Predicting of HABs by phytoplankton type and abundance in northern Bone Bay, South Sulawesi, Indonesia

Authors

  • Rahmadi Tambaru Department of Marine Science, Faculty of Marine Science and Fisheries, Hasanuddin University Author
  • Abdul Haris Department of Marine Science, Faculty of Marine Science and Fisheries, Hasanuddin University Author
  • Andi Iqbal Burhanuddin Department of Marine Science, Faculty of Marine Science and Fisheries, Hasanuddin University Author
  • Muhammad Anshar Amran Department of Marine Science, Faculty of Marine Science and Fisheries, Hasanuddin University Author
  • Amir Hamzah Muhiddin Department of Marine Science, Faculty of Marine Science and Fisheries, Hasanuddin University Author
  • Sahabuddin Sahabuddin Research Center for Fishery, National Research and Innovation Agency Author

DOI:

https://doi.org/10.15517/rev.biol.trop..v73i1.62573

Keywords:

phytoplankton; harmful algal blooms (HABs); Bone Bay; orthophosphate; salinity; mitigation

Abstract

Introduction: Harmful Algal Blooms (HAB) are the rapid growth of algae or cyanobacteria in water that can cause negative impacts on people, animals, or the environment by production of natural toxins. Information about HABs in the bays in Indonesia is limited. Objective: To predict HABs based on the type and abundance of phytoplankton in the northern part of Bone Bay, South Sulawesi, Indonesia. Methods: The study was conducted in four locations, namely Tj Ringgit (TR), Passampa (PS), Siwa (SW), and Barangmamase (BM) between May and July 2024. Various environmental parameters, including nutrients, were measured. Phytoplankton samples were collected by filtering seawater using a 25 μm plankton net and analyzed in the laboratory. Results: The dominant types of phytoplankton were found to be Bacteriastrum, Chaetoceros, Leptocylindrus, Rhizosolenia, Thalassionema, and Ceratium. All of them are classified as Non-HABs. The identified types of HABs include Pseudo-nitzschia, Dinophysis, Prorocentrum, Protoperidinium, and Oscillatoria. Orthophosphate and salinity are two environmental parameters that affect the occurrence of HABs. The proportion of HABs abundance was lower than that of non-HABs in all locations. An increase in the abundance of HABs was detected in two locations: SW and BM. Conclusion: Although the proportion of HABs is lower than that of Non-HABs, the increased abundance of HABs in some locations, such as SW and BM, indicates the potential for future blooms. Monitoring environmental parameters, especially orthophosphate and salinity, is critical to mitigating the impact of the development of HABs, which ultimately affects the ecosystem and human health in Bone Bay. This study emphasizes the importance of sustainable water management to maintain the balance of the ecosystem in the bay.

References

Addinsoft. (2017). XLSTAT (Version 2017) [Computer software]. https://www.xlstat.com

Albin, K. J., Jyothibabu, R., Alok, K. T., Santhikrishnan, S., Sarath, S., Sudheesh, V., Sherin, C. K., Balachandran, K. K., Asha Devi, C. R., & Gupta, G. V. M. (2022). Distinctive phytoplankton size responses to the nutrient enrichment of coastal upwelling and winter convection in the eastern Arabian Sea. Progress in Oceanography, 203, 102779. https://doi.org/10.1016/J.POCEAN.2022.102779

Álvarez, S., Brown, C. E., García Diaz, M., O’Leary, H., & Solís, D. (2024). Non-linear impacts of harmful algae blooms on the coastal tourism economy. Journal of Environmental Management, 351, 119811. https://doi.org/10.1016/J.JENVMAN.2023.119811

Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. (2021). Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae, 102, 101975. https://doi.org/10.1016/J.HAL.2021.101975

Basnayaka, C., Somasiri, M., Ahsan, A., Nazeer, Z., Thilini, N., Bandara, S., & Fernando, E. Y. (2024). Marine photosynthetic microbial fuel cell for circular renewable power production. Bioenergy Research, 17(4), 2299–2310. https://doi.org/10.1007/s12155-024-10768-x

