-Fonseca, P. E., & Springer, M. (2011). Description of the final instar nymphs of seven species from Anacroneuria Klapálek (Plecoptera: Perlidae) in Costa Rica, and first record for an additional genus in Central America. Zootaxa, 2965(1), 16–48. http://dx.doi.org/10.11646/zootaxa.2965.1.2

Gutiérrez-Fonseca, P. E., Alonso-Rodríguez, A. M., Cornejo, A., Bailey, A. C., Maes, J. M., & Ramírez, A. (2015). New records of Anacroneuria Klapálek, 1909 (Plecoptera: Perlidae) for Central America. Zootaxa, 3994(3), 445–448. https://doi.org/10.11646/zootaxa.3994.3.9

Hanh, T., Eurie, M., Boets, P., Lock, K., Damanik, M., Suhareva, N., Everaert, G., Van der Heyden, C., Dominguez-Granada, L., Thi, T., & Goethals, P. (2018). Threshold responses of macroinvertebrate communities to stream velocity in relation to hydropower dam: A case study from the Guayas River Basin (Ecuador). Water, 10(9), 1195. https://doi.org/10.3390/w10091195

Hauer, R. F., & Resh, V. H. (2002). Macroinvertebrates. In R. F. Hauer, & G. A. Lamberti (Eds.), Methods in stream ecology (pp. 436–464). Elsevier.

Im, D., Kang, H., Kim, K. H., & Choi, S. U. (2011). Changes of river morphology and physical fish habitat following weir removal. Ecological Engineering, 37(6), 883–892. https://doi.org/10.1016/j.ecoleng.2011.01.005

Im, D., Choi, S. U., & Choi, B. (2018). Physical habitat simulation for a fish community using the ANFIS method. Ecological Informatics, 43, 73–83. http://dx.doi.org/10.1016/j.ecoinf.2017.09.001

Jackman, S. (2020). pscl: Classes and methods for R developed in the Political Science Computational Laboratory (Version 1.5.5) [Software]. Stanford University. https://CRAN.R-project.org/package=pscl

Krasovskaia, I., & Rodríguez, C. (Eds.). (2007). Determinación de una metodología para establecer el caudal de compensación en los ríos de Costa Rica a partir de dos estudios de caso [Informe final]. Instituto Costarricense de Electricidad.

Kelly, D., Hayes, J., Allen, C., West, D., & Hudson, H. (2015). Evaluating habitat suitability curves for predicting variation in macroinvertebrate biomass with weighted usable area in braided rivers in New Zealand. New Zealand Journal of Marine and Freshwater Research, 49(3), 398–418. https://doi.org/10.1080/00288330.2015.1040424

Kim, S. K., & Choi, S. U. (2018). Prediction of suitable feeding habitat for fishes in a stream using physical habitat simulations. Ecological Modelling, 385, 65–77. https://doi.org/10.1016/j.ecolmodel.2018.07.014

Laporte, S., Pacheco, A., & Rodríguez, C. R. (2006, November). Estimation of minimum acceptable (compensatory) flow for the rivers of Costa Rica. Climate Variability and Change—Hydrological Impacts [Conference session]. Proceedings of the Fifth FRIEND World Conference held at Havana, Cuba. IAHS Press.

Leopold, L. B., Wolman, M. G., & Miller, J. P. (1992). Fluvial processes in geomorphology. Dover Publications.

Luiza-Andrade, A., Silva, R. R., Shimano, Y., Faria, J., Cardoso, M. N., Brasil, L. S., Ligeiro, R., Martins, R. T., Hamada, N., & Juen, L. (2022). Niche breadth and habitat preference of Ephemeroptera, Plecoptera, and Trichoptera (Insecta) in streams in the Brazilian Amazon. Hydrobiologia, 849, 4287–4306. https://doi.org/10.1007/s10750-022-04987-6

Noack, M., Schneider, M., & Wieprecht, S. (2013). The habitat modelling system CASiMiR: A multivariate fuzzy approach and its applications. In I. Maddock, A. Harby, P. Kemp, & P. Wood (Eds.), Ecohydraulics: An integrated approach (pp. 75–91). John Wiley & Sons.

