Heces de depredadores tope: consecuencias conductuales para la coexistencia de las especies

Autores/as

  • Danelly Solalinde Wildlife Ecology and Conservation Department, Ecology Institute, National Autonomous University of Mexico, Mexico City, Mexico Autor/a
  • Cuauhtémoc Chávez Environmental Sciences Department, Metropolitan Autonomous University Autor/a https://orcid.org/0000-0003-2201-4748
  • Gerardo Ceballos Wildlife Ecology and Conservation Department, Ecology Institute, National Autonomous University of Mexico, Mexico City, Mexico Autor/a
  • Francisco Palomares Biology Conservation Department, Doñana Biological Station, CSIC, Seville, Spain Autor/a

DOI:

https://doi.org/10.15517/m5j8t121

Palabras clave:

marcas olfativas, detección de heces, conducta animal, carnívoros grandes

Resumen

Introducción: La deposición de excremento en el ambiente es un comportamiento clave en la ecología de los carnívoros depredadores, que promueve cambios conductuales en los animales, influyendo en la abundancia y distribución de las especies con las que coexisten. Objetivo: Analizar si el excremento de jaguar es detectado por sus conespecíficos y otros mamíferos, y si tiene efectos en el comportamiento de estos. Métodos: Registramos la conducta del jaguar (Panthera onca), puma (Puma concolor), mesocarnívoros (Leopardus pardalis, Leopardus wiedii, Herpailurus yagouaroundi) y presas, mediante cámaras trampa, en sitios marcados (con excremento de jaguar; n = 28) y sitios control (sin excremento de jaguar; n = 10). Con los registros analizamos, para lluvias y secas: (1) la detección de los excrementos de jaguar por animales y, (2) si después de detectar los excrementos de jaguar, los animales modifican su comportamiento de exploración, observación, vigilancia y forrajeo. Resultados: Pumas y jaguares detectan el excremento con la misma frecuencia y la detección es mayor en temporada seca. En cuanto a las conductas analizadas, los jaguares exploraron 15 veces más y remarcaron 13 veces más, los sitios marcados que los sitios control. Los pumas exploraron ocho veces más los sitios marcados que los sitios control. Los mesocarnívoros exploraron los sitios marcados 17 veces más que los sitios control. Las presas exploraron 41 veces más y aumentaron su vigilancia 24 veces en los sitios marcados que en los sitios de control. Conclusiones: El excremento del jaguar es detectado por conespecíficos y otras especies de mamíferos y tiene efectos en su conducta. Esto puede desencadenar cambios en la abundancia y distribución de las poblaciones y puede ser una forma en que los carnívoros depredadores moldean los ecosistemas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Allen, M. L., Avrin, A. C., Wittmer, H. U., Wang, Y., & Wilmers, C. C. (2024). Mesocarnivores vary in their spatiotemporal avoidance strategies at communications hubs of an apex carnivore. Oecologia, 204(4), 805-813.

Allen, M. L., Gunther, M. S., & Wilmers, C. C. (2017). The scent of your enemy is my friend? The acquisition of large carnivore scent by a smaller carnivore. Journal of Ethology, 35, 13-19.

Allen, M. L., Rovero, F., Oberosler, V., Augugliaro, C., & Krofel, M. (2023). Effects of snow leopards (Panthera uncia) on olfactory communication of Pallas’s cats (Otocolobus manul) in the Altai Mountains, Mongolia. Behaviour, 1(aop), 1-9.

Allen, M. L., Wittmer, H. U., Houghtaling, P., Smith, J., Elbroch, L. M., & Wilmers, C. C. (2015). The role of scent marking in mate selection by female pumas (Puma concolor). PLoS One, 10(10), e0139087.

Allen, M. L., Wittmer, H. U., Setiawan, E., Jaffe, S., & Marshall, A. J. (2016). Scent marking in Sunda clouded leopards (Neofelis diardi): novel observations close a key gap in understanding felid communication behaviours. Scientific reports, 6(1), 35433.

