Asfaltos modificados y convencionales

Comportamiento dinámico de mezclas bituminosas

Fredy Aberto Reyes Lizcano, Phd. Cluadia Marcela Lizarazo Universidad Javeriana, Colombia

Introducción

Desde la última década, existe un interés creciente en la tecnología del asfalto por el uso de los ligantes modificados con polímeros. Ello se debe al incremento de la demanda de las mezclas asfálticas en caliente y del volumen del tránsito, a las altas cargas y presiones de inflado que han llevado a que se generen ahuellamientos prematuros en los pavimentos, a que la aplicación de las especificaciones emanadas del grupo de investigación SHRP exijan que el ligante asfáltico usado en la elaboración de las mezclas asfálticas en caliente tenga un buen comportamiento a bajas y altas temperaturas de servicio, y a que la puesta en marcha del sistema de concesión de carreteras demande alargar la vida de la estructura del pavimento disminuyendo los riesgos de la aparición de fallas prematuras. Es evidente entonces, la necesidad de encontrar asfaltos que permitan

obtener mezclas bituminosas que respondan a las exigencias actuales; para esto, se desarrollaron seis asfaltos modificados con polímero, empleando como base el cemento asfáltico de Apiay. Se empleó también un aditivo que posibilitó que los asfaltos se aplicaran a una temperatura de mezclado inferior a la cual el polímero se degrada. El objetivo principal de este trabajo fue evaluar la influencia del polímero SBS en las propiedades del asfalto de Apiay, mediante un análisis comparativo del desempeño del asfalto convencional y de los asfaltos modificados con diferentes contenidos de SBS y aditivo.

Modificación de asfaltos cor polímeros

En el Cuadro 1 se encuentran los requerimientos exigidos por las especificaciones de la Asociación Americana de

ENSAYO	Α	В	С	D	
Penetración, 25 °C, 100 g, 5 s	Mín Máx	100 50	75 100	50 75	40 75
Penetración, 4°C, 200 g, 60 s	Mín	40	30	25	25
Viscosidad absoluta, 60°C, P	Mín	1000	2500	5000	5000
Viscosidad cinemática, 135°C, cST	Máx	2000	2000	2000	2000
Punto de Ablandamiento, Anillo y Bola (A&), °C	Mín	43	49	54	60
Punto de Inflamación (COC), °C	Mín	218	218	232	232
Solubilidad en TCE, %	Mín	99,0	99,0	99,0	99,0
Separación, diferencia en A&B, °F	Máx	4	4	4	4
Residuo del ensayo rotatorio de película delgada en horno (RTFOT) Recuperación elástica, 25 °C, % Penetración, 4 °C, 200 g, 60 s	Mín Máx	45 20	45 15	45 13	50 13

Fuente: AASHTO; AGC y ARTBA. Guide Specifications Polymer Modified Asphalt.

Washington, D.C.: AASHTO, 1992.

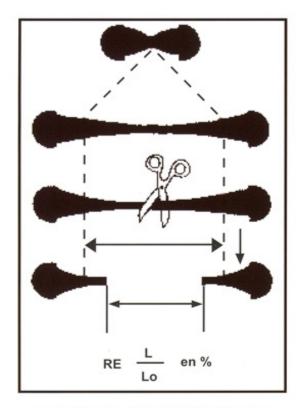


Figura 1. Recuperación elástica utilizando el ductilómetro Fuente: ARENAS, Hugo León. Tecnología del Cemento Astáltico

Oficiales en Carreteras Estatales y Transporte (AASHTO) a los cementos asfálticos modificados con estireno-butadieno-estireno o SBS, para cuatro tipos de usos: el tipo A para mezclas calientes en condiciones de servicio a temperaturas bajas, el tipo B y C para mezclas abiertas o cerradas, y el tipo D para aplicaciones en climas calientes donde el concreto asfáltico vaya a ser usado en áreas con alto volumen de tráfico.

Los ligantes modificados presentan una elasticidad mayor que la de los ligantes tradicionales. Entre los ensayos usados para evaluar las características elásticas, se encuentra el de la recuperación elástica por medio del ductilómetro. El ensayo consiste en someter a la probeta empleada en el ensayo de ductilidad a un estiramiento de 20 cm a una velocidad de 50 mm/min. Después del estiramiento, se detiene el ductilómetro y se mantiene la muestra en esa posición durante 5 minutos. Se corta la muestra por la mitad con unas tijeras o cualquier otro medio y se deja recuperar durante una hora. Al cabo de ese tiempo se mide la longitud recuperada, reportándose como un porcentaje de la longitud inicial (véase Figura 1).

En este estudio, para los asfaltos modificados, se analizaron las características elásticas, el envejecimiento y algunos ensayos que dan una idea de su comportamiento reológico y de su susceptibilidad térmica.

Modificación de los asfaltos

En cuanto al mecanismo de la modificación, un ligante modificado está constituido por dos fases distintas para las cuales se consideran tres casos: (1) bajo contenido de polímero, inferior al 4% (el bitumen constituye la fase continua en la que se dispersa la fase del polímero, en este caso la escogencia del asfalto es determinante); (2) contenido de polímero elevado, superior al 7% (en este caso no se tiene un bitumen sino un polímero plastificado por los aceites del bitumen en los que se encuentran dispersos los fragmentos más pesados del ligante base, las propiedades de este sistema son diferentes a las de un bitumen, y dependen de las de los polímeros) y; (3) contenido de polímero del 5 % aproximadamente (se obtiene microestructuras en las que las dos fases son continuas, son generalmente difíciles de controlar y tienen problemas de La técnica de microscopía óptica de estabilidad). fluorescencia por reflexión permite la visualización de las microestructuras a un factor de escala grande que está generalmente alrededor de 250. En esas condiciones de observación, la fase del polímero aparece en claro, mientras que la del bitumen en negro. Las Figuras 2, 3 y 4 son ejemplos de tres tipos de microestructuras.