Oksanen, J., Guillaume-Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community ecology package (Version 2.5-7) [Software]. https://CRAN.R-project.org/package=vegan

Quesada-Alvarado, F., Umaña, G., Springer, M., & Picado-Barboza J. (2020). Variación estacional y características fisicoquímicas e hidrológicas que influyen en los macroinvertebrados acuáticos, en un río tropical. Revista de Biología Tropical, 68(Suplemento 2), S54–S67. https://doi.org/10.15517/rbt.v68iS2.44332

Quesada-Alvarado, F., Umaña, G., Springer, M., & Picado-Barboza, J. (2021). Classification of aquatic macroinvertebrates in flow categories for the adjustment of the LIFE Index to Costa Rican rivers. Ecohydrology & Hydrobiology, 21(2), 368–376. https://doi.org/10.1016/j.ecohyd.2020.08.005

R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rico, A., & Van, P. J. (2015). Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environmental Toxicology and Chemistry, 34(8), 1907–1917. https://doi.org/10.1002/etc.3008

Rivera-Gasperín, S., Ardila-Camacho, A., & Contreras-Ramos, A. (2019). Bionomics and ecological services of Megaloptera Larvae (Dobsonflies, Fishflies, Alderflies). Insects, 10(4), 86–86. https://doi.org/10.3390/insects10040086

Sagnes, P., Mérigoux, S., & Péru, N. (2008). Hydraulic habitat use with respect to body size of aquatic insect larvae: case of six species from a French Mediterranean type stream. Limnologica, 38(1), 23–33. https://doi.org/10.1016/j.limno.2007.09.002

Shearer, K. A., Hayes, J. W., Jowett, I. G., & Olsen, D. A. (2015). Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zealand Journal of Marine and Freshwater Research, 49(2), 1–14. http://dx.doi.org/10.1080/00288330.2014.988632

Starr, S. M., & Wallace, J. R. (2021). Ecology and biology of aquatic insects. Insects, 12(1), 51. https://doi.org/10.3390/insects12010051

Stark, B. P. (2014). Records of Mesoamerican Anacroneuria (Plecoptera: Perlidae), with descriptions of four new species. Illiesia, 10(02), 6–16. https://doi.org/10.5281/zenodo.4760479

Sumudumali, R. G. I., & Jayawardana, J. M. C. K. (2021). A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environmental Management, 67, 263–276. https://doi.org/10.1007/s00267-020-01423-0

Tamaris-Turizo, C., Turizo-Correa, R. R., & Zúñiga, M. (2007). Distribución espacio-temporal y hábitos alimentarios de ninfas de Anacroneuria (Insecta: Plecoptera) en el río Gaira (Sierra de Nevada de Santa Marta, Colombia). Caldasia, 29(2), 375–385.

Theodoropoulos, C., Papadonikolaki, G., Stamou, A., Bui, M. D., Rutschmann, P., & Skoulikidis, N. (2015, September 3–5). A methodology for the determination of environmental flow releases from dams based on hydrodynamic habitat modelling and benthic macroinvertebrates. In Proceedings of the 14th International Conference on Environmental Science and Technology. Rhodes, Greece.

Theodoropoulos, C., Vourka, A., Skoulikidis, N., Rutschmann, P., & Stamou, A. (2018). Evaluating the performance of habitat models for predicting the environmental flow requirements of benthic macroinvertebrates flow requirements of benthic macroinvertebrates. Journal of Ecohydraulics, 3(1), 30–44. http://dx.doi.org/10.1080/24705357.2018.1440360

The United Nations Educational, Scientific and Cultural Organization. (2017). Caja de herramientas para la determinación de caudal ambiental. UNESCO

Vázquez, R. F., Vimos-Lojano, D., & Hampel, H. (2020). Habitat suitability curves for freshwater macroinvertebrates of tropical andean rivers. Water, 12(10), 2703–2703.

https://doi.org/10.3390/w12102703

Waddle, T. J., & Holmquist, J. G. (2011). Macroinvertebrate response to flow changes in a subalpine stream: predictions from two-dimensional hydrodynamic models. River Research Applications, 29(3), 366–379.

Wood, S. N. (2017). Generalized additive models: An Introduction with R (2nd ed.) (Version 1.8-42) [Software]. https://CRAN.R-project.org/package=mgcv

Yao, W., Bui, M. D., & Rutschmann, P. (2018). Development of eco-hydraulic model for assessing fish habitat and population status in freshwater ecosystems. Ecohydrology, 11(5), e1961. https://doi.org/10.1002/eco.1961

Published

2025-11-03