Altendorf, K. B., Laundré, J. W., López González, C. A., & Brown, J. S. (2001). Assessing effects of predation risk on foraging behavior of mule deer. Journal of mammalogy, 82(2), 430-439.

Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A., & McGregor, I. S. (2005). The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neuroscience & Biobehavioral Reviews, 29(8), 1123-1144.

Ávila–Nájera, D. M., Palomares, F., Chávez, C., Tigar, B., & Mendoza, G. D. (2018). Jaguar (Panthera onca) and puma (Puma concolor) diets in Quintana Roo, Mexico. Animal Biodiversity and Conservation, 41(2), 257-266.

Bai, D., Kang, Y., Ruan, S., & Wang, L. (2021). Dynamics of an intraguild predation food web model with strong Allee effect in the basal prey. Nonlinear analysis: real world applications, 58, 103206.

Berger, J. (2010). Fear-mediated food webs. Trophic cascades: predators, prey, and the changing dynamics of nature, 241-253.

Buesching, C. D., & Jordan, N. R. (2022). The function of carnivore latrines: review, case studies, and a research framework for hypothesis testing. Small carnivores: Evolution, ecology, behaviour, and conservation, 131-171.

Ceballos, G., Zarza, H., Chávez, C., & González-Maya, J. F. (2016). Ecology and conservation of jaguars in Mexico. Tropical conservation: Perspectives on local and global priorities, 13, 273.

Chávez, C. (2010). Ecology and conservation of jaguar (Panthera onca) and puma (Puma concolor) in the Calakmul region and its implications for the conservation of the Yucatán Peninsula. Departamento de Biología Animal. Universidad de Granada, Granada, España, 111.

Cornhill, K. L., & Kerley, G. I. (2020). Cheetah communication at scent-marking sites can be inhibited or delayed by predators. Behavioral Ecology and Sociobiology, 74, 1-10.

Davis, R. S., Yarnell, R. W., Gentle, L. K., Uzal, A., Mgoola, W. O., & Stone, E. L. (2021). Prey availability and intraguild competition regulate the spatiotemporal dynamics of a modified large carnivore guild. Ecology and Evolution, 11(12), 7890-7904.

Dugatkin, L. A. (2020). Principles of animal behavior. University of Chicago Press.

Elbroch, L. M., & Quigley, H. (2017). Social interactions in a solitary carnivore. Current Zoology, 63(4), 357-362.

Elbroch, L. M., & Kusler, A. (2018). Are pumas subordinate carnivores, and does it matter?. PeerJ, 6, e4293.

Edwards, S., Mueller, R., Roeder, R., Melzheimer, J., & Wachter, B. (2022). Cheetah marking sites are also used by other species for communication: evidence from photographic data in a comparative setup. Mammalian Biology, 102(4), 1345-1356.

Epperly, H. K., Clinchy, M., Zanette, L. Y., & McCleery, R. A. (2021). Fear of large carnivores is tied to ungulate habitat use: evidence from a bifactorial experiment. Scientific Reports, 11(1), 12979.

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., & Wardle, D. A. (2011). Trophic downgrading of planet Earth. science, 333(6040), 301-306.

Frantz, A. C., Pope, L. C., Carpenter, P. J., Roper, T. J., Wilson, G. J., Delahay, R. J., & Burke, T (2003). Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Molecular Ecology, 12(6), 1649-1661.

Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E., & Doncaster, C. P. (2009). Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. Journal of mammalogy, 90(3), 612-620.

Hansen, K. W., Ranc, N., Morgan, J., Jordan, N. R., McNutt, J. W., Wilson, A., & Wilmers, C. C. (2024). How territoriality and sociality influence the habitat selection and movements of a large carnivore. Ecology and Evolution, 14(4), e11217.