En este estudio se mezcló el asfalto base de Apiay con diferentes porcentajes de polímero (3%, 5%, 7%, 9%, 11% y 13%). El polímero empleado es un elastómero termoplástico de estireno-butadieno-estireno (SBS). Los cauchos termoplásticos o copolímeros en block, de tipo SBS

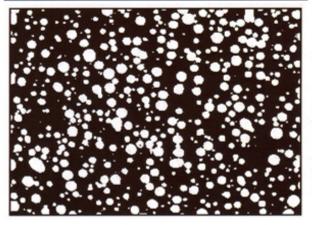


Figura 2. Microestructura de un ligante modificado con matriz de bitumen

Fuente: SUCH, Christian. Taller de transferencia de tecnología: Asfaltos modificados

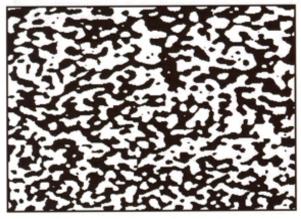


Figura 3. Microestructura de un ligante modificado con matriz de polímero.

Fuente: SUCH, Christian. Taller de transferencia de tecnología: Asfaltos modificados

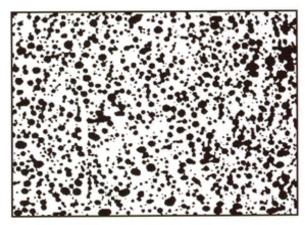


Figura 4. Microestructura de un ligante modificado con dos fases continuas

Fuente: SUCH, Christian. Taller de transferencia de tecnología: Asfaltos modificados

(estireno-butadieno-estireno) o SIS (estireno-isopreno-estireno) se caracterizan por comportarse como polímeros lineales durante su procesamiento en caliente y como un caucho vulcanizado a temperatura ambiente. En esencia son un sistema de dos fases, con los bloques de poliestireno asociados en dominios incorporados en una matriz de caucho butadieno o isopreno. Cuando el polímero es dispersado en el asfalto caliente, los dominios de poliestireno se ablandan y pueden disolverse parcial o completamente. De esta forma el polímero produce una mezcla de comportamiento viscoso a alta temperatura. Por enfriamiento, los bloques de poliestireno se asocian actuando como reticulantes de los bloques de elastómeros dispersos, confiriéndole al asfalto modificado propiedades elásticas, similares a las de un caucho vulcanizado.

De los cuatro grupos principales de elastómeros termoplásticos, los copolímeros de bloques de estireno son los que han mostrado mayor potencial para producir asfaltos modificados. Los copolímeros de estireno, llamados comúnmente cauchos termoplásticos, pueden ser producidos por una operación secuencia de sucesivas polimerizaciones de estireno-butadieno-estireno (SBS) o estireno-isopreno-estireno (SIS). Se pueden producir copolímeros lineales pero también en forma de estrella, radiales y ramificados. (Véase Figura 5). Los cauchos termoplásticos derivan su resistencia y elasticidad de su configuración ligada cruzada de las moléculas en una red en tres dimensiones. Eso se alcanza por la aglomeración de los bloques finales de poliestireno en dominios separados, como se muestra en la Figura 6, constituyendo la estructura ligada cruzada para una matriz tridimensional de polibutadieno o de polisopreno. Los bloques finales de poliestireno son los que le dan al polímero su resistencia y los bloques centrales los que le dan al material su excepcional elasticidad.

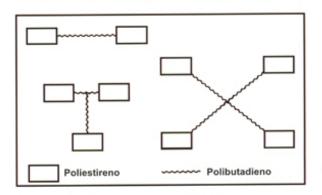


Figura 5. Cauchos termoplásticos
Fuente: BULL, A.L., VONK, W.C.
Thermoplastic elastomer and bitumen blends for roof and road

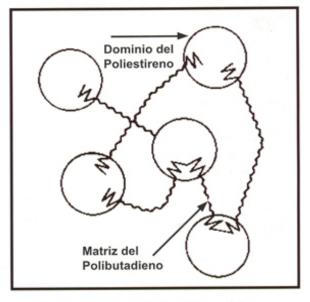


Figura 6. Estructura del caucho termoplástico Fuente: BULL, A.L., VONK, W.C. Thermoplastic elastomer and bitumen blends for roof and road

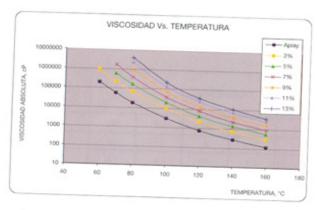


Figura 7. Curvas reológicas del asfalto base y de los asfaltos modificados con polímeros

La adición de cauchos termoplásticos a un asfalto, con un peso molecular similar o mayor que el de los asfaltenos, disturba la fase de equilibrio. El polímero y los asfaltenos compiten por el solvente de la fase de los maltenos, y si no hay suficientes maltenos, tarde o temprano, durante la mezcla o en servicio, habrá segregación de los asfaltenos y/o el polímero. Para esa situación se debe cuidadosamente un aditivo que es en realidad un aceite. Debido a la naturaleza del aceite, este es bien absorbido por el polímero e incide en las propiedades finales de la mezcla. El uso de un aceite con un grado de aromaticidad muy alto llevará a que se disuelvan los bloques finales de poliestireno y a inhibir la formación de la estructura de dominio que se necesita para endurecer la mezcla cuando vuelva a estar en temperaturas de servicio. El polímero mejora mucho la elasticidad del asfalto y de esa característica se derivan otros beneficios de su uso. También hay un incremento en la viscosidad, lo que se traduce en la reducción de la penetración y en el incremento del punto de ablandamiento. La combinación de asfalto y de polímero se debe seleccionar teniendo en cuenta las características de desempeño del pavimento.

