Effects of environmental changes on total length of three Copepod species on Gorgona island (Colombia) between 2013-2022
DOI:
https://doi.org/10.15517/pvx7p780Keywords:
body size; ENSO; global warming; zooplanktonAbstract
Introduction: Copepods are influenced by various climatic and oceanographic changes, including global warming, which increases the frequency of the warm phase of ENSO and contributes to reductions in their mean population body size. Objectives: This study evaluates the effects of temperature, salinity, and dissolved oxygen concentration—measured at standard depths—on the mean total length of three copepod species: Ditrichocorycaeus andrewsi, Centropages furcatus and Subeucalanus pileatus, within the pelagic environment of Gorgona Island over a nine-year period. Methods: Each year, 25 healthy female and male specimens per copepod species were selected during the cold-water season from 2013 to 2022. Vertical variability in temperature, salinity, and dissolved oxygen was analyzed. A mixed linear model was used to assess the independent effects of mean total length by sex, species, and year, while Spearman correlation confirmed associations with environmental variables. ANOVA followed by Tukey's test identified significant differences in total length among years for each species. Results: A weak positive correlation was detected between temperature and the total length of the three studied species. A linear mixed model confirmed a significant species-sex-year interaction effect. D. andrewsi and S. pileatus exhibited smaller sizes during warm periods, while C. furcatus displayed considerable variation with no clear association to thermal conditions. Conclusions: This study establishes a baseline for future research on the effects of climate change on copepod body size in the Colombian Pacific and the Eastern Tropical Pacific, and offers valuable insight into how interannual climatic variability shapes copepod populations in tropical environments, contributing to a broader understanding of climate change impacts on marine ecosystems.
Downloads
References
Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., Milligan, A. J., Siegel, D. A., & Brown, M. B. (2016). Revaluating ocean warming impacts on global phytoplankton. Nature Climate Change, 6(3), 323–330. https://doi.org/10.1038/nclimate2838
Blake, A., & Marshall, D. J. (2023) Copepod life history evolution under high‐ and low‐food regimes, Evolutionary Applications, 16(7), 1274–1283. https://doi.org/10.1111/eva.13563
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., & Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10(10), 6225–6245. https://doi.org/10.5194/bg-10-6225-2013
Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity. The Ray Society.
Bradford-Grieve, J. M. (1994) The marine fauna of New Zealand: Pelagic Calanoid Copepoda: Megacalanidae. Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. New Zealand Oceanographic Institute, Memoir 102.
Bradford-Grieve, J. M., Markhaseva, E. L., Falavigna da Rocha, C. E., & Abiahy, B. B. (1999). Copepoda. In D. Boltovskoy (Ed.), South Atlantic Zooplankton (Vol. 1) (pp. 869–1098). Backhuys Publisher.
Brainard, R. E., Oliver, T., McPhaden, M. J., Cohen, A., Venegas, R., Heenan, A., Vargas-Ángel, B., Rotjan, R., Mangubhai, S., Flint, E., & Hunter, S. A. (2018). Ecological impacts of the 2015/16 El Niño in the Central Equatorial Pacific. Bulletin of the American Meteorological Society, 99(Supplement 1), S21–S26. https://doi.org/10.1175/BAMS-D-17-0128.1
Campbell, M. D., Schoeman, D. S., Venables, W., Abu-Alhaija, R., Batten, S. D., Chiba, S., Coman, F., Davies, C. H., Edwards, M., Eriksen, R. S., Everett, J. D., Fukai, Y., Fukuchi, M., Esquivel-Garrote, O., Hosie, G., Huggett, J. A., Johns, D. G., Kitchener, J. A., Koubbi, P., … Richardson, A. J. (2021). Testing Bergmann's rule in marine copepods. Ecography, 44(9), 1283–1295. https://doi.org/10.1111/ecog.05545
Chew, L. L., & Chong, V. C. (2016) Response of marine copepods to a changing tropical environment: winners, losers and implications. PeerJ, 4, e2052. https://doi.org/10.7717/peerj.2052
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788–12793. https://doi.org/10.1073/pnas.0902080106
de Juan, C., Griffell, K., Calbet, A., & Saiz, E. (2023). Multigenerational physiological compensation and body size reduction dampen the effects of warming on copepods. Limnology and Oceanography, 68(5), 1037–1047. https://doi.org/10.1002/lno.12327
de Juan, C., Traboni, C., Calbet, A., & Saiz, E. (2025). Metabolic balance of a marine neritic copepod under chronic and acute warming scenarios. Marine Environmental Research, 203, 106827. https://doi.org/10.1016/j.marenvres.2024.106827
Doan, N. X., Vu, M. T. T., Pham, H. Q., Wisz, M. S., Nielsen, T. G., & Dinh, K. V. (2019). Extreme temperature impairs growth and productivity in a common tropical marine copepod. Scientific Reports, 9(1), 4550. https://doi.org/10.1038/s41598-019-40996-7
Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430(7002), 881–884. https://doi.org/10.1038/nature02808
Forster, J., Hirst, A. G., & Atkinson, D. (2011). How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Functional Ecology, 25(5), 1024–1031. https://doi.org/10.1111/j.1365-2435.2011.01852.x
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming?. Trends in Ecology & Evolution, 26(6), 285–291. https://doi.org/10.1016/j.tree.2011.03.005
Garzke, J., Hansen, T., Ismar, S. M. H., & Sommer, U. (2016). Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PloS ONE, 11(5), e0155952. https://doi.org/10.1371/journal.pone.0155952
Garzke, J., Ismar, S. M. H., & Sommer, U. (2015). Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia, 177(3), 849–860. https://doi.org/10.1007/s00442-014-3130-4
Giraldo, A., Diazgranados, M. C., & Gutiérrez-Landázuri, C. F. (2014). Isla Gorgona, enclave estratégico para los esfuerzos de conservación en el Pacífico Oriental Tropical. Revista de Biología Tropical, 62(Supplement 1), 1–12. https://doi.org/10.15517/rbt.v62i0.15975
Giraldo, A., Rodríguez-Rubio, E., & Zapata, F. (2008). Condiciones oceanográficas en isla Gorgona, Pacífico Oriental Tropical de Colombia. Latin American Journal of Aquatic Research, 36(1), 121–128. https://doi.org/10.3856/vol36-issue1-fulltext-12
Giraldo, A., Valencia, B., Acevedo, J. D., & Rivera, M. (2014). Fitoplancton y zooplancton en el área marina protegida de Isla Gorgona, Colombia, y su relación con variables oceanográficas en estaciones lluviosa y seca. Revista de Biología Tropical, 62(Supplement 1), 117–132. https://doi.org/10.15517/rbt.v62i0.15982
Hidalgo, P., Escribano, R., Fuentes, M., Jorquera, E., & Vergara, O. (2012). How coastal upwelling influences spatial patterns of size-structured diversity of copepods off central-southern Chile (summer 2009). Progress in Oceanography, 92–95, 134–145. https://doi.org/10.1016/j.pocean.2011.07.012
Hirst, A. G., & Bunker, A. J. (2003). Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnology and Oceanography, 48(5), 1988–2010. https://doi.org/10.4319/lo.2003.48.5.1988
Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328(5985), 1523–1528. https://doi.org/10.1126/science.1189930
Hopcroft, R. R., & Roff, J. C. (1998). Zooplankton growth rates: the influence of female size and resources on egg production of tropical marine copepods. Marine Biology, 132, 79–86. https://doi.org/10.1007/s002270050373
Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A., & Kiørboe, T. (2016). A global synthesis of seasonal temperature–size responses in copepods. Global Ecology and Biogeography, 25(8), 988–999. https://doi.org/10.1111/geb.12460
Huston, M. A., & Wolverton, S. (2011). Regulation of animal size by eNPP, Bergmann's rule and related phenomena. Ecological Monographs, 81(3), 349–405. https://doi.org/10.1890/10-1523.1
Jerez-Guerrero, M., Giraldo, A., & Criales-Hernández, M. I. (2020). Epipelagic copepods of Gorgona Island, Tropical Eastern Pacific: Taxonomy, size range, and sexual proportion. Regional Studies in Marine Science, 34, 101015. https://doi.org/10.1016/j.rsma.2019.101015
Jerez-Guerrero, M., Giraldo, A., & Criales-Hernández, M. I. (2022). Temporal changes in the epipelagic copepod assemblage at Gorgona Island, Colombian Eastern Tropical Pacific Ocean. Regional Studies in Marine Science, 52, 102280. https://doi.org/10.1016/j.rsma.2022.102280
Ledesma, J., Graco, M., Tam, J., Díaz, K., Anculle, T., García, W., Bernales, A., Quispe, D., Espinoza-Morriberón, D., Carhuapoma, W., & Gutiérrez, D. (2021). Efectos de El Niño Costero 2017 sobre la oxigenación, fertilidad y productividad del mar frente a las costas del Perú. Boletín Instituto Del Mar Del Perú, 36(2), 409–427. https://doi.org/10.53554/boletin.v36i2.345
Lin, K. Y., Sastri, A. R., Gong, G. C., & Hsieh, C. H. (2013). Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: A test of metabolic theory of ecology. Biogeosciences, 10(3), 1877–1892. https://doi.org/10.5194/bg-10-1877-2013
Lopes-da Rosa, J. da C., da Silva-Matos, T., Brito-da Silva, D. C., Reis, C., de Oliveira-Dias, C., Paleo-Konno, T. U., & de Almeida-Fernandes, L. D. (2023). Seasonal changes in the size distribution of copepods is affected by coastal upwelling. Diversity, 15(5), 637. https://doi.org/10.3390/d15050637
McGinty, N., Barton, A. D., Record, N. R., Finkel, Z. V., Johns, D. G., Stock, C. A., & Irwin, A. J. (2021). Anthropogenic climate change impacts on copepod trait biogeography. Global Change Biology, 27(7), 1431–1442. https://doi.org/10.1111/gcb.15499
Nawaz, M. A., Sivakumar, K., & Baskar, G. (2024). Seasonal dynamics of body size in calanoid copepods (Calanoida: Copepoda) from the stressed tropical coast of India, Chennai, Bay of Bengal. Aquatic Ecology, 58(2), 363–373. https://doi.org/10.1007/s10452-023-10075-1
Palomares, R., Suárez-Morales, E., & Hernández-Trujillo, S. (1998). Catálogo de los copépodos (Crustacea) pelágicos del Pacífico Mexicano. CICIMAR-IPN.