Haswell, P. M., Jones, K. A., Kusak, J., & Hayward, M. W. (2018). Fear, foraging and olfaction: how mesopredators avoid costly interactions with apex predators. Oecologia, 187, 573-583.

Hoeks, S., Huijbregts, M. A., Busana, M., Harfoot, M. B., Svenning, J. C., & Santini, L. (2020). Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography, 43(12), 1752-1763.

Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M., & Van Der Hammen, T. (2007). Habitat structure affects intraguild predation. Ecology, 88(11), 2713-2719.

Karanth, K. U., Srivathsa, A., Vasudev, D., Puri, M., Parameshwaran, R., & Kumar, N. S. (2017). Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the Royal Society B: Biological Sciences, 284(1848), 20161860.

Kemna, C. J., Nagy-Reis, M. B., & Scrafford, M. A. (2020). Temporal segregation among sympatric boreal predators. Mammal research, 65(3), 565-572.

Laundré, J. W., Hernández, L., & Altendorf, K. B. (2001). Wolves, elk, and bison: reestablishing the" landscape of fear" in Yellowstone National Park, USA. Canadian Journal of Zoology, 79(8), 1401-1409.

Lu, Q., Cheng, C., Xiao, L., Li, J., Li, X., Zhao, X., & Yao, M. (2023). Food webs reveal coexistence mechanisms and community organization in carnivores. Current Biology, 33(4), 647-659.

Martins, M. A. T. (2023). Mesocarnivore reactive behaviour to large carnivore cues (Doctoral dissertation).

Medellín, R. A., De la Torre, J. A., Zarza, H., Chávez, C., & Ceballos, G. (2016). El jaguar en el siglo XXI: la perspectiva continental. fondo de cultura económica.

Miaretsoa, L., Cascella, A., Vadàla, L., Valente, D., De Gregorio, C., Torti, V., & Gamba, M. (2022). Marking versus overmarking: spatial and behavioral patterns of scent marking in wild Diademed Sifaka (Propithecus diadema). International Journal of Primatology, 43(4), 611-635.

Morehouse, A. T., Loosen, A. E., Graves, T. A., & Boyce, M. S. (2021). The smell of success: reproductive success related to rub behavior in brown bears. PLoS One, 16(3), e0247964.

Mpemba, H., Yang, F., & Jiang, G. (2019). The implications of fear ecology for interactions among predators, prey and mesopredators. JAPS: Journal of Animal & Plant Sciences, 29(6).

Müller, L., Briers‐Louw, W. D., Amin, R., Lochner, C. S., & Leslie, A. J. (2022). Carnivore coexistence facilitated by spatial and dietary partitioning and fine‐scale behavioural avoidance in a semi‐arid ecosystem. Journal of Zoology, 317(2), 114-128.

Murphy, L. B. (1978). The practical problems of recognizing and measuring fear and exploration behaviour in the domestic fowl. Animal Behaviour, 26, 422-431.

Palomares, F., Fernández, N., Roques, S., Chávez, C., Silveira, L., Keller, C., & Adrados, B. (2016). Fine-scale habitat segregation between two ecologically similar top predators. PloS one, 11(5), e0155626.

Palomares, F., González-Borrajo, N., Chávez, C., Rubio, Y., Verdade, L. M., Monsa, R., & Zanin, M. (2018). Scraping marking behaviour of the largest Neotropical felids. PeerJ, 6, e4983.

Pilgrim, K. L., McKelvey, K. S., Riddle, A. E., & Schwartz, M. K (2005). Felid sex identification based on noninvasive genetic samples. Molecular Ecology Notes, 5(1), 60-61.

Ploger, B. J., & Yasukawa, K. (Eds.). (2003). Exploring animal behavior in laboratory and field: an hypothesis-testing approach to the development, causation, function, and evolution of animal behavior. Academic Press.

Prugh, L. R., & Sivy, K. J. (2020). Enemies with benefits: integrating positive and negative interactions among terrestrial carnivores. Ecology Letters, 23(5), 902-918.