La incorporación de un polímero a un asfalto es un proceso complejo. En general, puede decirse que, en una primera etapa, el polímero se dispersa en la masa del betún pero sin ejercer efectos importantes sobre sus propiedades. Posteriormente, las partículas del polímero absorben aceites de los maltenos, hinchándose de una manera importante, para dispersarse finalmente en forma molecular, siendo en esta etapa cuando realmente tienen lugar los cambios reológicos más significativos sobre el asfalto. La composición de los asfaltos tiene una importancia decisiva en las propiedades de los asfaltos modificados, en forma muy

especial en lo que concierne a la aromaticidad de los maltenos y al contenido de asfaltenos. Cuanto menor sea el contenido de asfaltenos de un asfalto, tanto más compatible será dicho asfalto con el polímero.

La buena dispersión del elastómero termoplástico depende primariamente de la rata de corte que aplique la mezcladora que se emplee en la elaboración del asfalto modificado. Cuando se añade el polímero, el asfalto penetra inmediatamente en las partículas del polímero, causando que los dominios de estireno se disuelvan y se hinchen. Una vez que eso ocurra, el nivel de corte aplicado en las partículas hinchadas es crítico si se pretende alcanzar una dispersión satisfactoria dentro de un período de mezcla razonable. Por eso es que para lograr que el polímero se disperse adecuadamente en el asfalto base, se requiere que se mezclen a niveles medios o altos de corte. La temperatura a la cual se mezclan el polímero y el asfalto base está limitada por la temperatura a la que se degrada el polímero. El proceso ideal para el proceso de mezcla será aquel que se realice a la menor temperatura posible para el menor tiempo posible.

Para este estudio, la dosificación de polímero de cada asfalto modificado se efectuó con respecto al peso de asfalto convencional a emplear, y la temperatura de mezclado del asfalto con el polímero se mantuvo entre los 170 y 180°C durante un tiempo de 3 a 4 horas con agitación constante. El tiempo mínimo adecuado de mezcla se determinó tomando periódicamente la viscosidad del asfalto hasta que ésta fuera prácticamente constante.

El primer paso para desarrollar los asfaltos modificados fue tomar una muestra de asfalto de Apiay. A medida que se aumentó el contenido de polímero, se observó: reducción de la penetración, menor susceptibilidad térmica, aumento de la viscosidad y del punto de ablandamiento.

Las viscosidades a diferentes temperaturas aumentan gradualmente a la vez que el porcentaje de polímero aumenta, como se puede observar en la Figura 7. Los resultados demuestran que a mayor porcentaje de polímero se necesita una mayor temperatura, para que el asfalto alcance el mismo estado de fluidez que un asfalto con menor cantidad de polímero, lo que evidentemente significa que las temperaturas de mezclado y compactación de las mezclas asfálticas se incrementan.

Se sabe que la viscosidad del asfalto para obtener una mezcla adecuada donde se cubra toda la superficie del agregado debidamente, debe estar entre 1.6 y 1.9 poises, y

Cuadro 2.	Caracterís	ticas	de lo	s asfa	ltos ı	ısado	s	
	CONVENCIONAL MODIFICADO						ADITIVADO	
A Company of the second	С	M1	M2	M3	M4	M5	M6	A
Contenido de polímero (%)	-	3	5	7	9	11	13	
Contenido de aditivo (%)	-	5	15	30	40	55	65	1,7
Penetración 100 g, a 25 °C, (0.1 mm)	72	66	84	117	124	150	147	75
Viscosidad cinemática a 135 °C, (sCt)	291,9	633,2	713,7	475,7	572,4	778,6	867,4	269,1
Punto de Ablandamiento (Anillo y Bola), (°C)	48,6	53,8	57,8	59,8	61,8	61,0	60,0	47,0
IP * (INV E-724)	-0,6	0,4	2,1	3,7	4,3	5,0	4,7	-1,0
Recuperación elástica por medio de ductilómetro, (%)	0	67,1	77,6	81,4	83,3	82,9	82,4	0
Peso específico a 25 °C	1,0177	1,0166	1,0159	1,0126	1,0105	1,0046	1,0008	1,0163
Penetración a 25 °C del residuo luego de RTFOT, (0.1 mm)	33	39	47	67	79	98	104	38
Pérdida de Masa, (%)	1,95	1,84	1,66	1,78	1,84	1,94	1,78	2,27
Penetración retenida, (%)	46	59	56	57	64	66	71	51
Punto ablandamiento del residuo luego de RTFOT, (°C)	58	62	63	65,8	65,0	63,5	62,0	55,5
Viscosidad absoluta a 60°C, (cP)	159000	412000	499000	482000	432000	193000	146000	135000
Viscosidad absoluta a 80 °C, (cP)	14167	31567	32500	24706	20636	16417	16133	12571
Viscosidad absoluta a 100 °C, (cP)	2420	5261	5400	4046	4175	3783	3912	2217
Viscosidad absoluta a 120 °C, (cP)	668	1322	1487	1270	1388	1350	1430	605
Viscosidad absoluta a 140 °C, (cP)	238	505	575	520	620	613	655	220
Viscosidad absoluta a 160 °C, (cP)	115	210	260	260	310	320	345	90
Viscosidad absoluta a 180 °C, (cP)	-	110	153	155	195	190	210	-