Bouma-Gregson, K., Bosworth, D., Flynn, T. M., Maguire, A., Rinde, J., & Hartman, R. (2024). Delta blue(green)s: The effect of drought and drought-management actions on microcystis in the Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science, 22(1). https://doi.org/10.15447/SFEWS.2024V22ISS1ART2

Boyd, P. W., Arrigo, K. R., Ardyna, M., Halfter, S., Huckstadt, L., Kuhn, A. M., Lannuzel, D., Neukermans, G., Novaglio, C., Shadwick, E. H., Swart, S., & Thomalla, S. J. (2024). The role of biota in the Southern Ocean carbon cycle. Nature Reviews Earth & Environment, 5(5), 390–408. https://doi.org/10.1038/s43017-024-00531-3

Brown, A. R., Lilley, M., Shutler, J., Lowe, C., Artioli, Y., Torres, R., Berdalet, E., & Tyler, C. R. (2020). Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Reviews in Aquaculture, 12(3), 1663–1688. https://doi.org/10.1111/RAQ.12403

Bui, Q. T. N., Pradhan, B., Kim, H. S., & Ki, J. S. (2024). Environmental factors modulate saxitoxins (stxs) production in toxic dinoflagellate alexandrium: an updated review of stxs and synthesis gene aspects. Toxins, 16(5), 210. https://doi.org/10.3390/TOXINS16050210

Camacho-Muñoz, D., Praptiwi, R. A., Lawton, L. A., & Edwards, C. (2021). High value phycotoxins from the dinoflagellate prorocentrum. Frontiers in Marine Science, 8, 638739. https://doi.org/10.3389/fmars.2021.638739

Carias, J., Vásquez-Lavín, F., Barrientos, M., Ponce Oliva, R. D., & Gelcich, S. (2024). Economic valuation of Harmful Algal Blooms (HAB): Methodological challenges, policy implications, and an empirical application. Journal of Environmental Management, 365, 121566. https://doi.org/10.1016/J.JENVMAN.2024.121566

Castellani, C., & Edwards, M. (2017). Marine Plankton: A practical guide to ecology, methodology, and taxonomy. Oxford University Press. https://doi.org/10.1093/oso/9780199233267.001.0001

Chatterjee, S., & More, M. (2023). Cyanobacterial harmful algal bloom toxin microcystin and increased vibrio occurrence as climate-change-induced biological co-stressors: exposure and disease outcomes via their interaction with gut–liver–brain axis. Toxins, 15(4), 289. https://doi.org/10.3390/TOXINS15040289

Chatzi, A., & Doody, O. (2023). The one-way ANOVA test explained. Nurse Researcher, 31(3), 8–14. https://doi.org/10.7748/NR.2023.E1885

Command, R. J., De Leo, F. C., McKenzie, C. H., & Robert, K. (2023). A first look at megabenthic community responses to seasonal change using the new Holyrood Subsea Observatory in Conception Bay, NL. Progress in Oceanography, 216, 103071. https://doi.org/10.1016/J.POCEAN.2023.103071

Dammak-Walha, L., Hamza, A., Abdmouleh Keskes, F., Cibic, T., Mechi, A., Mahfoudi, M., & Sammari, C. (2021). Heavy metals accumulation in environmental matrices and their influence on potentially harmful dinoflagellates development in the Gulf of Gabes (Tunisia). Estuarine, Coastal and Shelf Science, 254, 107317. https://doi.org/10.1016/J.ECSS.2021.107317

de Vries, J., Monteiro, F., Langer, G., Brownlee, C., & Wheeler, G. (2024). A critical trade-off between nitrogen quota and growth allows Coccolithus braarudii life cycle phases to exploit varying environment. Biogeosciences, 21(7), 1707–1727. https://doi.org/10.5194/BG-21-1707-2024

Demir, E. İ., & Turkoglu, M. (2022). Temporal variations of phytoplankton community and their correlation with environmental factors in the coastal waters of the Çanakkale Strait in 2018. Oceanologia, 64(1), 176–197. https://doi.org/10.1016/J.OCEANO.2021.10.003