Rafiq, K., Jordan, N. R., Meloro, C., Wilson, A. M., Hayward, M. W., Wich, S. A., & McNutt, J. W. (2020). Scent-marking strategies of a solitary carnivore: boundary and road scent marking in the leopard. Animal behaviour, 161, 115-126.

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., & Wirsing, A. J. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343(6167), 1241484.

Roques, S., Adrados, B., Chávez, C., Keller, C., Magnusson, W. E., Palomares, F., & Godoy, J. A (2011). Identification of Neotropical felid faeces using RCP‐PCR. Molecular Ecology Resources, 11(1), 171-175.

Ruprecht, J., Eriksson, C. E., Forrester, T. D., Spitz, D. B., Clark, D. A., Wisdom, M. J., & Levi, T. (2021). Variable strategies to solve risk–reward tradeoffs in carnivore communities. Proceedings of the National Academy of Sciences, 118(35), e2101614118.

Russell, J. C., Lecomte, V., Dumont, Y., & Le Corre, M. (2009). Intraguild predation and mesopredator release effect on long-lived prey. Ecological modelling, 220(8), 1098-1104.

Samuel, L., Arnesen, C., Zedrosser, A., & Rosell, F. (2020). Fears from the past? The innate ability of dogs to detect predator scents. Animal cognition, 23, 721-729.

Schmitz, O. J., Beckerman, A. P., & O’Brien, K. M. (1997). Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology, 78(5), 1388-1399.

Schmitz, O. J., Grabowski, J. H., Peckarsky, B. L., Preisser, E. L., Trussell, G. C., & Vonesh, J. R. (2008). From individuals to ecosystem function: toward an integration of evolutionary and ecosystem ecology. Ecology, 89(9), 2436-2445.

Sheriff, M. J., Peacor, S. D., Hawlena, D., & Thaker, M. (2020). Non‐consumptive predator effects on prey population size: A dearth of evidence. Journal of Animal Ecology, 89(6), 1302-1316.

Smith, J. L. D., Mc Dougal, S., & Miquelle, D. (1989). Scent marking in free-ranging tigers, Panthera tigris. Animal Behaviour, 37, 1-10.

Sunde, P., Böcker, F., Rauset, G. R., Kjellander, P., Chrenkova, M., Skovdal, T. M., & Heurich, M. (2022). Mammal responses to predator scents across multiple study areas. Ecosphere, 13(8), e4215.

Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D., & Zanette, L. Y. (2016). Fear of large carnivores causes a trophic cascade. Nature communications, 7(1), 10698.

Srivathsa, A., Ramachandran, V., Saravanan, P., Sureshbabu, A., Ganguly, D., & Ramakrishnan, U. (2023). Topcats and underdogs: Intraguild interactions among three apex carnivores across Asia's forestscapes. Biological Reviews, 98(6), 2114-2135.

Tallian, A., Ordiz, A., Zimmermann, B., Sand, H., Wikenros, C., Wabakken, P., & Kindberg, J. (2021). The return of large carnivores: Using hunter observation data to understand the role of predators on ungulate populations. Global Ecology and Conservation, 27, e01587.

Taylor, R. J. (2013). Predation. Springer Science & Business Media.

Van Beeck Calkoen, S. T., Kreikenbohm, R., Kuijper, D. P., & Heurich, M. (2021). Olfactory cues of large carnivores modify red deer behavior and browsing intensity. Behavioral Ecology, 32(5), 982-992.

Wang, Y., Allen, M. L., & Wilmers, C. C. (2020). Mesopredators display behaviourally plastic responses to dominant competitors when scavenging and communicating. bioRxiv, 2020-01.

Wooldridge, R. L., Foster, R. J., & Harmsen, B. J. (2019). The functional role of scent marking in the social organization of large sympatric neotropical felids. Journal of Mammalogy, 100(2), 445-453.

Publicado

2025-09-30