Agronomía Mesoamericana
Artículo científico
Volumen 33(2): Artículo 46407, 2022
e-ISSN 2215-3608, doi:10.15517/am.v33i2.46407
https://revistas.ucr.ac.cr/index.php/agromeso/index
Mónica Blanco-Meneses2
1 Recepción: 19 de julio, 2021. Aceptación: 18 de noviembre, 2021. Este trabajo formó parte de los datos generados a partir del proyecto inscrito en Vicerrectoría de Acción Social ED2811, Universidad de Costa Rica.
2 Universidad de Costa Rica, Facultad de Ciencias Agroalimentarias, Centro de Investigaciones en Protección de Cultivos, San José, Costa Rica. monica.blancomeneses@ucr.ac.cr (https://www.orcid.org/0000-0003-2642-3899).
Introducción. El Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección (LTM), Centro de Investigación en Protección de Cultivos, Universidad de Costa Rica; recibe cultivos agrícolas, ornamentales y forestales para la identificación de microorganismos por medio de técnicas moleculares. Objetivo. Identificar con técnicas moleculares hongos, oomicetes y protozoa patogénicos y no patogénicos en cultivos agrícolas, ornamentales y forestales de Costa Rica. Materiales y métodos. Entre los años 2009 y 2018, se recibieron partes de plantas (raíz, tallo, hojas, frutos) y otros materiales como agua, sustrato y suelo, de los cuales se obtuvieron 805 aislamientos para identificación de microorganimos por mediante técnicas de extracción de ADN, PCR en tiempo final y en tiempo real y secuenciación mediante marcadores moleculares. Resultados. La secuenciación permitió la identificación de un total de 154 especies de hongos, 6 oomicetos y 1 protozoa. Dentro de los hongos identificados predominaron géneros como Fusarium con catorce especies diferentes, seguidos de Colletotrichum y Aspergillus con once especies identificadas para cada uno. En los oomicetes, prevalecieron especies del género Phytophthora y dentro de los protozoa el género Plasmodiophora. Además, las referencias científicas que respaldan la presencia de los microorganismos identificados en un cultivo en particular, han sido incluidas dentro de la información. Conclusión. Fue posible identificar mediante técnicas moleculares especies de hongos, oomicetos y protozoa patogénicos y no patogénicos aislados de diferentes cultivos agrícolas, ornamentales y forestales en Costa Rica.
Palabras clave: hongos, oomicetos, protozoa.
Introduction. The Laboratory of Molecular Techniques applied to Phytoprotection (LTM), Crop Protection Research Center, Universidad de Costa Rica; receives agricultural, ornamental, and forest crops for the identification of microorganisms using molecular techniques. Objective. To identify pathogenic and non-pathogenic fungi, oomycetes, and protozoa in agricultural, ornamental, and forest crops in Costa Rica by molecular methods. Materials and methods. Between 2009 and 2018, plant parts (root, stem, leaves, fruits) and other materials such as water, substrate, and soil were received. A total of 805 isolates were obtained for identification of microorganisms by DNA extraction techniques, end-time and real-time PCR and sequencing using molecular markers. Results. The sequencing allowed the identification of a total of 154 species of fungi, 6 oomycetes, and 1 protozoa. Among the fungi identified, genera such as Fusarium predominated with fourteen different species, followed by Colletotrichum and Aspergillus with eleven species identified for each one. In the oomycetes, species of the genus Phytophthora prevailed, and within the protozoa the genus Plasmodiophora. In addition, the scientific references supporting the presence of the microorganisms identified in each particular crop have been included in the information. Conclusion. It was possible to identify by molecular techniques pathogenic and non-pathogenic fungi, oomycetes and protozoa species isolated from different agricultural, ornamental and forest crops in Costa Rica.
Keywords: fungi, oomycetes, protozoa.
La ciencia que estudia las enfermedades de las plantas se denomina fitopatología. Los agentes causales que propician la aparición de enfermedades en plantas son microorganismos patogénicos, tales como virus, viroides, bacterias, hongos, protozoa y nematodos, que pueden causar daños de hasta un 31-42 % de pérdidas en la producción, junto con los insectos y las malezas (Agrios, 2005). Otros microorganismos no patogénicos cumplen otras funciones en suelos y sistemas agrícolas tales como biocontroladores o generadores de compuestos de uso alimenticio, farmacéutico, textil, químico, agrícola o industrial (Bisen, 2014).
En el Centro de Investigación en Protección de Cultivos (CIPROC) de la Universidad de Costa Rica, se encuentra el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección (LTM-CIPROC), que inició en el año 2009, con el desarrollo de técnicas moleculares relacionadas a la detección e identificación de microorganismos, por técnicas como la PCR (Polymerase Chain Reaction, por sus siglas en inglés) punto final y PCR tiempo real (qPCR). Ambas sirven para amplificar las hebras de ADN y determinar la presencia o ausencia de fragmentos específicos por medio de marcadores moleculares (Schena et al., 2004; Schoch et al., 2012). La secuenciación, permite traducir fragmentos de genes y regiones génicas o intergénicas en un código conformado por bases nucleotídicas que, al compararse con fragmentos conocidos, permiten su identificación (Soltis et al., 2009).
El objetivo de esta investigación fue identificar con técnicas moleculares hongos, oomicetes y protozoa patogénicos y no patogénicos en cultivos agrícolas, ornamentales y forestales de Costa Rica.
El material analizado se recibió entre los años 2009 y 2018, en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección (LTM), Centro de Investigación en Protección de Cultivos (CIPROC), Universidad de Costa Rica, dentro del proyecto de Acción Social ED2811: Clínica de Diagnóstico en Técnicas Moleculares aplicadas a la Fitoprotección. Se recibieron partes de plantas (raíz, tallo, hojas, frutos) y otros materiales como agua, sustrato y suelo, para identificación de microorganismos (80 % por secuenciación y 20 % por PCR tiempo final), se obtuvo un total de 805 aislamientos. Las partes vegetales se transportaron al laboratorio antes de que cumplieran 24 h y de ser posible en condiciones de frío. Los aislamientos se procesaron una vez que los hongos u oomicetos tenían el tamaño adecuado. En este trabajo se presentan los resultados generados a partir de aislamientos de hongos, oomicetos y protozoa, según metodología de Fench & Hebert (1980). Para cada una de estas muestras se guardó un registro, con datos relacionados al cultivo hospedante, localidad y fecha de ingreso.
La extracción de ADN se realizó con la metodología CTAB y algunas modificaciones en el proceso de maceración se hicieron con base en la muestra utilizada (Murray & Thompson, 1980) para la extracción de ADN de diferentes organismos biológicos como: aislamientos de hongos, oomicetos y levaduras (maceración con taladro y pistilo a partir del micelio), y de otros materiales como tejido vegetal (maceración con rotor, taladro/pistilo), sedimentos en agua (centifugación repetitiva) y soportes (ej. fibra de coco) (rompimiento con fuerza mecánica). En el caso del plasmodio u organismos obligados, el ADN se extrajo del tejido vegetal (por maceración mecánica). En el caso de suelo, se utilizó el Nucleospin Soil de Macherey-Nagel o el Soil DNA Isolation Kit de Norgen Biotek.