Dory, F., Nava, V., Spreafico, M., Orlandi, V., Soler, V., & Leoni, B. (2024). Interaction between temperature and nutrients: How does the phytoplankton community cope with climate change? Science of the Total Environment, 906, 167566. https://doi.org/10.1016/J.SCITOTENV.2023.167566

Selph, K. E., Swalethorp, R., Stukel, M. R., Kelly, T. B., Knapp, A. N., Fleming, K., Hernandez, T., & Landry, M. R. (2022). Phytoplankton Community Composition and Biomass in the Oligotrophic Gulf of Mexico. Journal of Plankton Research, 44(5), 618–37. https://doi.org/10.1093/plankt/fbab006

Essa, D. I., Elshobary, M. E., Attiah, A. M., Salem, Z. E., Keshta, A. E., & Edokpayi, J. N. (2024). Assessing phytoplankton populations and their relation to water parameters as early alerts and biological indicators of the aquatic pollution. Ecological Indicators, 159, 111721. https://doi.org/10.1016/J.ECOLIND.2024.111721

Feng, L., Wang, Y., Hou, X., Qin, B., Kuster, T., Qu, F., Chen, N., Paerl, H. W., & Zheng, C. (2024). Harmful algal blooms in inland waters. Nature Reviews Earth & Environment, 5(9), 631–644. https://doi.org/10.1038/s43017-024-00578-2

Fiandini, M., Nandiyanto, A. B. D., Al Husaeni, D. F., Al Husaeni, D. N., & Mushiban, M. (2024). How to calculate statistics for significant difference test using SPSS: Understanding students comprehension on the concept of steam engines as power plant. Indonesian Journal of Science and Technology, 9(1), 45–108. https://doi.org/10.17509/ijost.v9i1.64035

Filatov, D. A., & Kirkpatrick, M. (2024). How does evolution work in superabundant microbes? Trends in Microbiology, 32(9), 836–846. https://doi.org/10.1016/J.TIM.2024.01.009

Giesler, J. K., Lemley, D. A., Adams, J. B., & Moorthi, S. D. (2023). Interactive effects of salinity, temperature and food web configuration on performance and harmfulness of the raphidophyte Heterosigma akashiwo. Frontiers in Marine Science, 10, 1244639. https://doi.org/10.3389/fmars.2023.1244639

Glibert, P. M., Maranger, R., Sobota, D. J., & Bouwman, L. (2020). Further evidence of the Haber-Bosch-Harmful Algal Bloom (HB-HAB) link and the risk of suggesting HAB control through phosphorus reductions only. Just Enough Nitrogen: Perspectives on How to Get There for Regions with Too Much and Too Little Nitrogen (pp. 255–282). https://doi.org/10.1007/978-3-030-58065-0_17

Govender, Y., & Jury, M. R. (2024). Environmental controls on bioluminescent dinoflagellate density in Laguna Grande, Fajardo, Puerto Rico. Revista de Biología Tropical, 72(1), e56729. https://doi.org/10.15517/rev.biol.trop.v72i1.56729

Griffith, A. W., & Gobler, C. J. (2020). Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae, 91, 101590. https://doi.org/10.1016/j.hal.2019.03.008

Håkanson, L., & Bryhn, A. C. (2008). Eutrophication in the Baltic Sea: Present situation, nutrient transport processes, remedial strategies. Springer-Verlag.

