Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos Científicos

Vol. 25 Núm. 44 (2023): Revista 44, Enero - Diciembre 2023

Evaluación físico-mecánica de las mezclas asfálticas mediante la adición de aceite reciclado de motor

DOI:
https://doi.org/10.15517/41jknc20
Enviado
diciembre 2, 2025
Publicado
2025-12-02

Resumen

El presente estudio se desarrolló de forma experimental, aplicado al diseño de una mezcla asfáltica en caliente (MAC). Se buscó mitigar el impacto negativo en el medio ambiente generado por los aceites reciclados de motor (ARM) o comúnmente llamados aceites quemados que, por lo general, son eliminados a la intemperie. Es así que se adicionó ARM en porcentajes de acuerdo con PEN 60/70 de la mezcla patrón, planteándose el objetivo determinar las propiedades físico-mecánicas de la mezcla asfáltica modificada y evaluar si esta satisface los estándares que exigen las normas. Se evaluó mediante la metodología Marshall una población total de 135 briquetas que incluyen las mezclas asfálticas modificadas con 0,5 %, 1,5 %, 2,5 % y 3,5 % de aceite reciclado. Se determinó que el porcentaje óptimo de asfalto es de 5,75 %, ensayado a temperaturas de 120 °C y 130 °C. Se concluye que la incorporación de ARM en la mezcla asfáltica mejora sus propiedades físico-mecánicas (rigidez, flujo, estabilidad) y asegura el cumplimiento de los parámetros mínimos de una MAC.

Referencias

  1. ASTM (2001a). Flat particles, elongated particles, or flat an elongated particles in coarse aggregate (ASTM D-4791). West Conshohocken: ASTM International.
  2. ASTM (2001b). Práctica estándar para el muestreo de mezclas de pavimento bituminoso (ASTM D979-01). West Conshohocken: ASTM International.
  3. Castillo, S., Yamasqui, R., y Areche, J. (2021). Comportamiento de las propiedades mecánicas de material reciclado de mezcla asfáltica con aceite de motor. Polo del Conocimiento, 6(10), 627-648. DOI:10.23857/pc.v6i10.3228
  4. Del Castillo, R., y Orobio, A. (2020). Investigación exploratoria sobre el efecto del aceite de motor usado en el suelo fino de subrasante. Informes de la Construcción, 72(558), e336. DOI: 10.3989/ic.69016
  5. Fox, M. (2016). The marketing, distribution and use of petroleum fuels. Enviromental Technology in the Oil Industry. En: Orszulik, S. (eds) Environmental Technology in the Oil Industry (pp. 393 – 437). Springer. DOI: 10.1007/978-3-319-24334-4_12
  6. Mohi Ud Din, I., y Mohammad, S. M. (2021). Laboratory study on the use of reclaimed asphalt pavement and copper slag in warm mix asphalt pavements using waste engine oil as a rejuvenator. International Journal of Pavement Research and Technology, 15, 547-559. DOI: 10.1007/s42947-021-00036-y
  7. Ivshina, I., Kuyukina, M., Krivoruchko, A., Elkin, A., Makarov, S., Cunnigham, C., Peshkur, T., Atlas, R., Philip, J. (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes and Impacts, 17(7), 1201-1219. DOI: 10.1039/c5em00070j
  8. Jia, X., Huang, B., Moore, J., y Zhao, S. (2015). Influence of waste engine oil on asphalt mixtures containing reclaimed asphalt pavement. Journal of Materials in Civil Engineering, 27(12), 1-9. DOI: 10.1061/(ASCE)MT.1943-5533.0001292
  9. Kaplan, E., Kayadelen, C., Ozturk, M., y Oñal, Y. A. (2022). Experimental evaluation of the usability of palm tree pruning waste (PTPW) as an alternative to geotextile. Revista de la Construcción, 21(1), 69-82. DOI: 10.7764/RDLC.21.1.69
  10. Li, J., Yu, M., Cui, X., y Wang, W. (2019). Properties and components of recycled engine oil bottom rejuvenated asphalt and its grey relationship analysis. Advances in Materials Science and Engineering, 19(1), 1-12. DOI: 10.1155/2019/2462487
  11. Li, H., Zhang, F., Feng, Z., Li, W., y Zou, X. (2020). Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture. Construction and Building Materials, 276, 1-14. DOI: 10.1016/j.conbuildmat.2020.122138
  12. Lopera, C., y Córdova, J. (2013). Warm mix asphalt design from mix asphalt and crude palm oil. Dyna, 80(179), 99-108. Recuperado de http://www.scielo.org.co/pdf/dyna/v80n179/v80n179a11.pdf
  13. López, J., Allauca, F., Veloz, F., Zambrano, T., y Guilcapi, J. (2021). Energy recovery of the lubricating oil used in thermal combustion systems of the ecuadorian cement industry. Revista Digital Novasinergia, 1(2), 60-69. DOI: 10.37135/unach.ns.001.02.07
  14. Mamun, A., Al-Abdul Wahhab, H.I. y Dalhat, M.A. (2020). Comparative evaluation of waste cooking oil and waste engine oil rejuvenated asphalt concrete mixtures. Arabian Jounal Science and Engineering, 45, 7987–7997. DOI: 10.1007/s13369-020-04523-5
  15. Modibbo, S., Hartadi , M., Napiah, M., Usman, A., Batari, A., Yusri, M., y Aliyu, N. (2021). Optimization of rubber seed oil content as bio-oil rejuvenator and total water content for cold recycled asphalt mixtures using response surface methodology. Case Studies in Construction Materials, 15, e00561. DOI: 10.1016/j.cscm.2021.e00561
  16. Quillos, S., Calderon, L., Escalante, N., y Nahui, J. (2021). Effect of the discharge of residual oils on the quality of the soil in the automotive workshops of the City of Chimbote. Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 23, 1-8. DOI: 10.18687/LACCEI2021.1.1.246
  17. Sanchez, X., y Tighe, S. (2018). Steps towards the detection of reclaimed asphalt pavement in superpave mixtures. Road Materials and Pavement Design, 20(5), 1201-1214. DOI: 10.1080/14680629.2018.1428218
  18. Taherkani, H., y Noorian, F. (2021). Investigating the Creep and Fatigue Properties of Recycled Asphalt Concrete Containing Waste Engine and Waste Cooking Oil. Proceedings of the RILEM International Symposium on Bituminous Materials. ISBM 2020. RILEM Bookseries, vol. 27. DOI: 10.1007/978-3-030-46455-4_146
  19. Thomas, C., Nsonwu, A., Usoro, C., Agoro, E., y Idenyi, A. (2021). Hepato-renal toxicities associated with heavy metal contamination of water ources among residents of an oil contaminated area in Nigeria. Ecotoxicology and Enviromental Safety, 212, 111988. DOI: 10.1016/j.ecoenv.2021.111988
  20. Xiao, Y., Wang, W., Wang, W., y Yuan, D. (2021). Viscoelasticity evaluation of regenerated asphalt containing waste engine oil based on rheological analysis. Earth and Environmental Science, 643(1), 1-9. DOI: 10.1088/1755-1315/643/1/012075
  21. Yuan, L., Gao, Y. C., y Cheng, F. (2022). The influence of oil exploitation on the degradation of vegetation: A case study in the Yellow River Delta Nature Reserve, China. Environmental Technology & Innovation, 28, 102579. DOI: 10.1016/j.eti.2022.102579

Descargas

Los datos de descarga todavía no están disponibles.