^{*} El término "Indice de Penetración" no es el indicado para asfaltos modificados, ya que por definición su uso se restringe a los asfaltos convencionales (newtonianos). Sin embargo, en este esstudio se emplea como un método empírico para demostrar la reducción de la susceptibilidad térmica de los asfaltos.

la temperatura para alcanzar esta viscosidad es lo conocido como temperatura de mezclado; en este caso, donde se trabaja con asfaltos modificados con diferentes porcentajes de polímero, se observan viscosidades superiores a 1.9 poises con temperaturas superiores a 160°C, lo que dificulta el proceso de mezclado, ya que son temperaturas altas difíciles de conseguir en planta; en otras palabras, el asfalto modificado con altas concentraciones de polímero se hace inmanejable. Además, teniendo en cuenta que el polímero se degrada a 180°C, la conclusión fue que para obtener un asfalto modificado que se pueda mezclar y compactar, es necesario adicionarle un aditivo que lo ablande (disminuya su viscosidad) hasta que sea trabajable. Para hacer los asfaltos modificados con diferentes porcentajes de polímero mezclables, se agregó un aditivo después de agregar el polímero. El procedimiento para determinar la concentración de aditivo necesaria para hacer mezclable cada asfalto modificado fue determinar su viscosidad absoluta a 160°C, y si la viscosidad resultaba ser muy superior a 1.9 poises (viscosidad óptima de mezclado) se aumentaba la concentración de aditivo.

En el Cuadro 2 se presentan las características de los asfaltos a emplear en las mezclas, también se incluyen las de un asfalto que se preparó sólo con aditivo (sin polímero), con el objeto de obtener información acerca del comportamiento del aditivo en los asfaltos desarrollados y en las mezclas.

En cuanto a la susceptiblidad térmica, se puede notar que el índice de penetración obtenido aumenta con el incremento del porcentaje de polímero en el asfalto, sin embargo el asfalto M6, presenta una leve reducción. Los asfaltos desarrollados tienen características de penetración y punto de ablandamiento muy diferentes. En términos generales, la penetración a 25°C y el punto de ablandamiento aumentan a medida_que se incrementa el contenido de aditivo. Las curvas reológicas muestran que, para alcanzar un misma viscosidad, los asfaltos modificados requieren de una temperatura mayor, lo que hace prever que las temperaturas de mezclado y compactación de los asfaltos modificados son superiores (más o menos 15°C) a las de los asfaltos convencional y

Cuadro 3. Recuperación elástica de los asfaltos						
ASFALTO	Recuperación elástica, (%)					
С	0					
M1	67,1					
M2	77,6					
М3	81,4					
M4	83,3					
M5	82,9					
M6	82,4					
M7	0					

Fotografía 1. Ductilidad modificada

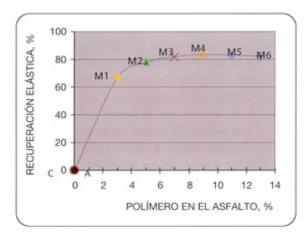


Figura 8. Recuperación elástica de los asfaltos

aditivado. Se evaluaron las características elásticas de los asfaltos mediante el ensayo de recuperación elástica por medio del ductilómetro (Foto 1). Los resultados obtenidos se presentan en Cuadro 3 y en la Figura 8.

Es claro que la recuperación elástica de los asfaltos aditivados modificados con polímero es muy superior a la del asfalto convencional, debido a que el polímero usado (SBS) se clasifica como elastómero, el cual se encarga de darle esta propiedad elástica al asfalto, en menor o mayor grado dependiendo del porcentaje de polímero añadido.

A partir de los datos obtenidos de penetración a 25°C y punto de ablandamiento se calculó mediante el programa BANDS 2.0, el módulo de rigidez o stiffness del asfalto, asumiendo un tiempo de aplicación de carga de 0.02 segundos y una temperatura de servicio de 20°C. Figura 9 se presentan los resultados de los stiffness calculados para los asfaltos aditivados modificados y para los asfaltos con polímeros. Se nota claramente que el aditivo tiene gran influencia sobre el stiffness de los cementos asfálticos, ya que para contenidos de aditivo mayores e iguales al 15% (asfaltos M2, M3, M4, M5 y M6) el stiffness disminuye considerablemente con respecto al asfalto base, al asfalto M 1 y a los asfaltos sin aditivos. Los ensayos practicados a los asfaltos para estudiar su durabilidad (RTFOT, penetraciones, pérdida de masa) demostraron el endurecimiento del asfalto, causado principalmente por el oxígeno que se combina con el asfalto. Se puede apreciar en las Figuras 10 y 11, que los asfaltos modificados mejoran la resistencia al envejecimiento del asfalto, ya que las penetraciones retenidas son superiores y las pérdidas de masa inferiores, respecto a las del asfalto base. Cabe destacar que el aditivo en el asfalto no es el que mejora la durabilidad del asfalto, ya que los ensayos demostraron que no hay una mejora apreciable en la penetración retenida y que la pérdida de masa es superior a la del asfalto base. Lo anterior indica que el polímero es el que actúa en el asfalto mejorando la resistencia al envejecimiento del asfalto.