Hallegraeff, G. M., Anderson, D. M., Davidson, K., Gianella, F., Hansen, P. J., Hegaret, H., Iwataki, M., Larsen, T. O., Mardones, J., MacKenzie, L., & Rensel, J. E. (2023). Fish-killing marine algal blooms: Causative organisms, ichthyotoxic mechanisms, impacts and mitigation [Technical report]. UNESCO - IOC/SCOR. https://doi.org/10.25607/OBP-1964

Haraguchi, L., Kraft, K., Ylöstalo, P., Kielosto, S., Hällfors, H., Tamminen, T., & Seppälä, J. (2023). Trait Response of Three Baltic Sea Spring Dinoflagellates to Temperature, Salinity, and Light Gradients. Frontiers in Marine Science, 10, 1156487. https://doi.org/10.3389/fmars.2023.1156487

Heil, C. A., & Muni-Morgan, A. L. (2021). Florida’s harmful algal bloom (HAB) problem: escalating risks to human, environmental and economic health with climate change. Frontiers in Ecology and Evolution, 9, 646080. https://doi.org/10.3389/fevo.2021.646080

Henigman, U., Mozetič, P., Francé, J., Knific, T., Vadnjal, S., Dolenc, J., Kirbiš, A., & Biasizzo, M. (2024). Okadaic acid as a major problem for the seafood safety (Mytilus galloprovincialis) and the dynamics of toxic phytoplankton in the Slovenian coastal sea (Gulf of Trieste, Adriatic Sea). Harmful Algae, 135, 102632. https://doi.org/10.1016/j.hal.2024.102632

Hernando, M., Varela, D. E., Malanga, G., Almandoz, G. O., & Schloss, I. R. (2020). Effects of climate-induced changes in temperature and salinity on phytoplankton physiology and stress responses in coastal Antarctica. Journal of Experimental Marine Biology and Ecology, 530–531, 151400. https://doi.org/10.1016/J.JEMBE.2020.151400

Hochfeld, I., & Hinners, J. (2024). Evolutionary adaptation to steady or changing environments affects competitive outcomes in marine phytoplankton. Limnology and Oceanography, 69(5), 1172–1186. https://doi.org/10.1002/LNO.12559

IBM Corp. (2017). IBM SPSS Statistics for Windows (Version 25.0) [Computer software]. Armonk, NY: IBM Corp. https://www.ibm.com/analytics/spss-statistics-software

Igwaran, A., Kayode, A. J., Moloantoa, K. M., Khetsha, Z. P., & Unuofin, J. O. (2024). Cyanobacteria harmful algae blooms: causes, impacts, and risk management. Water, Air, and Soil Pollution, 235(1), 1–26. https://doi.org/10.1007/s11270-023-06782-y

Ishii, K. I., Matsuoka, K., Imai, I., & Ishikawa, A. (2022). Life Cycle Strategies of the Centric Diatoms in a Shallow Embayment Revealed by the Plankton Emergence Trap/Chamber (PET Chamber) Experiments. Frontiers in Marine Science, 9, 889633. https://doi.org/10.3389/fmars.2022.889633

Ismail, M. M., & El Zokm, G. M. (2023). Evaluation of the response of phytoplankton communities to heavy metal stresses using multi-statistical approaches, Alexandria coast, Egypt. International Journal of Environmental Science and Technology, 20(12), 13595–13608. https://doi.org/10.1007/s13762-023-04914-9

Jachniak, E., & Jaguś, A. (2023). Assessment of the trophic state of the Soła River dam cascade, Polish Carpathians: a comparison of the methodology. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-33040-2

Jiang, T., Wu, G., Niu, P., Cui, Z., Bian, X., Xie, Y., Shi, H., Xu, X., & Qu, K. (2022). Short-term changes in algal blooms and phytoplankton community after the passage of Super Typhoon Lekima in a temperate and inner sea (Bohai Sea) in China. Ecotoxicology and Environmental Safety, 232, 113223. https://doi.org/10.1016/J.ECOENV.2022.113223

Juarros-Basterretxea, J., Aonso-Diego, G., Postigo, Á., Montes-Álvarez, P., Menéndez-Aller, Á., & García-Cueto, E. (2024). Post-hoc tests in one-way ANOVA: the case for normal distribution. Methodology, 20(2), 84–99. https://doi.org/10.5964/METH.11721

Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., De los Ríos-Escalante, P. R., Farooqi, Z.-U.-R., Ali, L., & Shafiq, M. (2023).Climate change due to increasing concentration of carbon dioxide and its impacts on environment in the 21st century: a mini review. Journal of King Saud University – Science, 35(5), 102693. https://doi.org/10.1016/j.jksus.2023.102693