La amplificación del ADN se llevó a cabo con diferentes marcadores moleculares, para hongos y oomicetos se utilizó la región del ITS del ADN ribosomal (ITS4: 3´-TCCTCCGCTTATTGATATGC-5´, ITS5:3´-GGAAGTAAAAGTCGTAACAAGG-5´) (White et al., 1990) y el EF-1α (EF1: 3´-ATGGGTAAGGA(A/G)GACAAGAC-5´, EF2:3´-GGA(G/A)GTACCAGT(G/C)ATCATGTT-5´) (Nitschke, 2009), en el caso de Colletotrichum spp. se utilizó el ITS, el gliceraldehido 3-fosfato deshidrogenasa (GAPDH) (GDF: 3´-GCCGTCAACGACCCCTTCATTGA-5´, GDR: 3´GGGTGGAGTCGTACTTGAGCATGT) y el Apn2-Mat1-2 espaciador intergénico parcial (ApMat) (AMF: 3´-TCATTCTACG TATGTGCCC, AMR: 3´-CCAGAAATACACCGAACTTGC-5´) (Ruiz, 2016). En el caso de protozoa y otros microorganismos, la identificación se hizo a partir de marcadores patógeno-específicos, para Plasmodiophora brassicae (TCIF: 3´-GTGGTCGAACTTCATTAAATTTGGGCTCTT-5´, TCIR:3´-TTCACCTACGGAACGTATATGTGCATGTGA-5´) (Cao et al., 2007) y Phytophthora spp. (I2: 3´-GATATCAGGTCCAATTGAGATGC-5´, A2:3´-TTCACCTACGGAACGTATATGTGCATGTGA-5´) (Drenth et al., 2006). La reacción de amplificación y el perfil térmico se utilizan de forma regular para amplificar ADN proveniente de cualquier tipo de microorganismo (Blanco-Meneses & Ristaino, 2011). Los productos de amplificación se separaron en un gel de agarosa al 0,8 % con GelRed (Biotium) a 0,5 µg mL-1 para la tinción y buffer TBE, y se compararon con un marcador de peso molecular de 100 bp (ThermoScientific). La presencia de bandas se visualizó con luz ultravioleta.
Los productos de la PCR con bandas nítidas, únicas y con el peso molecular correcto, se purificaron con la Exonucleasa I (ThermoScientific). La secuenciación se realizó en la empresa Macrogen Inc. (Korea del Sur) a partir del producto de PCR a una concentración de 50 ng µL-1 por medio de secuenciación de Sanger (Sanger et al., 1977). Las secuencias se alinearon y editaron manualmente con el BioEdit Sequence Alignment Editor versión 7.0.5.3 (Hall, 1999). La hebra consenso se utilizó para verificar la similitud en buscadores como Nucleotide Blast del Gen Bank, EPPO-Q-bank, NCBI, Fusarium ID y MycoBank, con el empleo de la colección de nucleótidos y la opción de material tipo de ser posible (Federhen, 2015). Se utilizaron similitudes mayores al 96 % y para valores menores se seleccionaron marcadores más específicos.
De las muestras totales recibidas para la secuenciación de microorganismos, 154 identificaciones fueron para hongos, seis fueron oomicetos y uno fue protozoa. Se identificó un total de setenta géneros. Para este análisis se identificaron microorganismos provenientes de veintisiete especies hospedantes de plantas agrícolas (63 %), ornamentales (22 %) y forestales (15 %) (Cuadros 1, 2, 3, 4, 5, 6). En el grupo de los hongos predominaron géneros como Fusarium sp., con presencia de catorce especies diferentes, seguidos de Colletotrichum sp. y Aspergillus sp. con once especies cada uno. En el caso de los oomicetos los géneros predominantes fueron Phytophthora sp. y Pythium sp., con cinco y una especie, respectivamente. En el caso de protozoa solo se identificó una especie de un género, denominada Plasmodiophora brassicae (Cuadro 5).
Cuadro 1. Microorganismos identificados en orden alfabético (letras A, B y C) en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección, Universidad de Costa Rica, durante los años 2009-2018. Montes de Oca, San José, Costa Rica.
Table 1. Microorganisms identified in alphabetical order (letters A, B, and C) at the Laboratory of Molecular Techniques applied to Plant Protection, Universidad de Costa Rica, during the years 2009-2018. Montes de Oca, San Jose, Costa Rica.
Cuadro 2. Microorganismos identificados en orden alfabético (letras C, D y F) en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección, Universidad de Costa Rica, durante los años 2009-2018. Montes de Oca, San José, Costa Rica.
Table 2. Microorganisms identified in alphabetical order (letters C, D, and F) at the Laboratory of Molecular Techniques applied to Plant Protection, Universidad de Costa Rica, during the years 2009-2018. Montes de Oca, San Jose, Costa Rica.
Cuadro 3. Microorganismos identificados en orden alfabético (letra F, G, H, L y M) en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección, Universidad de Costa Rica, durante los años 2009-2018. Montes de Oca, San José, Costa Rica.
Table 3. Microorganisms identified in alphabetical order (letter F, G, H, L, and M) at the Laboratory of Molecular Techniques applied to Plant Protection, Universidad de Costa Rica, during the years 2009-2018. Montes de Oca, San Jose, Costa Rica.
Cuadro 4. Microorganismos identificados en orden alfabético (letras M, N y P) en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección, Universidad de Costa Rica, durante los años 2009-2018. Montes de Oca, San José, Costa Rica.
Table 4. Microorganisms identified in alphabetical order (letters M, N, and P) at the Laboratory of Molecular Techniques applied to Plant Protection, Universidad de Costa Rica, during the years 2009-2018. Montes de Oca, San Jose, Costa Rica.
Cuadro 5. Microorganismos identificados en orden alfabético (letras P, R, S y T) en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección, Universidad de Costa Rica, durante los años 2009-2018. Montes de Oca, San José, Costa Rica.
Table 5. Microorganisms identified in alphabetical order (letters P, R, S, and T) at the Laboratory of Molecular Techniques applied to Plant Protection, Universidad de Costa Rica, during the years 2009-2018. Montes de Oca, San Jose, Costa Rica.
Cuadro 6. Microorganismos identificados en orden alfabético (letras T y X) en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección, Universidad de Costa Rica, durante los años 2009-2018. Montes de Oca, San José, Costa Rica.
Table 6. Microorganisms identified in alphabetical order (letters T and X) at the Laboratory of Molecular Techniques applied to Plant Protection, during the years 2009-2018. Montes de Oca, San Jose, Costa Rica.
En los cuadros se presenta una lista de artículos científicos relacionados a cada uno de los sistemas de microorganismos en relación a su hospedante. Dicha lista tiene como objetivo que el lector tenga una referencia de consulta, en este caso un artículo científico de vía libre en la web, para conocer sobre el organismo de interés.
En este estudio se recopiló la información generada por medio de la identificación de microorganismos provenientes de muestras que ingresan a la Clínica de Diagnóstico. Se logró identificar organismos patogénicos reportados en la literatura que causan daños en cultivos agrícolas, forestales y ornamentales y otros no patogénicos denominados como saprófitos, endófitos y benéficos, que cumplen funciones importantes para el crecimiento y la salud de las plantas, y a menudo facilitan el control de organismos patogénicos (Berg, 2009). El uso de marcadores moleculares permitió la identificación precisa de un gran número de géneros y de especies relacionadas con plantas hospederas ubicadas en Costa Rica.