Diseño de la mezcla

Para el diseño de las mezclas se realizaron diseños Marshall empleado el asfalto convecional de Apiay que se utilizó como base para los asfaltos modificados y el asfalto M 1. El procedimiento que se siguió es el descrito en la norma INV E-748.

Para la determinación de las temperaturas de mezclado y compactación se usaron las curvas de viscosidad absoluta vs. temperatura del asfalto, entrando con viscosidades de 170 cP y 280 cP, como lo recomienda el Instituto del Asfalto¹. Para la compactación de todas las briquetas de este estudio se usó un compactador Marshall mecánico, se

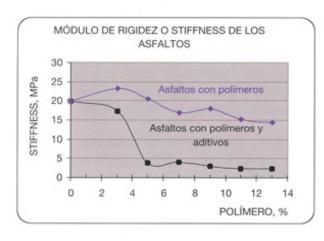


Figura 9. Stifffness de los asfaltos

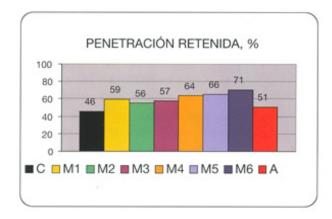


Figura 10. Penetración retenida de los asfaltos

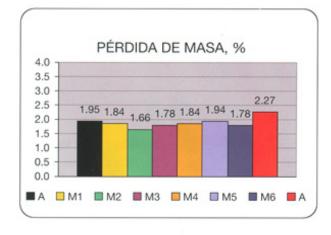


Figura 11. Pérdida de masa de los asfaltos

aplicaron 75 golpes en cada una de las caras según la especificación para TRÁFICO PESADO, con los martillos a caída libre. Para el cálculo del peso específico máximo se aplicó el método Rice.

Las mezclas densas en caliente se diseñaron siguiendo el método Marshall, aplicando los criterios de las especificaciones generales para la construcción de carreteras INVIAS (Artículo 450.4.2) que corresponden a un tráfico de diseño de 5x10⁵ a 5x10⁶ ejes equivalentes de 80 kN y a la construcción de capas de rodadura. Los porcentajes encontrados fueron de 6.1% para el asfalto modificado y de 6.4% para el asfalto convencional.

Se prepararon 8 tipos diferentes de mezclas, cada uno con un asfalto diferente. Para los asfaltos C y A se empleó un porcentaje de asfalto de 6,4% y para las mezclas que se fabricaron con los asfaltos M1, M2, M3, M4, M5, M6 se dosificó un porcentaje de asfalto de 6,1%. Se determinaron las propiedades Marshall de todas las mezclas. (Véase Cuadro 4).

4. Ensayos dinámicos

Con el fin de evaluar el comportamiento de las mezclas ante cargas cíclicas de tránsito, se sometieron a pruebas dinámicas en el Nottingham Asphalt Tester (NAT). Para estos ensayos se escogieron algunas de las mezclas preparadas con los asfaltos desarrollados.

4.1 Deformación permanente

Para conocer el comportamiento de una mezcla en la vía, uno de los aspectos que se requiere determinar es la resistencia a la deformación permanente. En esta investigación se empleó un método en el que se aplica una carga uniaxial cíclica sin confinamiento (Repeated Load Axial Test o RLA). El procedimiento a seguir en estos ensayos es el descrito en la norma europea prEN 12697-25 de Julio de 2000. Los asfaltos seleccionados para estos ensayos fueron el asfalto convencional C, el asfalto aditivado A y los asfaltos modificados M1, M3 y M 5. La temperatura a la cual se ejecuta este ensayo es de 40°C ± 1°C. Inicialmente, se le aplica a la briqueta una precarga de 10±1kPa durante 10 min, a continuación se inicia la aplicación de carga periódica de 100 kPa. La deformación axial final al terminar el ensayo se toma como la medida de la resistencia de la mezcla a la deformación permanente. Se realizaron 2 ensayos por cada uno de los 5 tipos de mezcla y finalmente se tomó el promedio de las dos medidas de resistencia a la deformación permanente. Los datos obtenidos en los ensayos de RLA se muestran en el Cuadro 5.

Cua	idro 4. Pi	ropiedad	es Ma	rshall de	las mezcla	as
ASFALTO	POLIMERO	VACIOS CON AIRE %	VAM %	PESO UNITARIO (kg/m³)	ESTABILIDAD CORREGIDA (kg)	FLUJO (mm)
С	0	5.1	15.3	2155	1029	2.2
M1	3	4.6	15.2	2153	1016	2.4
M2	5	4.1	14.9	2158	1375	2.7
МЗ	7	3.9	16.2	2125	891	3.4
M4	9	4.4	15.5	2144	1225	2.8
M5	11	4.6	14.3	2175	1132	2.7
M6	13	5.0	15.4	2147	1018	3.1
Α	0	4.7	15.6	2151	1176	2.5

Hay que tener en cuenta que, si se toma como referencia la deformación a 3600 pulsos, se podría decir que el asfalto aditivado es más resistente a la deformación permanente que el asfalto convencional, sin embargo, si se toma en cuenta que la pendiente de la recta que corresponde al asfalto aditivado es mayor que la del asfalto convencional, para un número mayor de ciclos, el asfalto convencional tendrá más resistencia a la deformación permanente. Adicionalmente, los asfaltos modificados son los que se comportan mejor en los ensayos de deformación permanente.