Kazmi, S. S. U. H., Yapa, N., Karunarathna, S. C., & Suwannarach, N. (2022). Perceived intensification in harmful algal blooms is a wave of cumulative threat to the aquatic ecosystems. Biology, 2022, 11(6), 852. https://doi.org/10.3390/BIOLOGY11060852

Kim, J. H., Ajani, P. A., Murray, S. A., Kang, S. M., Kim, S. H., Lim, H. C., Teng, S. T., Lim, P. T., & Park, B. S. (2023). Abiotic and biotic factors controlling sexual reproduction in populations of Pseudo-nitzschia pungens (Bacillariophyceae). Harmful Algae, 123, 102392. https://doi.org/10.1016/J.HAL.2023.102392

Krueger-Hadfield, S. A. (2024). Let’s talk about sex: Why reproductive systems matter for understanding algae. Journal of Phycology, 60(3), 581–597. https://doi.org/10.1111/JPY.13462

Kuroda, H., Takagi, S., Azumaya, T., & Hasegawa, N. (2024). Spatiotemporal Variability of Satellite-Derived Abundance of Karenia Spp. during 2021 in Shelf Waters along the Pacific Coast of Hokkaido, Japan. Frontiers in Marine Science, 11, 1452762. https://doi.org/10.3389/fmars.2024.1452762

Lajnef, R., Quéméneur, M., Abdennadher, M., Dammak Walha, L., Hamza, A., Belhassen, M., & Bellaaj Zouari, A. (2023). Prokaryotic diversity and dynamics during dinoflagellate bloom decays in coastal tunisian waters. Diversity, 15(2), 273. https://doi.org/10.3390/d15020273

Lan, J., Liu, P., Hu, X., & Zhu, S. (2024). Harmful algal blooms in eutrophic marine environments: causes, monitoring, and treatment. Water, 16(17), 2525. https://doi.org/10.3390/W16172525

Latasa, M., Scharek, R., Morán, X. A. G., Gutiérrez-Rodríguez, A., Emelianov, M., Salat, J., Vidal, M., & Estrada, M. (2022). Dynamics of phytoplankton groups in three contrasting situations of the open NW Mediterranean Sea revealed by pigment, microscopy, and flow cytometry analyses. Progress in Oceanography, 201, 102737. https://doi.org/10.1016/J.POCEAN.2021.102737

Li, X. Y., Yu, R. C., Richardson, A. J., Sun, C., Eriksen, R., Kong, F. Z., Zhou, Z. X., Geng, H. X., Zhang, Q. C., & Zhou, M. J. (2023). Marked shifts of harmful algal blooms in the Bohai Sea linked with combined impacts of environmental changes. Harmful Algae, 121, 102370. https://doi.org/10.1016/J.HAL.2022.102370

Manganelli, M., Testai, E., Tazart, Z., Scardala, S., & Codd, G. A. (2023). Co-occurrence of taste and odor compounds and cyanotoxins in cyanobacterial blooms: emerging risks to human health? Microorganisms, 11(4), 872. https://doi.org/10.3390/MICROORGANISMS11040872

Manigandan, V., Muthukumar, C., Shah, C., Logesh, N., Sivadas, S. K., Ramu, K., & Ramana Murthy, M. V. (2024). Phylogenetic affiliation of Pedinomonas noctilucae and green Noctiluca scintillans nutritional dynamics in the Gulf of Mannar, Southeastern Arabian Sea. Protist, 175(2), 126019. https://doi.org/10.1016/J.PROTIS.2024.126019

Marques, A., Nunes, M. L., Moore, S. K., & Ström, M. S. (2010). Climate change and seafood safety: Human health implications. Food Research International, 43(7), 1766–1779. https://doi.org/10.1016/j.foodres.2010.02.010