El uso de marcadores universales indicó que dentro del grupo de los hongos, Fusarium (Aoki et al., 2014) fue el género con mayor presencia en el país entre los años 2009-2018. Especies dentro de este género han sido reportadas como agresivas y prevalentes en los cultivos, a raíz de las modificaciones en temperatura y humedad ocasionados por el cambio climático (Chakraborty & Newton, 2011). Este género se ha agrupado en 23 complejos de especies y 300 especies (Summerell, 2019), por características fenotípicas y secuencias genéticas provenientes de regiones relacionadas con B-tubulina, el factor de elongación 1α, RPB1 y 2, y la subunidad de la región pequeña mitocondrial (mtSSU) (Aoki et al., 2014), de estas catorce especies se identificaron en Costa Rica, mediante este trabajo.
Fusarium oxysporum se relaciona con la marchitez vascular y es descrito como un organismo distribuido en suelos y plantas, con alrededor de 130 hospedantes, se encuentra en forma patogénica, endófita o saprófita. Está relacionado con cultivos agrícolas y forestales, como banano (F. oxysporum f.sp. cubense) donde la raza 4 es la que presenta mayor riesgo para el sector (Ploetz, 2015); palma aceitera (F. oxysporum f. sp. elaeidis) (Flood, 2006), maní (F. oxysporum f.sp. vasinfectum) (Skovgaard et al., 2001), piña (Jacobs et al., 2010), apio (F. oxysporum f.sp. apii) (Retana et al., 2018), teca (F. oxysporum en teca) (Borges et al., 2018), entre otros.
Fusarium solani causa problemas en raíces de diversos hospedantes como vegetales, flores y frutas . Está compuesto por alrededor de sesenta especies distintas a nivel filogenético (Nalim et al., 2011), especies cripticas que causan problemas en raíces de diversos hospedantes como vegetales, frutas y flores, en este estudio se reporta en ornamentales, forestales y cultivos agrícolas como banano (Abd Murad et al., 2017), piña (Jacobs et al., 2010) y café (Serani et al., 2007).
Se encontraron especies de Colletotrichum en cultivos forestales, como C. boninense, C. gloesporioides, C. karstii y C. nicotianae; mientras que C. fragariae, C. theobromicola y C. gloesporioides en cultivos agrícolas, como papaya (Saalau-Rojas et al., 2009), café (Nguyen et al., 2009) y cacao (Rojas et al., 2010), entre otros, que se ven afectados por este patógeno, con mayor incidencia en las épocas de lluvia. El género Colletotrichum es muy variable genéticamente y se recomienda el análisis multilocus para poder separar las especies crípticas (Ruíz Campos, 2016).
Un total de once especies del género Aspergillus fueron ligadas a cultivos agrícolas y forestales como ciprés, arroz, piña y banano. Este género tiene especies productoras de micotoxinas; sin embargo, también hay algunas que inhiben la producción de las mismas (Ehrlich, 2014) y facilitan el desarrollo de cultivos más inocuos.
Dentro de los oomicetos, cinco especies del género Phytophthora fueron identificadas; estas son capaces de causar grandes daños en diferentes cultivos como P. nicotianae y P. cinnamomi en piña (Ratti et al., 2018; Sanewski et al., 2017), ya que provocan pudriciones a nivel de raíz. En chile dulce (Capsicum annuun), se ha reportado la pudrición basal o maya en el cultivo y la persistencia en suelo por largos periodos (Uribe-Loría et al., 2014).
Dentro del grupo de los protozoa, Plasmodiophora brassicae estuvo presente en diversas cucurbitáceas como repollo, mostaza, coliflor, brócoli, entre otras, donde causa diversos problemas fitopatológicos y pérdidas a nivel productivo (Cao et al., 2007).
La información suministrada y de los artículos científicos recomendados llevan a determinar la presencia de los microorganismos en varias regiones. Algunos de esos microorganismos son patogénicos y otros son no patogénicos, estos últimos pueden actuar como controladores biológicos o generadores de compuestos antifúngicos y antibacteriales útiles en la industria.
El uso de técnicas moleculares permitió la identificación de 156 especies de hongos, 600 oomicetos y 1 protozoa, provenientes de cultivos agrícolas, ornamentales y forestales en Costa Rica.
En este estudio se presenta un repositorio de consulta de hongos, oomicetos y protozoa, generada a partir de muestras recibidas en el Laboratorio de Técnicas Moleculares aplicadas a la Fitoprotección (LTM) del CIPROC, entre los años 2009 y 2018, provenientes de Costa Rica y analizadas con base en metodologías moleculares que, por su rapidez y confiabilidad, son una herramienta valiosa para productores. Se brinda información sobre especies patogénicas, no patogénicas, controladores biológicos y otros microorganismos utilizados como antifúngicos y antibacteriales, los cuales has sido aislados de diferentes cultivos agrícolas, ornamentales y forestales de interés.
La autora expresa especial agradecimiento a los técnicos Freddy Benavides, Catherine Jiménez y Alejandro Sebiani, quienes colaboraron con la implementación de las metodologías desarrolladas. A la Vicerrectoría de Acción Social por facilitar el desarrollo y continuidad del proyecto ED-2811 de la Clínica de Diagnóstico: Técnicas Moleculares aplicadas a la Fitoprotección del CIPROC.
Al Dr. Javier Monge del Laboratorio de Plagas Vertebradas, CIPROC, por la revisión del manuscrito y el aporte de sugerencias valiosas.
Abd Murad, N. B., Mohamed Nor, N. M. I., Shohaimi, S., & Mohd Zainudin, N. A. I. (2017). Genetic diversity and pathogenicity of Fusarium species associated with fruit rot disease in banana across Peninsular Malaysia. Journal of Applied Microbiology, 123, 1533–1546. https://doi.org/10.1111/jam.13582
Abdullah, S. K., Lopez Lorca, L. V., & Jansson, H. B. (2010). Diseases of date palms (Phoenix dactylifera L.). Basrah Journal for Date Palm Research, 9(2), 1–44.
Adisa, V. A. (1986). The influence of molds and some storage factors on the ascorbic acid content of orange and pineapple fruits. Food Chemistry, 22(2), 139–146. https://doi.org/10.1016/0308-8146(86)90031-2
Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.
Akinbode, O. A. (2010). Evaluation of antifungal efficacy of some plant extracts on Curvularia lunata, the causal organism of maize leaf spot. African Journal of Environmental Science and Technology, 4(11), 797–800. https://www.ajol.info/index.php/ajest/article/view/71351
Aoki, T., O´Donnell, K., & Geiser, D. (2014). Systematics of key phytopathogenic Fusarium species: current status and future challenges. Journal of General Plant Pathology, 80, 189–201. https://doi.org/10.1007/s10327-014-0509-3
Arguedas, M., Rodriguez-Solis, M., Moya, R., & Berrocal, A. (2018). Gmelina arborea “death disease” in fast-growth plantations: Effects of soil and climatic conditions on severity and incidence and its implications for wood quality. Forest Systems, 27(1), Article e003. https://doi.org/10.5424/fs/2018271-12236
Baiyee, B., Pornsuriya, C., Ito, S., & Sunpapao, A. (2019). Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129, 195–200. https://doi.org/10.1016/j.biocontrol.2018.10.018
Barral, B., Chillet, M., Doizy, A., Grassi, M., Ragot, L., Léchaudel, M., Durand, N., Rose, L. J., Viljoen, A., & Schorr-Galindo, S. (2020). Diversity and toxigenicity of fungi that cause Pineapple Fruitlet Core Rot. Toxins, 12(5), Article 339. https://doi.org/10.3390/toxins12050339
Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology Biotechnology, 84, 11–18. https://doi.org/10.1007/s00253-009-2092-7
Bertrand, B., Nuñez, C., & Sarah, J. -L. (2000). Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporum. Plant Pathology, 49, 383–388. https://doi.org/10.1046/j.1365-3059.2000.00456.x
Bevilacqua, A., Campaniello, D., Sinigaglia, M., Ciccarone, C., & Corbo, M. R. (2012). Sodium-benzoate and citrus extract increase the effect of homogenization towards spores of Fusarium oxysporum in pineapple juice. Food Control, 28(2), 199-204. https://doi.org/10.1016/j.foodcont.2012.04.038.