4.2 Módulos dinámicos

El NAT permite determinar los módulos dinámicos de dos maneras diferentes, una por deformación controlada (Indirect Tensile Stiffness Modulus) y la otra por esfuerzo controlado (Indirect Tensile Stiffness Test o ITST). Para el desarrollo de este estudio se encontraron los módulos mediante ensayos de ITST a una frecuencia de 2,5 Hz y una temperatura de 20°C, variando los niveles de esfuerzo (50kPa, 100kPa, 150kPa, 400kPa, 450kPa y 500kPa). Se usó como referencia para la realización de estos ensayos la normativa europea prEN 12697-23. Las mezclas seleccionadas fueron las preparadas con el asfalto convencional C, el asfalto aditivado A y los asfaltos

	C	uadro 5	. Resul	tados d	e ensay	os RLA	8		
	ASFALTO EMPLEADO EN MEZCLA								
Número de ciclos de carga	С	С	M1	M1	M3*	M5	M5	Α	Α
cicios de carga	DEFORMACION, %								
10	0,5776	0,5284	0,4206	0,3880	0,4385	0,4717	0,4162	0,4630	0,4725
100	0,7610	0,7012	0,5726	0,5114	0,5499	0,5879	0,5337	0,6035	0,6504
1000	1,0175	0,9072	0,7814	0,6577	0,7149	0,7677	0,7037	0,8179	0,9158
1400	1,0619	0,9371	0,8106	0,6803	0,7409	0,7977	0,7308	0,8583	0,9575
1800	1,0999	0,9599	0,8344	0,6936	0,7622	0,8175	0,7506	0,8891	0,9904
3600	0,2162	1,0290	0,9056	0,7367	0,8191	0,8831	0,8098	0,9909	0,0960

^{*} De este tipo de mezcla se hicieron 2 ensayos de los cuales se descartó uno por problemas durante la ejecución del ensayo.

		Cuadro 6 Er	sayos ITST			
ASFALTO	TEMPERATURA °C	FRECUENCIA	ESFUERZO	STIFNESS MPa		STIFNESS MPa
	C	Hz	kPa	Diámetro 1	Diámetro 2	Promedio
С	20	2,5	50	3236	3111	3174
С	20	2,5	100	3158	2844	3001
С	20	2,5	150	2680	2675	2678
M1	20	2,5	50	3618	3598	3608
M1	20	2,5	100	3907	3835	3871
M1	20	2,5	150	3573	3376	3475
М3	20	AC	50	1294	1214	1254
М3	20	2,5	100	1122	1083	1103
М3	20	2,5	150	935	931	933
M5	20	2,5	50	229	211	220
M5	20	2,5	100	229	198	214
M5	20	2,5	150	198	214	206
Α	20	2,5	50	3036	2919	2978
Α	20	2,5	100	2919	2814	2867
Α	20	2,5	150	2474	2393	2434
С	20	AC	400	2269	2553	2411
С	20	2,5	450	2730	2479	2605
С	20	2,5	500	2374	2220	2297
M1	20	2,5	400	3104	3058	3081
M1	20	2,5	450	2894	3112	3003
M1	20	2,5	500	2484	2719	2602
M2	20	2,5	400	2202	1976	2089
M2	20	2,5	450	1964	2066	2015
M2	20	2,5	500	1969	1889	1929
Α	20	2,5	400	2366	2444	2405
Α	20	2,5	450	2175	2342	2259
Α	20	2,5	500	2495	2478	2487

modificados M1, M3 y M5. Adicionalmente, para los ensayos posteriores de fatiga se determinaron módulos adicionales de la mezcla hecha con asfalto M2.

En el Cuadro 6 se puede observar un resumen de los ensayos ITST que se realizaron. Ya que este ensayo no es destructivo, se usaron las mismas briquetas para determinar los módulos en diferentes condiciones. El orden que se siguió para la ejecución de los ensayos fue de menor a mayor nivel de esfuerzo.

En las Figuras 12 y 13 se indican las magnitudes de las variaciones de los módulos con respecto a los módulos de la mezcla con asfalto convencional (que fue el asfalto base para la fabricación de los otros asfaltos). La disminución de los módulos es exagerada (hasta del 93%) en el caso de

las mezclas con asfalto M3 y M5. Por el contrario, los módulos correspondientes a la mezcla del asfalto modificado M1 son los únicos que se incrementan, aunque en un porcentaje no mayor del 30%.

4.3 Fatiga

Aparte de la resistencia a la deformación permanente, es necesario, para conocer el comportamiento de las mezclas ante cargas cíclicas, evaluar su resistencia al fisuramiento por fatiga. El procedimiento para la realización del ensayo, está bajo parámetros establecidos por la *British Standard DD ABF (Method for the determination of the fatigue characteristics of bituminous mixtures using indirect tensile fatigue-ITFT)*, de junio de 1997.

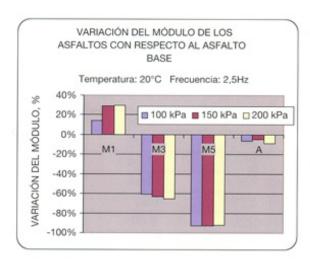


Figura 12. Variación de los módulos con respecto a los de la mezcla con asfalto convencional

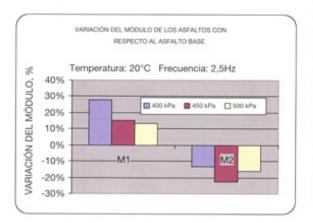


Figura 13. Variación de los módulos con respecto a los de la mezcla con asfalto convencional