Martínez‑Pérez, C., Zweifel, S. T., Pioli, R., & Stocker, R. (2024). Space, the final frontier: The spatial component of phytoplankton‑bacterial interactions. Molecular Microbiology, 122(3). https://doi.org/10.1111/mmi.15293

Mutalipassi, M., Riccio, G., Mazzella, V., Galasso, C., Somma, E., Chiarore, A., de Pascale, D., & Zupo, V. (2021). Symbioses of cyanobacteria in marine environments: ecological insights and biotechnological perspectives. Marine Drugs, 19(4), 227. https://doi.org/10.3390/marine‑drugs19040227

Naselli‑Flores, L., & Padisák, J. (2023). Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia, 850(12–13), 2691–2706. https://doi.org/10.1007/s10750-022-04795-y

Obaid, A. A., Adam, E. M., Ali, K. A., & Abiye, T. A. (2024). Time‑series analysis of water‑quality factors enhancing harmful algal blooms (HABs): a study integrating in‑situ and satellite data, Vaal Dam, South Africa. Water, 16(5), 764. https://doi.org/10.3390/w16050764

Organización de las Naciones Unidas para la Agricultura y la Alimentación, Comisión Oceanográfica Intergubernamental, & Organismo Internacional de Energía Atómica. (2023). Joint FAO‑IOC‑IAEA technical guidance for the implementation of early warning systems for harmful algal blooms [Fisheries and Aquaculture Technical Paper No. 690]. FAO. https://doi.org/10.4060/cc4794en

Ou, L. J., Wang, Z., Ding, G. M., Han, F. X., Cen, J. Y., Dai, X. F., Li, K. Q., & Lu, S. H. (2024). Organic nutrient availability and extracellular enzyme activities influence harmful algal bloom proliferation in a coastal aquaculture area. Aquaculture, 582, 740530. https://doi.org/10.1016/j.aquaculture.2023.740530

Pal, M., Yesankar, P. J., Dwivedi, A., & Qureshi, A. (2020). Biotic control of harmful algal blooms (HABs): A brief review. Journal of Environmental Management, 268, 110687. https://doi.org/10.1016/J.JENVMAN.2020.110687

Parra-Saldivar, R., Melchor-Martínez, E. M., Oh, J.-W., Shiv, S., Pushparaj, C., Muthu, M., & Gopal, J. (2023). Review of harmful algal blooms (HABs) causing marine fish kills: toxicity and mitigation. Plants, 12(23), 3936. https://doi.org/10.3390/PLANTS12233936

Persson, A., Smith, B. C., Alix, J. H., & Wikfors, G. H. (2024). Properties and behavior of sexual life stages underlying dinoflagellate hab events of cyst-producing species that disrupt fisheries and aquaculture. Reviews in Fisheries Science & Aquaculture, 32(2), 171–188. https://doi.org/10.1080/23308249.2023.2268715

Quevedo-Ortiz, G., Fernández-Calero, J. M., Cañedo-Argüelles, M., von Schiller, D., Fortuño, P., Bonada, N., & Gomà, J. (2024). An experimental study to assess resistance and resilience strategies of freshwater diatoms to cope with drying in Mediterranean temporary rivers. Hydrobiologia, 851(17), 4293–4306. https://doi.org/10.1007/s10750-024-05585-4

Rajapaksha, R. P., Wu, M. L., Wang, Y. T., Bandara, G., Atapaththu, K. S. S., & Wang, Y. S. (2024). Long-term alterations of nutrient dynamics and phytoplankton communities in Daya Bay, South China Sea. Marine Pollution Bulletin, 208, 116955. https://doi.org/10.1016/J.MARPOLBUL.2024.116955

Rattner, B. A., Wazniak, C. E., Lankton, J. S., McGowan, P. C., Drovetski, S. V., & Egerton, T. A. (2022). Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. Harmful Algae, 120, 102319. https://doi.org/10.1016/J.HAL.2022.102319

Röthig, T., Trevathan‐Tackett, S. M., Voolstra, C. R., Ross, C., Chaffron, S., Durack, P. J., Warmuth, L. M., & Sweet, M. (2023). Human‐induced Salinity Changes Impact Marine Organisms and Ecosystems. Global Change Biology, 29(17), 4731–49. https://doi.org/10.1111/gcb.16859