Bisen, P. (2014). The industrial uses of micro-organisms (1st Ed.). IK International.
Blanco-Meneses, M., & Ristaino, J. B. (2011). Detection and quantification of Peronospora tabacina using a Real-time Polymerase Chain Reaction assay. Plant Disease, 95(6), 673–682. https://doi.org/10.1094/PDIS-05-10-0333
Borges, R., Macedo, M., Cabral, C., Rossato, M., Fontes, M., Santos, M., Ferreira, M., Fonseca, M., Reis, A., & Boiteux, L. (2018). Vascular wilt of teak (Tectona grandis) caused by Fusarium oxysporum in Brazil. Phytopathologia Mediterranea, 57(1), 115–121. https://doi.org/10.14601/Phytopathol_Mediterr-20896
Campos, V. (2013). Patogenicidad de Fusarium proliferatum y la utilización de fungicidas en el tratamiento de semillas como control preventivo en la fase inicial del desarrollo del arroz (Oryza sativa) [Tesis de Licenciatura no publicada]. Universidad de Costa Rica. San José, Costa Rica.
Cao, T., Tewari, J., & Strelkov, S. E. (2007). Molecular detection of Plasmodiophora brassicae causal agent of clubroot of crucifers in plant and soil. Plant Disease, 91(1), 80–87. https://doi.org/10.1094/PD-91-0080
Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x
Castro Chinchilla, J., & Umaña Rojas, G. (2017). Frecuencia de los hongos asociados al desarrollo de mohos poscosecha en el pedúnculo de la piña en dos zonas de Costa Rica. Agronomía Costarricense, 41(2), 17–25. http://doi.org/10.15517/rac.v41i2.31296
Chandra Deb, S., & Khair, A. (2018). Control of Seed-Borne Fungi of Rice by Aspergillus and Trichoderma. International Journal of Agriculture & Environmental Science, 5(1), 34–39. https://doi.org/10.14445/23942568/IJAES-V5I1P106
Chaverri, P., Samuels, G. J., & Stewart, E. L. (2001). Hypocrea virens sp. nov., the teleomorph of Trichoderma virens. Mycologia, 93(6), 1113–1124. https://doi.org/10.1080/00275514.2001.12063245
Cheng, Y., Liu, H., Tong, X., Zhang, X., Jiang, X., & Yu, X. (2020). First report of Alternaria alternata causing Alternaria Brown Spot on Aralia elata in China. Plant Disease, 104(11), Article 3072. https://doi.org/10.1094/PDIS-03-20-0490-PDN
Chowdhary, A., Randhawa, H. S., Gaur, S. N., Agarwal, K., Kathuria, S., Roy, P., Klaassen, C. H., & Meis, J. F. (2013). Schizophyllum commune as an emerging fungal pathogen: a review and report of two cases. Mycoses, 56(1), 1–10. https://doi.org/10.1111/j.1439-0507.2012.02190.x
Crous, P. W., Groenewald, J. Z., Risède, J. -M., Simoneau, P., & Hyde, K. D. (2006). Calonectria species and their Cylindrocladium anamorphs: species with clavate vesicles. Studies in Mycology, 55, 213–226. https://doi.org/10.3114/sim.55.1.213
Dallagnol, L. J., Rodrigues, F. A., Martins, S. C. V., Cavatte, P. C., & DaMatta, F. M. (2011). Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian Plant Pathology, 40, 360–365. https://doi.org/10.1007/s13313-011-0048-8
Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113. https://doi.org/10.3114/sim0010
de Barros, C. R. M., Ferreira, L. M. M., Nunes, F. M., Bezerra, R. M. F., Dias, A. A., Guedes, C. V., Cone, J. W., Marques, G. S. M., & Rodrigues, M. A. M. (2011). The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. Engineering in Life Sciences, 11(1), 107–110. https://doi.org/10.1002/elsc.201000040
Dixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99(9), 1015–1027. https://doi.org/10.1094/PHYTO-99-9-1015
Dongyi, H., & Kelemu, S. (2004). Acremonium implicatum, a seed-transmitted endophytic fungus in Brachiaria grasses. Plant Disease, 88(11), 1252–1254. https://doi.org/10.1094/PDIS.2004.88.11.1252
Drenth, A., Wagels, G., Smith, B., Sendall, B., O´Dwyer, C., Irvine, G. & Irwin, J. (2006). Development of a DNA-based method for detection and identification of Phytophthora species. Australasian Plant Pathology, 35, 147–159. https://doi.org/10.1071/AP06018
Ehrlich, K. C. (2014). Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Frontiers in Microbiology, 5, Article 50. https://doi.org/10.3389/fmicb.2014.00050
Elias, L. M., Fortkamp, D., Sartori, S. B., Ferreira, M. C., Gomes, L. H., Azevedo, J. L., Montoya, Q. V., Rodrigues, A., Ferreira, A. G., & Lira, S. P. (2018). The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose. Brazilian Journal of Microbiology, 49(4), 840–847. https://doi.org/10.1016/j.bjm.2018.03.003
Federhen, S. (2015). Type material in the NCBI Taxonomy Database. Nucleic Acids Research, 43(D1), D1086–D1098. https://doi.org/10.1093/nar/gku1127
Figueroa-Rivera, M. G., Rodríguez-Guerra, R., Guerrero-Aguilar, B., González-Chavira, M., Pons-Hernández, J. L., Jiménez-Bremont, J., Ramírez-Pimentel, J., Andrio-Enríquez, E., & Mendoza-Elos, M. (2010). Characterization of Fusarium Species Associated with Rotting of Corn Root in Guanajuato, Mexico. Revista Mexicana de Fitopatología, 28(2), 124-134.
Flood, J. (2006). A Review of Fusarium Wilt of Oil Palm Caused by Fusarium oxysporum f. sp. elaeidis. Phytopathology, 96, 660–662. https://doi.org/10.1094/PHYTO-96-0660
Freitas, R. L., Maciel-Zambolim, E., Zambolim, L., Lelis, D., Caixeta, E. T., Lopes, U. P., & Pereira, O. L. (2013). Colletotrichum boninense Causing Anthracnose on Coffee Trees in Brazil. Plant Disease, 97(9), 1255–1255. https://doi.org/10.1094/PDIS-03-13-0229-PDN
French, E. R. & Hebert, T. T. (1980). Métodos de investigación fitopatológica. Instituto Interamericano de Ciencias Agrícolas.