El ensayo se llevó a cabo para las briquetas donde se usaron los asfaltos C, M1, M2 y A. Los niveles de esfuerzo aplicados fueron de 400, 450 y 500 kPa, a una temperatura de 20° C y una frecuencia de 2.5 Hz. Se ensayaron dos briquetas por cada nivel de esfuerzo, para un total de 24 ensayos de fatiga realizados. Se calculó la máxima deformación horizontal (e_{χ}) generada en el centro de la briqueta (microstrain), mediante la siguiente expresión unitaria:

$$\varepsilon_{x, \text{ max}} = \frac{\sigma_{x, \text{ max}} \times (1 + 3v)}{S_{m}} \times 1000$$

Donde:

 σ_{χ} , $m \acute{a}_{\chi}$,: esfuerzo máximo de tracción aplicado en el centro de la briqueta (en kPa)

v: es la relación de Poisson (se asume 0.35)

 ${\rm S}_m$: corresponde al stiffness modulus de la mezcla al $\sigma_{\chi},$ $_{\rm máx}$ (en MPa).

Los datos de resistencia a la fatiga fueron tabulados en el Cuadro 7 que se presenta adelante. Se graficó la deformación unitaria máxima horizontal (ε_x , máx), contra el número de ciclos a los cuales se presentó la falla del espécimen (Nf), usando, en ambos ejes, escala logarítmica. (Véase Figura 14). A los datos log₁₀(e_x, máx) y log10(Nf) se les aplicó un análisis de regresión lineal usando el método de los mínimos cuadrados. Se observa que, al comienzo, el comportamiento del asfalto M1 es mejor que el de el de todos los otros asfaltos; sin embargo, a mayores solicitaciones de carga, el C termina presentando una mejor respuesta. Se graficó el esfuerzo máximo de tracción σ_{χ} , máx contra el número de ciclos a los cuales se presentó la falla del espécimen (Nf). (Véase Figura 15). En cuanto a la capacidad por fatiga, se presentan modelos lineales. El desplazamiento de las rectas hacia arriba indica una mejor respuesta de la mezcla a las tensiones. Se observa que para una misma solicitación la mezcla del asfalto M1 tiene un mejor comportamiento a la fatiga producida por las repeticiones de carga en comparación al resto de las mezclas. Al comienzo, el comportamiento del asfalto A es mejor que el de el M; sin embargo, a mayores solicitaciones de carga, el M2 termina presentando una mejor respuesta.

4. Conclusiones

En este trabajo se encontró que al adicionarle al asfalto convencional de la refinería colombiana de Apiay, polímero SBS en contenidos del 3% o más en peso, el asfalto se hace más consistente y rígido, afectando su grado de manejabilidad; por lo que es necesario adicionarle aditivos. El incremento en su consistencia es mayor cuando el porcentaje de polímero sobrepasa el 5%, lo que se traduce en adiciones altas, que afectan de manera importante el módulo de rigidez de los asfaltos, produciendo, así mismo unos módulos dinámicos bajos y un comportamiento en las pruebas de fatiga menos bueno. Esto conlleva a la adición de un aditivo aceitoso, con el fin de preservar la trabajabilidad del ligante.

Si se empleara un asfalto base con una menor consistencia, no sería necesario usar tanta cantidad de aditivo para mejorar la manejabilidad del asfalto modificado con polimero, lo cual representaría una disminución importante de gastos en la fabricación de asfaltos modificados con SBS.

Los asfaltos modificados desarrollados tienen una menor susceptibilidad térmica que el asfalto base y una mayor consistencia. El aumento en concentración del modificador mejora la resistencia a las deformaciones plásticas que se pueden presentar a altas temperaturas, a juzgar por el incremento del punto de ablandamiento. También mejora la elasticidad del asfalto: sin embargo, después de adicionarle 5%, la recuperación elástica no se incrementa de manera significativa.

Otra influencia de la adición del polímero es que su consistencia a temperaturas altas de servicio es mayor, lo que incide en que las temperaturas de mezclado y compactación sean mayores, y por tanto, el asfalto en su utilización sea sometido a un proceso de oxidación más crítico. Sin embargo, se comprobó, en los ensayos de durabilidad, que la presencia del polímero en los asfaltos modificados, mejora durabilidad del asfalto.

Cuadro 7. Resultados de Fatiga						
ASFALTO	ESFUERZO (kPa)	S _m (MPa)	CICLOS PARA LA FALLA N _f	με _{x, ma}		
C	400	2411	2219	340		
С	400	2411	2706	340		
С	450	2605	1134	354		
С	450	2605	1154	354		
С	500	2297	687	446		
С	500	2297	970	446		
M1	400	3081	2581	266		
M1	400	3081	2898	266		
M1	450	3003	1461	307		
M1	450	3003	1585	307		
M1	500	2602	714	394		
M1	500	2602	1170	394		
M2	400	2089	643	393		
M2	400	2089	556	393		
M2	450	2015	386	458		
M2	450	2015	274	458		
M2	500	1929	210	531		
M2	500	1929	214	531		
Α	400	2405	711	341		
A	400	2405	669	341		
A	450	2259	421	408		
Α	450	2259	565	408		
A	500	2487	535	412		
А	500	2487	405	412		

Adicionalmente, los asfaltos modificados presentan una menor pérdida de masa, por lo que mejoran la adhesividad; a pesar de que un aumento en la viscosidad del asfalto por pérdida de componentes volátiles, debido a las condiciones de temperatura de mezclado, conduce a la disminución de sus propiedades adherentes.

La mezcla del asfalto M1 tiene un mayor módulo dinámico, lo que permite establecer que se disminuye el riesgo de ahuellamiento. Consecuentemente con esto, se comprobó que los asfaltos modificados mejoran la resistencia a la deformación permanente.