Salmaso, N., & Tolotti, M. (2021). Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia, 848(1), 251–284. https://doi.org/10.1007/s10750-020-04323-w

Sarkar, S. D., Sarkar, U. K., Naskar, M., Roy, K., Bose, A. K., Nag, S. K., Karnatak, G., & Das, B. K. (2021). Effect of Climato-Environmental Parameters on Chlorophyll a Concentration in the Lower Ganga Basin, India. Revista de Biología Tropical, 69(1), 60–76. https://doi.org/10.15517/rbt.v69i1.42731

Sha, J., Xiong, H., Li, C., Lu, Z., Zhang, J., Zhong, H., Zhang, W., & Yan, B. (2021). Harmful algal blooms and their eco-environmental indication. Chemosphere, 274, 129912. https://doi.org/10.1016/j.chemosphere.2021.129912

Shaika, N. A., Alhomaidi, E., Sarker, M. M., An Nur, A., Sadat, M. A., Awal, S., Mostafa, G., Hasan, S. J., Mahmud, Y., & Khan, S. (2023). Winter bloom of marine cyanobacterium, trichodesmium erythraeum and its relation to environmental factors. Sustainability, 15(2), 1311. https://doi.org/10.3390/SU15021311

Shi, X., Zou, Y., Zhang, Y., Ding, G., Xiao, Y., Lin, S., & Chen, J. (2024). Salinity decline promotes growth and harmful blooms of a toxic alga by diverting carbon flow. Global Change Biology, 30(6). https://doi.org/10.1111/GCB.17348

Sidabutar, T., Srimariana, E. S., Cappenberg, H., & Wouthuyzen, S. (2024). Comprehensive analysis of harmful algal blooms in indonesia: from occurrence to impact. BIO Web of Conferences, 87, 02003. https://doi.org/10.1051/BIOCONF/20248702003

Siegel, D. A., Devries, T., Cetinić, I., & Bisson, K. M. (2023). Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annual Review of Marine Science, 15, 329–356. https://doi.org/10.1146/annurev-marine-040722-115226

Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Bulletin of the Fisheries Research Board of Canada, 167, 1–310.

Solórzano, G. G., Fernández, J. M. G., & Zuno, S. A. F. (2024). Phytoplankton from a brackish lagoon in the central region of Veracruz, Mexico. Revista de Biología Tropical, 72(1), e51160–e51160. https://doi.org/10.15517/REV.BIOL.TROP..V72I1.51160

Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2017). Standard Methods for the Examination of Water and Wastewater. Standard Methods. https://www.standardmethods.org/

Stewart, J., Miller, M., Audo, C., & Stewart, G. (2012). Using cluster analysis to identify patterns in students’ responses to contextually different conceptual problems. Physical Review Special Topics - Physics Education Research, 8(2), 020112. https://doi.org/10.1103/PhysRevSTPER.8.020112

Tambaru, R., Burhanuddin, A. I., Haris, A., Amran, M. A., Massinai, A., Muhiddin, A. H., Yaqin, K., Firman, & Yuliana. (2024). Diversity and abundance of phytoplankton in Bone Bay, South Sulawesi, Indonesia and its relationship with environmental variables. Biodiversitas Journal of Biological Diversity, 25(2), 624–631. https://doi.org/10.13057/BIODIV/D250221

Tomas, C. R. (1997). Identifying marine phytoplankton (1st ed.). Elsevier. https://doi.org/10.1016/B978-0-12-693018-4.X5000-0

Tominack, S. A., Coffey, K. Z., Yoskowitz, D., Sutton, G., & Wetz, M. S. (2020). An assessment of trends in the frequency and duration of Karenia brevis red tide blooms on the South Texas coast (western Gulf of Mexico). PloS One, 15(9). https://doi.org/10.1371/JOURNAL.PONE.0239309