Giraldo, A., Gené, J., Sutton, D. A., Madrid, H., de Hoog, G., Cano, J., Decock, C., Crows, P., & Guarro, J. (2015). Phylogeny of Sarocladium (Hypocreales). Persoonia - Molecular Phylogeny and Evolution of Fungi, 34, 10–24. https://doi.org/10.3767/003158515X685364
Giridhar Babu, A., Shim, J., Shea, P., J. & Oh, B. -T. (2014). Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecological Engineering, 69, 186–191. https://doi.org/10.1016/j.ecoleng.2014.03.055
Gong, J. L., Lu, Y., Wu, W. H., He, C. P., Liang, Y. P., Huang, X., Zheng, J., Xi, J., Tang, S. B., & Yi. K. X. (2020). First report of Phomopsis heveicola (Anamorph of Diaporthe tulliensis) causing Leaf Blight of coffee (Coffea arabica) in China. Plant Disease, 104(2), Article 570. https://doi.org/10.1094/PDIS-09-19-1833-PDN
Ha, J., Kang, H., Kang, H., Kim, D., Lee, D., Kim, Y., & Choi, I. (2019). First report of an unrecorded nematode-trapping fungus, Arthrobotrys sinensis in Korea. Korean Journal of Applied Entomology, 58(1), 9–13. https://doi.org/10.5656/KSAE.2018.12.0.047
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hardham, A. R. (2005). Phytophthora cinnamomi. Molecular Plant Pathology, 6, 589–604. https://doi.org/10.1111/j.1364-3703.2005.00308.x
Harlton, C. E., Levesque, C. A.,& Punja, Z. K. (1995). Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathology, 85, 1269–1281. https://doi.org/10.1094/Phyto-85-1269
Hasan, N. A., & Zanuddin, N. A. M. (2020). Molecular identification of isolated fungi from banana, mango and pineapple spoiled fruits. AIP Conference Proceedings, 2020(1), Article 020074. https://doi.org/10.1063/1.5062700
Heidarian, R., Fotouhifar, K. -B., Debets, A. J. M., & Aanen, D. K. (2018). Phylogeny of Paecilomyces, the causal agent of pistachio and some other trees dieback disease in Iran. PLoS ONE, 13(7), Article 0200794. https://doi.org/10.1371/journal.pone.0200794
Hong, S. K., Kim, W. G., Choi, H. W., & Lee, S. Y. (2008). Identification of Microdochium bolleyi associated with basal rot of creeping bent grass in Korea. Mycobiology, 36(2), 77–80.
Hong, J. K., Yang, H. J., Jung, H., Yoon, D. J., Sang, M., & Jeun, Y. C. (2015). Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by Colletotrichum gloeosporioides. Plant Pathology Journal, 31(3), 269–277. https://doi.org/10.5423/PPJ.OA.03.2015.0027
Hopkins, K. E., & McQuilken, M. P. (2000). Characteristics of Pestalotiopsis Associated with Hardy Ornamental Plants in the UK. European Journal of Plant Pathology, 106, 77–85. https://doi.org/10.1023/A:1008776611306
Huang, S. P., Li, Z. L., Wei, J. G., Mo, J. Y., Li, Q. L., Guo, T. X., Luo, J., Yang, T., Tan, X., & Yang, X. B. (2017). First report of stem canker caused by Fusarium solani on Tectona grandis in China. Plant Disease, 101(12), 2148–2148. https://doi.org/10.1094/PDIS-04-17-0514-PDN
Hunter, J. E., & Kunimoto, R. K. (1973). Dispersal of Phytophthora palmivora sporangia by windblown rain. Phytopathology, 64, 202–206. https://doi.org/10.1094/Phyto-64-202
Hwang, S. F., Strelkov, S. E., Feng, J., Gossen, B. D. & Howard, R. J. (2012). Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Molecular Plant Pathology, 13, 105-113. https://doi.org/10.1111/j.1364-3703.2011.00729.x
Ibrahim, N. F., Mohd, M. H., Nor, N. M. I. M., & Zakaria, L. (2015). First report of Fusarium oxysporum and F. solani associated with pineapple rot in Peninsular Malaysia. Plant Disease, 99(11), 1650–1650. https://doi.org/10.1094/PDIS-02-15-0227-PDN
Ilyas, M. B., Ghazanfar, M. U., Khan, M. A., Khan C. A., & Bhatti, M. A. R. (2007). Post harvest losses in apple and banana during transport and storage. Pakistan Journal of Agricultural Sciences, 44(3), 534–539.
Ismail, A. M., Cirvilleri, G., & Polizzi, G. (2013). Characterisation and pathogenicity of Pestalotiopsis uvicola and Pestalotiopsis clavispora causing grey leaf spot of mango (Mangifera indica L.) in Italy. European Journal of Plant Pathology, 135, 619–625. https://doi.org/10.1007/s10658-012-0117-z
Jacobs, A., Schalk Van Wyk, P., Marasas, W. F. O., Wingfield, B. D., Wingfield, M. J., & Coutinho, T. A. (2010). Fusarium ananatum sp. nov. in the Gibberella fujikuroi species complex from pineapples with fruit rot in South Africa. Fungal Biology, 114(7), 515–527. https://doi.org/10.1016/j.funbio.2010.03.013
Jeyaraman, M., & Robert, P. (2018). Bio efficacy of indigenous biological agents and selected fungicides against branch canker disease of (Macrophoma theicola) tea under field level. BMC Plant Biology, 18, Article 222. https://doi.org/10.1186/s12870-018-1445-8
Jinfeng, E. C., Mohamad Rafi, M. I., Chai Hoon, K., Lian, H. K., & Kqueen, C. Y. (2017). Analysis of chemical constituents, antimicrobial and anticancer activities of dichloromethane extracts of Sordariomycetes sp. endophytic fungi isolated from Strobilanthes crispus. World Journal Microbiology Biotechnology, 33, Article 5. https://doi.org/10.1007/s11274-016-2175-4
Kang, H. -J., Sigler, L., Lee, J., Gibas, C. F. C., Yun, S. -H., & Lee, Y. -W. (2010). Xylogone ganodermophthora sp. nov., an ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea. Mycologia, 102(5), 1167–1184. https://doi.org/10.3852/09-304
Kano, S., Aimi, T., Masumoto, S., Kitamoto, Y., & Morinaga, T. (2004). Physiology and Molecular Characteristics of a Pine Wilt Nematode-Trapping Fungus, Monacrosporium megalosporum. Current Microbiology, 49, 158–164. https://doi.org/10.1007/s00284-004-4268-9
Khan, S. A., Hamayun, M., Yoon, H., Kim, H. -Y, Suh, S. -J., Hwang, S. -K., Kim, J. -M., Lee, I. J., Choo, Y. -S., Yoon, U. -H., Kong, W. -S, Lee, B. -M., & Kim, J. -G. (2008). Plant growth promotion and Penicillium citrinum. BMC Microbiology, 8, Article 231. https://doi.org/10.1186/1471-2180-8-231
Kim, W., Cavinder B., Proctor R. H., O’Donnell K., Townsend, J. P., & Trail F. (2019). Comparative genomics and transcriptomics during sexual development gives insight into the life history of the cosmopolitan fungus Fusarium neocosmosporiellum. Frontiers in Microbiology, 10, Article 1247. https://doi.org/10.3389/fmicb.2019.01247
Koukol, O. (2016). Myriococcum revisited: a revision of an overlooked fungal genus. Plant Systematics and Evolution, 302, 957–969. https://doi.org/10.1007/s00606-016-1310-x
Leneveu-Jenvrin, C., Quentin, B., Assemat, S., Hoarau, M., Meile, J. -C., & Remize, F. (2020). Changes of quality of minimally-processed pineapple (Ananas comosus, var. ‘Queen Victoria’) during cold storage: Fungi in the leading role. Microorganisms, 8(2), Article 185. https://doi.org/10.3390/microorganisms8020185
Li, X. -G., Ding, C. -F., Zhang, T. -L, & Wang, X. -X (2014). Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology and Biochemistry, 72, 11–18. https://doi.org/10.1016/j.soilbio.2014.01.019