Põllupüü, M. (2007). Effect of formalin preservation on the body length of copepods. Proceedings of the Estonian Academy of Sciences, Biology and Ecology, 56(4), 326–321. https://doi.org/10.3176/eco.2007.4.09
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919–925. https://doi.org/10.1038/nclimate1958
Posit team. (2025). RStudio: Integrated Development Environment for R [Software]. Posit Software. http://www.posit.co/
Razouls, C., Desreumaux, N., Kouwenberg, J., & de Bovée, F. (2025). Biodiversity of Marine Planktonic Copepods (morphology, geographical distribution and biological data) [Data base]. http://copepodes.obs-banyuls.fr/en
Reading, C. J. (2007). Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia, 151(1), 125–131. https://doi.org/10.1007/s00442-006-0558-1
Richardson, A. J. (2008). In hot water: Zooplankton and climate change. ICES Journal of Marine Science, 65(3), 279–295. https://doi.org/10.1093/icesjms/fsn028
Roman, M. R., & Pierson, J. J. (2022). Interactive effects of increasing temperature and decreasing oxygen on coastal copepods. The Biological Bulletin, 243(2), 171–183. https://doi.org/10.1086/722111
Ruela, R., Sousa, M. C., deCastro, M., & Dias, J. M. (2020). Global and regional evolution of sea surface temperature under climate change. Global and Planetary Change, 190, 103190. https://doi.org/10.1016/j.gloplacha.2020.103190
Sampson, L., & Giraldo, A. (2014). Annual abundance of salps and doliolids (Tunicata) around Gorgona Island (Colombian Pacific), and their importance as potential food for green sea turtles. Revista de Biologia Tropical, 62(Supplement 1), 149–159. https://doi.org/10.15517/rbt.v62i0.15984
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401–406. https://doi.org/10.1038/nclimate1259
Stock, C. A., Dunne, J. P., & John, J. G. (2014). Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125–7135. https://doi.org/10.5194/bg-11-7125-2014
Sun, X., Sun, S., Li, C., & Wang, M. (2012). Seasonal change in body length of important small copepods and relationship with environmental factors in Jiaozhou Bay, China. Chinese Journal of Oceanology and Limnology, 30(3), 404–409. https://doi.org/10.1007/s00343-012-1140-9
Valencia, B., Lavaniegos, B., Giraldo, A., & Rodríguez-Rubio, E. (2013). Temporal and spatial variation of hyperiid amphipod assemblages in response to hydrographic processes in the Panama Bight, eastern tropical Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 73, 46–61. https://doi.org/10.1016/j.dsr.2012.11.009
Walter, T. C., & Boxshall, G. (2025). World of Copepods [Data base]. https://www.marinespecies.org/copepoda
Wang, C., & Fiedler, P. C. (2006). ENSO variability and the eastern tropical Pacific: A review. Progress in Oceanography, 69(2–4), 239–266. https://doi.org/10.1016/j.pocean.2006.03.004
Woodworth‐Jefcoats, P. A., Polovina, J. J., & Drazen, J. C. (2017). Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems. Global Change Biology, 23(3), 1000–1008. https://doi.org/10.1111/gcb.13471
Published
Issue
Section
License
Copyright (c) 2025 Revista de Biología Tropical

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 License (CC BY 4.0)
Attribution (BY) • (BY) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