Trottet, A., Wilson, B., Sew Wei Xin, G., George, C., Casten, L., Schmoker, C., Rawi, N. S. B. M., Chew Siew, M., Larsen, O., Eikaas, H. S., Tun, K., & Drillet, G. (2018). Resting stage of plankton diversity from Singapore coastal water: Implications for harmful algae blooms and coastal management. Environmental Management, 61(2), 275–290. https://doi.org/10.1007/s00267-017-0966-5

Twiner, M. J., Rehmann, N., Hess, P., & Doucette, G. J. (2008). Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Marine Drugs, 6(2), 39. https://doi.org/10.3390/MD20080004

Vajravelu, M., Martin, Y., Ayyappan, S., & Mayakrishnan, M. (2018). Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, south east coast of India. Oceanologia, 60(2), 114–127. https://doi.org/10.1016/j.oceano.2017.08.003

Vieira, V. M. N. de C. da S., Rosa, T. L., Sobrinho-Gonçalves, L., Mateus, M. D., & Mota, B. (2024). A demographic model to forecast Dinophysis acuminata harmful algal blooms. Frontiers in Marine Science, 11, 1355706. https://doi.org/10.3389/fmars.2024.1355706

Wang, Y. Y., Zhai, W. D., Wu, C., Yang, S., & Gong, X. Z. (2024). Exploring contribution of phytoplankton cell death to settleable particulate organic carbon in the East China Sea in spring. Marine Pollution Bulletin, 201, 116197. https://doi.org/10.1016/j.marpolbul.2024.116197

Wolny, J. L., Tomlinson, M. C., Schollaert Uz, S., Egerton, T. A., McKay, J. R., Meredith, A., Reece, K. S., Scott, G. P., & Stumpf, R. P. (2020). Current and future remote sensing of harmful algal blooms in the Chesapeake Bay to support the shellfish industry. Frontiers in Marine Science, 7, 518373. https://doi.org/10.3389/fmars.2020.00337

Wong, J. C. Y., Raven, J. A., Aldunate, M., Silva, S., Gaitán-Espitia, J. D., Vargas, C. A., Ulloa, O., & von Dassow, P. (2023). Do phytoplankton require oxygen to survive? A hypothesis and model synthesis from oxygen minimum zones. Limnology and Oceanography, 68(7), 1417–1437. https://doi.org/10.1002/lno.12367

Xu, Y., Chen, J., Yang, Q., Jiang, X., Fu, Y., & Pan, D. (2024). Trend of harmful algal bloom dynamics from GOCI observed diurnal variation of chlorophyll a off Southeast coast of China. Frontiers in Marine Science, 11, 1357669. https://doi.org/10.3389/fmars.2024.1357669

Yang, J., Löder, M. G. J., Wiltshire, K. H., & Montagnes, D. J. S. (2021). Comparing the trophic impact of microzooplankton during the spring and autumn blooms in temperate waters. Estuaries and Coasts, 44(1), 189–198. https://doi.org/10.1007/s12237-020-00775-4

Zahir, M., Su, Y., Shahzad, M. I., Ayub, G., Rahman, S. U., & Ijaz, J. (2024). A review on monitoring, forecasting, and early warning of harmful algal bloom. Aquaculture, 593, 741351. https://doi.org/10.1016/J.AQUACULTURE.2024.741351

Zhu, Y., Mulholland, M. R., Bernhardt, P. W., Neeley, A. R., Widner, B., Tapia, A. M., & Echevarria, M. A. (2024). Nitrogen uptake rates and phytoplankton composition across contrasting North Atlantic Ocean coastal regimes north and south of Cape Hatteras. Frontiers in Microbiology, 15, 1380179. https://doi.org/10.3389/fmicb.2024.1380179

Zingone, A., Escalera, L., Aligizaki, K., Fernández-Tejedor, M., Ismael, A., Montresor, M., Mozetič, P., Taş, S., & Totti, C. (2021). Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report. Harmful Algae, 102, 101843. https://doi.org/10.1016/J.HAL.2020.101843

Published

2025-08-29