Li, S., Hartman, G. L., & Boykin, D. L. (2010). Aggressiveness of Phomopsis longicolla and other Phomopsis spp. on soybean. Plant Disease, 94(8), 1035–1040. https://doi.org/10.1094/PDIS-94-8-1035
Li, E., Tian, R., Liu, R., Chen, X., Guo, L., & Che, Y. (2008). Pestalotheols A−D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. Journal of Natural Products, 71(4), 664–668. https://doi.org/10.1021/np700744t
Lim, S. Y., Lee, S., Kong, H. G., & Lee, J. (2014). Entomopathogenicity of Simplicillium lanosoniveum Isolated in Korea. Mycobiology, 42(4), 317–321. https://doi.org/10.5941/MYCO.2014.42.4.317
Liou, G. -Y., Chen, S. -R., Wei, Y. -H., Lee, F. -L., Fu, H. -M., Yuan, G. -F., & Stalpers, J. A. (2007). Polyphasic approach to the taxonomy of the Rhizopus stolonifer group. Mycological Research, 111(2), 196–203. https://doi.org/10.1016/j.mycres.2006.10.003
Mahapatra, S., Rao, E. S., Sandeepkumar, G. M., & Sriram, S. (2020). Stagonosporopsis cucurbitacearum the causal agent of gummy stem blight of watermelon in India. Australasian Plant Disease Notes, 15, Article 7. https://doi.org/10.1007/s13314-020-0376-z
Maharachchikumbura, S. S. N., Guo, L. -D., Chukeatirote, E., Bahkali, A. H., & Hyde, K. D. (2011). Pestalotiopsis—morphology, phylogeny, biochemistry and diversity. Fungal Diversity, 50, Article 167. https://doi.org/10.1007/s13225-011-0125-x
Manamgoda, D. S., Cai, L., Bahkali, A. H., Chukeatirote, E., & Hyde, K. D. (2011). Cochliobolus: an overview and current status of species. Fungal Diversity, 51, 3–42. https://doi.org/10.1007/s13225-011-0139-4
Martín, R., Cauich-Rejon, J., Montejo-Canul, E., & Quijano, A. (2017). Hongos fitopatógenos asociados a enfermedades en orquídeas cultivadas en la península de Yucatán. Desde el Herbario CICY, 9, 203–208.
Miao, F., Yang, R., Chen, D. -D., Wang, Y., Qin, B. -F., Yang, X. -J., & Zhou, L. (2012). Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules, 17(12), 14091–14098. https://doi.org/10.3390/molecules171214091
Mondal, B., Mondal C. K., & Mondal P. (2020). Deaseas of cucurbits and their management. In B. Mondal, C. K. Mondal, & P. Mondal (Eds.), Stresses of cucurbits: Current status and management (pp. 115–222). Springer. https://doi.org/10.1007/978-981-15-7891-5_3
Murillo, O., Badilla, Y., Rojas, F., & Mata, X. (2014). Uso de biocontroladores y materiales tolerantes a los patógenos asociados al síndrome de la muerte descendente de la teca (Tectona grandis) y cancro nectria de la melina (Gmelina arborea) [Informe final]. Repositorio del Instituto Tecnológico de Costa Rica. https://bit.ly/3uWVsyX
Murillo-Williams, A., & Munkvolt, G. P. (2008). Systemic infection by Fusarium verticillioides in maize plants grown under three temperature regimes. Plant Disease, 92, 1695–1700. https://doi.org/10.1094/PDIS-92-12-1695
Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. 1980. Nucleic Acids Research, 8(19), 4321–4326. https://doi.org/10.1093/nar/8.19.4321
Nalim, F. A., Samuels, G. J., Wijesundera, R., & Geiser, D. M. (2011). New species from the Fusarium solani species complex derived from perithecia and soil in the old worldtropics. Mycologia, 103(6), 1302–1330. https://doi.org/10.3852/10-307
Navi, S. S., & Singh, S. D. (1993). Fusarium longipes: a mycoparasite of Sclerospora graminicola on pearl millet. Indian Phytopathology, 46(4), 365–368.
Nguyen, T. H. P., Säll, T., Bryngelsson, T., & Liljeroth, E. (2009). Variation among Colletotrichum gloeosporioides isolates from infected coffee berries at different locations in Vietnam. Plant Pathology, 58(5), 898–909. https://doi.org/10.1111/j.1365-3059.2009.02085.x
Nitschke, E., Nihlgard, M., & Varrelmann, M. (2009). Differentiation of eleven Fusarium spp. isolated from sugar beet, applying restriction fragment analysis of polymerase chain reaction–amplified translation elongation factor 1α gene fragment. Phytopathology, 99(8), 921-929. https://doi.org/10.1094/PHYTO-99-8-0921
Noireung, P., Phoulivong, S., Liu, F., Cai, L., Mckenzie, E. H. C., Chukeatirote, E., Jones, E. B. G., Bahkali, A. H., & Hyde, K. D. (2012). Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogamie, Mycologie, 33(3), 347–362. https://doi.org/10.7872/crym.v33.iss3.2012.347
Nuangmek, W., Aiduang, W., Suwannarach, N., Kumla, J., Kiatsiriroat, T., & Lumyong, S. (2019). First report of fruit rot on cantaloupe caused by Fusarium equiseti in Thailand. Journal of General Plant Pathology, 85, 295–300. https://doi.org/10.1007/s10327-019-00841-1
Oba, R., Metsebing, B. -P., Youmbi, F. T., Mossebo, D. C., Tsigain Tsigain, F., Tata, C. M., & Ndinteh, D. T. (2020). Evaluation of the antifungal and antibacterial activities of crude extracts of three species of Rigidoporus (Basidiomycota, Polyporaceae) from Cameroon. The Journal of Phytopharmacology, 9(4), 246–251. https://doi.org/10.31254/phyto.2020.9406
Ola, A. R. B. (2019). Production of valuable chemical compounds isolated from plants by endophytic fungi. IOP Conference Series: Materials Science and Engineering, 823, Article 012045. https://doi.org/10.1088/1757-899X/823/1/012045
Oliveira, S. A. S., Bragança, C. A. D., & Silva, L. L. (2016). First report of Colletotrichum tropicale causing anthracnose on the wild cassava species Manihot dichotoma and M. epruinosa in Brazil. Plant Disease, 100(10), 2171. https://doi.org/10.1094/PDIS-10-15-1136-PDN
Paul, N. C., Kim, W. -K., Woo, S. -K, Park, M. -S., & Yu, S. -H. (2007). Fungal endophytes in roots of aralia species and their antifungal activity. The Plant Pathology Journal, 23(4), 287–294. https://doi.org/10.5423/PPJ.2007.23.4.287
Pavlic, D., Slippers, B., Coutinho, T. A. & Wingfield, M. J. (2009). Molecular and phenotypic characterization of three phylogenetic species discovered within the Neofusicoccum parvum/N. ribis complex. Mycologia, 101(5), 636–647. https://doi.org/10.3852/08-193
Peterson, G. L., & Berner, D. K. (2009). Effects of temperature and humidity on the survival of urediniospores of gladiolus rust (Uromyces transversalis). European Journal of Plant Pathology, 125, 509–513. https://doi.org/10.1007/s10658-009-9492-5
Peterson, S. W., & Jurjević, Z. (2019). The Talaromyces pinophilus species complex. Fungal Biology, 123(10), 745–762. https://doi.org/10.1016/j.funbio.2019.06.007
Ploetz, R. C. (2015). Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Protection, 73, 7–15. https://doi.org/10.1016/j.cropro.2015.01.007
Pol, D., Laxman, S., & Rao, M. (2012). Purification and biochemical characterization of endoglucanase from Penicillium pinophilum MS 20. Indian Journal of Biochemistry and Biophysics, 49, 189–194.