De todas las mezclas sometidas a los ensayos dinámicos (RLA, módulos dinámicos y fatiga), la que presentó mejor comportamiento fue la mezcla del asfalto M1. Sin embargo, hay que aclarar que consecuentemente con la normativa para asfaltos modificados con polímero SBS de la AASHTO, el uso del asfalto M1 no es recomendable en climas fríos debido a su rigidez.

Se pudo determinar, según el ensayo de fatiga, que las mezclas fabricadas con asfalto aditivado A son las primeras en presentar fisuramientos ante solicitaciones normales de carga; además es la mezcla que presenta la recta con mayor pendiente en los resultados de deformación permanente, lo cual implica una tendencia mayor a

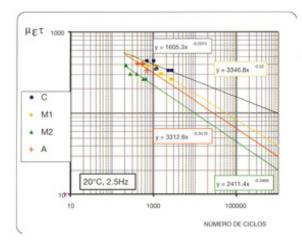


Figura 14. Ley de Fatiga (2,5 Hz, 20 °C)

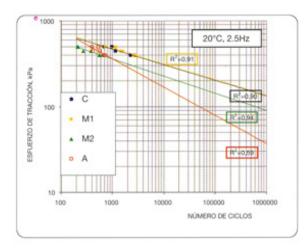


Figura 15. Ley de Fatiga (2,5 Hz, 20°C)

presentar problemas de ahuellamientos en un mediano plazo.

Este trabajo determinó que el uso de los asfaltos modificados puede traer importantes beneficios, sin embargo, es importante considerar que para su uso se deben tener en cuenta las características de desempeño del pavimento (deformación, módulos dinámicos y fatiga), de la mano con las circunstancias específicas del proyecto; y que cualquier uso de aditivos tiene una influencia directa en el desempeño del asfalto en la mezcla y en consecuencia en su comportamiento en la vía. Además, es importante señalar que aunque este trabajo proporciona una información técnica valiosa, para el futuro uso de los asfaltos modificados es necesario profundizar en otros aspectos que inciden en las propiedades del asfalto.

Bibliografía

AASHTO; AGC y ARTBA. **Guide Specifications Polymer Modified Asphalt**. Washington, D.C.: AASHTO, 1992. 18 p.
ARENAS, Hugo León. **Tecnología del Cemento Asfáltico**.
Cali : Fundación para Actividades de Investigación y Desarrollo, 1999. 299 p.

ASPHALT SEMINAR. (1992: Bucaramanga). Characterization of Asphalt in Paving Materials. p. A1-Z2.

BRITISH STANDARD INSTITUTION. Method for the determination of the fatigue characteristics of bituminous mixtures using indirect tensile fatigue.

London: BSI, 1997. 14 p. il. (DD ABF)

COOPER RESEARCH TECHNOLOGY LIMITED. HY10 Users

Manual. CRT, 1999.

CHUA, Roon y ROO, Myung. Comprehensive Characterization of Performance-Related Properties of Asphalt Concrete Mixtures Through Dynamic Testing. En: HUBER, Gerald y DECKER, Dale. Engineering Properties of Asphalt Mixtures and the Relationship to their Performance. Philadelphia: ASTM, 1995. p. 213-229.

DAVIS, Richard. Engineering Properties of Asphalt Mixtures and their Relationship to Performance. En: HUBER, Gerald y DECKER, Dale. Engineering Properties of Asphalt Mixtures and the Relationship to their Performance. Philadelphia: ASTM, 1995. p. 111-127.

ECOPETROL. Cartilla práctica para el manejo de los Asfaltos Colombianos. Instituto Colombiano del Petróleo, 1999. EUROPEAN STANDARD. Bituminous mixtures — Test methods for hot mix asphalt. Brussels : CEN, 2000. (pREN 12697).

INSTITUTO NACIONAL DE VIAS. Normas de Ensayo de Materiales para Carreteras. Bogotá: INV, 1996.

LEAHY, Rita; MONISMITH, Carl y LUNDY, James. Performance-Based Properties of Asphalt Concrete Mixes. En: HUBER, Gerald y DECKER, Dale. Engineering Properties of Asphalt Mixtures and the Relationship to their Performance. Philadelphia: ASTM, 1995. p. 37-53.

MONTEJO, Alfonso. Ingeniería de Pavimentos para Carreteras. SantaFé de Bogotá, D.C.: Universidad Católica de Colombia, 1998. Nottingham Asphalt Tester Course Notes. 35 p.

NORMAS DE ENSAYO. Annual Book of ASTM Standard. 1996.
NOURELDIN, A.S. Long Term Performance of Asphalt
Cement Binders: A Dual View. En: HARDIN, John. Physical
Properties of Asphalt Cement Binders. Philadelphia: ASTM, 1995.
p. 154-174.

SANTAGATA, K. y BASSANI, M. Improved use of the repeated load indirect tensile test. En: EUROPEAN SYMPOSIUM (3°: 1999: Leeds). Performance and Durability of Bituminous Materials and Hydraulic Stabilised Composites, 1999. p. 493-516. SUCH, Christian. Asfaltos Modificados. Taller de transferencia de tecnología. Bogotá: Pontificia Universidad Javeriana, 1995. UNIVERSITY OF NOTTINGHAM. Residential Course on Bituminous Pavements: Materials, Design and Evaluation. Nottingham, 1996. p. A1-M11.

ASPHALT SEMINAR. (1992: Bucaramanga). Characterization of asphalt in paving materials. Bucaramanga:PETRO-CANADA, 1992. p. E-7.