Ratti, M. F., Ascunce, M. S., Landivar, J. J., & Goss, E. M. (2018). Pineapple heart rot isolates from Ecuador reveal a new genotype of Phytophthora nicotianae. Plant Pathology, 67(8), 1803–1813. https://doi.org/10.1111/ppa.12885
Rebollar-Alviter, A., Silva-Rojas, H., Fuentes-Aragón, D., Acosta-Gonzalez, U., Martínez-Ruiz, M., & Parra-Robles, B. (2020). An emerging strawberry fungal disease associated with root rot, crown rot and leaf spot caused by Neopestalotiopsis rosae in Mexico. Plant Disease, 104(8), 2054–2059. https://doi.org/10.1094/PDIS-11-19-2493-SC
Reddy, K. R. N., Reddy, C. S.,& Muralidharan, K. (2009). Detection of Aspergillus spp. and aflatoxin B1 in rice in India. Food Microbiology, 26(1), 27–31. https://doi.org/10.1016/j.fm.2008.07.013
Retana, K., Ramírez-Coché, J. A., Castro, O., & Blanco-Meneses, M. (2018). Caracterización morfológica y molecular de Fusarium oxysporum f.sp. apii asociado a la marchitez del apio en Costa Rica. Agronomía costarricense, 42(1), 115–126. https://doi.org/10.15517/rac.v42i1.32199
Riera, N., Ramirez-Villacis, D., Barriga-Medina, N., Alvarez-Santana, J., Herrera, K., Ruales, C., & Leon-Reyes, A. (2019). First Report of Banana Anthracnose Caused by Colletotrichum gloeosporioides in Ecuador. Plant Disease, 103(4), 763–763. https://doi.org/10.1094/PDIS-01-18-0069-PDN
Rivas, F., & Herrera, L. (2015). Organismos asociados a la pudrición del cogollo de la palma aceitera (Elaeis guineensis Jacq) en San Lorenzo, Ecuador. Revista de Protección Vegetal, 30(3), 193–203.
Rodrigues, K. F., Sieber, T. N., GrüNig, C. R., & Holdenrieder, O. (2004). Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1–5.8S-ITS2 sequences. Mycological Research, 108(1), 45–52. https://doi.org/10.1017/S0953756203008840
Rodríguez-Ortega, D. G. (2017). Análisis fenotípico y genético de la resistencia a mancha angular (Pseudo cercospora griseola) en el cultivo de frijol común (Phaseolus vulgaris) [Tesis de Licenciatura, Universidad de Puerto Rico]. Repositorio de la Universidad de Puerto Rico. https://hdl.handle.net/20.500.11801/642
Rodríguez Solís, J. A. (2018). Lasiodiplodia theobromae y Fusarium proliferatum en plantas jóvenes de Tectonagrandis (L. F.). [Tesis de Licenciatura, Instituto Tecnológio de Costa Rica]. Repositorio del Instituto Tecnológio de Costa Rica. https://bit.ly/3u9v0mC
Rojas, E. I., Rehner, S. A., Samuels, G. J., Van Bael, S. A.,Herre, E. A., Cannon, P., Chen, R., Pang, J., Wang, R., Zhang, Y. -Q., Peng, Y., & Sha, T. (2010). Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102(6), 1318–1338. https://doi.org/10.3852/09-244
Ruíz Campos, C. C. (2016). Distribución y frecuencia de Colletotrichum spp. en la fruta de papaya (Carica papaya L.) híbrido “Pococí” en las zonas productoras de Parrita, Guácimo y San Carlos [Tesis de Licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica. https://bit.ly/3jpZRoV
Saalau-Rojas, E., Barrantes-Santamaría, W., Loría-Quirós, C. L., Brenes-Angulo, A., & Gómez-Alpízar, L. (2009). Identificación mediante PCR del sexo de la papaya (Carica papaya L.), híbrido “pococí”. Agronomía Mesoamericana, 20(2), 311–317. https://doi.org/10.15517/AM.V20I2.4947
Sabater-Vilar, M., Suñé-Colell, E., Castro-Chinchilla, J., & Sáenz-Murillo, M. V. (2018). Reduction of postharvest rotting with an ethylene absorbent: a case study with pineapple. Acta Horticulturae, 1194, 721–728. https://doi.org/10.17660/ActaHortic.2018.1194.103
Sangeetha, G., Anandan, A., & Usha Rani, S. (2012). Morphological and molecular characterisation of Lasiodiplodia theobromae from various banana cultivars causing crown rot disease in fruits. Archives of Phytopathology and Plant Protection, 45(4), 475–486. https://doi.org/10.1080/03235408.2011.587986
Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
Sanewski, G., Ko, L., Innes, D., Kilian, A., Carling, J., & Song, J. (2017). DArTseq molecular markers for resistance to Phytophthora cinnamomi in pineapple (Ananas comosus L.). Australasian Plant Pathology, 46, 499–509. https://doi.org/10.1007/s13313-017-0512-1
Schena, L., Nigro, F., Ippolito, A., & Gallitelli, D. (2004). Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110, 893–908. https://doi.org/10.1007/s10658-004-4842-9
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., & Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109
Schrank, A., & Henning Vainstein, M. (2010). Metarhizium anisopliae enzymes and toxins. Toxicon, 56(7), 1267–1274. https://doi.org/10.1016/j.toxicon.2010.03.008
Schroers, H. -J., O’Donnell, K., Lamprecht, S. C., Kammeyer, P. L., Johnson, S., Sutton, D. A., Rinaldi, M. G., Geiser, D. M., & Summerbell, R. C. (2009). Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia, 101(1), 44–70. https://doi.org/10.3852/08-002
Selbmann, L., Stingele, F., & Petruccioli, M. (2003). Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Antonie Van Leeuwenhoek, 84, 135–145. https://doi.org/10.1023/A:1025421401536
Senanayake, I. C., Lian T. T., Mai, X. M., Jeewon, R., Maharachchikumbura, S. S. N., Hyde, K. D., Zeng, Y. J., Tian, S. L., & Xie N. (2020). New geographical records of Neopestalotiopsis and Pestalotiopsis species in Guangdong Province, China. Asian Journal of Mycology, 3(1), 512–533. https://doi.org/10.5943/ajom/3/1/19
Serani, S., Taligoola, H. K., & Hakiza, G. J. (2007). An investigation into Fusarium spp. associated with coffee and banana plants as potential pathogens of robusta coffee. African Journal of Ecology, 45(s1), 91–95. https://doi.org/10.1111/j.1365-2028.2007.00744.x
Sharma, G., & Shenoy, B. D. (2014). Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Archives of Phytopathology and Plant Protection, 47(10), 1179–1194. https://doi.org/10.1080/03235408.2013.833749
Shoemaker, R. A., & Simpson, J. A. (1981). A new species of Pestalosphaeria on pine with comments on the generic placement of the anamorph. Canadian Journal of Botany, 59(6), 951–955. https://doi.org/10.1139/b81-135
Sivaprakasam, E., Kavitha, D., Balakumar, R., Sridhar, S., & Suresh-Kumar, J. (2011). Antimicrobial activity of whole fruiting bodies of Trameteshirsuta (Wulf. Fr.) Pil. against some common pathogenic bacteria and fungus. International Journal of Pharmaceutical Sciences and Drug Research, 3(3), 219–221. https://www.ijpsdr.com/index.php/ijpsdr/article/view/315
Skovgaard, K., Nirenberg, H. I., O’Donnell, K., & Rosendahl, S. (2001). Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology, 91(12), 1231–1237. https://doi.org/10.1094/PHYTO.2001.91.12.1231
Soltani, J., & Moghaddam, M. S. H. (2014). Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Archives of Microbiology, 196, 635–644. https://doi.org/10.1007/s00203-014-0997-8
Soltis, D. E., Moore, M. J., Burleigh, G., & Soltis, P. S. (2009). Molecular markers and concepts of plant evolutionary relationships: Progress, promise, and future prospects. Critical Reviews in Plant Science, 28, 1–15. https://doi.org/10.1080/07352680802665297
Sousa, E. S., Melo, M. P., Mota, J. M., Sousa, E. M. J., Beserra, J. E. A., & Matos, K. S. (2017). First report of Fusarium falciforme (FSSC 3 + 4) causing root rot in lima bean (Phaseolus lunatus L.) in Brazil. Plant Disease, 101(11), 1954–1954. https://doi.org/10.1094/PDIS-05-17-0657-PDN
Stępień, Ł., Koczyk, G., & Waśkiewicz, A. (2013). Diversity of Fusarium species and mycotoxins contaminating pineapple. Journal of Applied Genetics, 54, 367–380. https://doi.org/10.1007/s13353-013-0146-0
Su, Y. -Y., Noireung, P., Liu, F., Hyde, K. D., Moslem, M. A., Bahkali, A. H., Abd-Elsalam, K. A., & Cai, L. (2011). Epitypification of Colletotrichum musae, the causative agent of banana anthracnose. Mycoscience, 52(6), 376–382. https://doi.org/10.1007/S10267-011-0120-9
Summerell, B. A. (2019). Resolving Fusarium: Current status of the genus. Annual Review of Phytopathology, 57(1), 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204
Taribuka, J., Wibowo, A., Widyastuti, S. M. & Sumardiyono, C. (2017). Potency of six isolates of biocontrol agents endophytic Trichoderma against fusarium wilt on banana. Journal of Degraded and Mining Lands Management, 4(2), 723–731. https://doi.org/10.15243/jdmlm.2017.042.723
Tarnowski, T. L., Pérez-Martínez, J. M., & Ploetz, R. C. (2010). Fuzzy pedicel: A new postharvest disease of banana. Plant Disease, 94(5), 621–627. https://doi.org/10.1094/PDIS-94-5-0621
Uribe-Loría, L., Castro-Barquero, L., Arauz-Cavallini, F., Henríquez-Henríquez C., & Blanco-Meneses M. (2014). Pudrición basal causada por Phytophtora capsici en plantas de chile tratadas con vermicompost. Agronomía Costarricense, 25(2), 243–253. https://doi.org/10.15517/am.v25i2.15427
Van Hove, F., Waalwijk, C., Logrieco, A., Munaut, F. & Moretti, A. (2011). Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia, 103(3), 570–585. https://doi.org/10.3852/10-038
Verkley, G. J. M., Dukik, K., Renfurm, R., Goker, M., & Stielow, J. B. (2014). Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia, 32, 25–51. https://doi.org/10.3767/003158514X679191
Wang, N., Chu, Y., Wu, F., Zhao, Z., & Xu, X. (2017). Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporialacerata, from decayed mulberry branches. International Biodeterioration & Biodegradation, 117, 236–244. https://doi.org/10.1016/j.ibiod.2016.12.015
Wang, X., Radwan M. M., Taráwneh, A. H., Gao, J., Wedge, D. E., Rosa, L. H., Cutler, H. G., & Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61(19), 4551–4555. https://doi.org/10.1021/jf400212y
Wang, L., Zhang, S., Li, J. -H. & Zhang, Y. -J. (2018). Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungus Hirsutella thompsonii. Environmental Microbiology, 20(9), 3393–3405. https://doi.org/10.1111/1462-2920.14379
White, T.J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 315–322). Academic Press.
Whyte, A. C., Gloer, J. B., Wicklow, D. T., & Dowd, P. F. (1996). Sclerotiamide: A New Member of the Paraherquamide Class with Potent Antiinsectan Activity from the Sclerotia of Aspergillus sclerotiorum. Journal of Natural Products, 59(11), 1093–1095. https://doi.org/10.1021/np960607m
Wijesinghe, C. J., Wilson Wijeratnam, R. S., Samarasekara, J. K. R. R., & Wijesundera, R. L. C. (2011). Development of a formulation of Trichoderma asperellum to control black rot disease on pineapple caused by (Thielaviopsis paradoxa). Crop Protection, 30(3), 300–306. https://doi.org/10.1016/j.cropro.2010.11.020
Wikee, S., Lombard, L., Crous, P. W., Nakashima, C., Motohashi, K., Chukeatirote, E., Alias, S. A., McKenzie, E. H. C., & Hyde, K. D. (2013). Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Diversity, 60, 91–105. https://doi.org/10.1007/s13225-013-0235-8
Wu, S. (2000). Six new species of Phanerochaete from Taiwan. Botanical Bulletin of Academia Sinica, 41, 165–174.
Wu, H., Yang, H., You, X., & Li, Y. (2012). Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. International Journal of Molecular Science, 13(12), 16255–16266. https://doi.org/10.3390/ijms131216255
Xia, J. W., Sandoval-Denis, M., Crous, P. W., Zhang, X. G., & Lombard, L. (2019). Numbers to names - restyling the Fusarium incarnatum-equiseti species complex. Persoonia - Molecular Phylogeny and Evolution of Fungi, 43, 186–221. https://doi.org/10.3767/persoonia.2019.43.05
Xia, X., Lie, T. K., Qian, X., Zheng, Z., Huang, Y., & Shen, Y. (2011). Species diversity, distribution, and genetic structure of endophytic and epiphytic Trichoderma associated with Banana Roots. Microbial Ecoogy, 61, 619–625. https://doi.org/10.1007/s00248-010-9770-y
Yaling, L., Pongnak, W., & Kasem, S. (2014). Mushroom and macrofungi collection for screening bioactivity of some species to inhibit coffee antharcnose caused by Colletotrichum coffeanum. Journal of Agricultural Technology, 10(4), 845-861.
Zad, S. J., & Koshnevice, M. (2001). Damping-off in conifer seedling nurseries in Noshahr and Kelardasht. Mededelingen, 66(2a), 91–93.
Zhang, A. W., Hartman, G. L., Curio-Penny, B., Pedersen, W. L., & Becker, K. B. (1999). Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology, 89(9), 796–804. https://doi.org/10.1094/PHYTO.1999.89.9.796
Zheng, Y. -K., Qiao, X. -G., Miao, C. -P., Liu, K., Chen, Y. -W., Xu, L. -H., & Zhao, L. -X. (2016). Diversity, distribution and biotechnological potential of endophytic fungi. Annals of Microbiology, 66, 529–542. https://doi.org/10.1007/s13213-015-1153-7
Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6), 553-596. https://doi.org/10.1080/09583150701309006
Zimowska, B. (2011). Characteristics and occurrence of Phoma spp. on herbs from the family Lamiaceae. Acta Scientiarum Polonorum Hortorum Cultus, 10(2), 213-224.