Agronomía Mesoamericana
Artículo científico
Volumen 34(3): Artículo 53248, 2023
e-ISSN 2215-3608, https://doi.org/10.15517/am.2023.54430
https://revistas.ucr.ac.cr/index.php/agromeso/index
M. Lavilla2, M. Martinez3, A. Ivancovich2, A. Díaz-Paleo2, 4
1 Recepción: 2 de diciembre, 2022. Aceptación: 7 de marzo, 2023. Este trabajo formó parte de la tesis doctoral del primer autor, realizada y financiada por la Universidad Nacional del Noroeste de la provincia de Buenos Aires (UNNOBA).
2 Universidad Nacional del Noroeste de la provincia de Buenos Aires, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina. malavilla@comunidad.unnoba.edu.ar (autor para la correspondencia https://orcid.org/0000-0002-7282-4696) ajivancovich@comunidad.unnoba.edu.ar (https://orcid.org/0000-0002-4195-2986).
3 Instituto Nacional de Tecnología Agropecuaria, Gabriel de Aristizábal 1700, Villa Tesei, Provincia de Buenos Aires, Argentina. malvinaimartinez@gmail.com (https://orcid.org/0000-0001-6591-6173).
4 Instituto Nacional de Tecnología Agropecuaria, Ruta 32 km 4,5 (2700), Pergamino, Buenos Aires, Argentina. diazpaleo.antonio@inta.gob.ar (https://orcid.org/0000-0003-4252-5123).
Introducción. En el manejo integrado de enfermedades es importante incorporar elementos como umbrales de daño económico, monitoreo y sistemas de pronóstico de riesgo, los cuales constituyen herramientas para definir estrategias de control de las mismas. Objetivo. Desarrollar un modelo predictivo de la severidad del tizón foliar por Cercospora (TFC), mediante variables meteorológicas para el norte de la provincia de Buenos Aires, Argentina. Materiales y métodos. Se contó con datos de incidencia y severidad del TFC correspondientes a cinco ciclos productivos de soja (2013-2017) en Pergamino, Buenos Aires, relevados en distintos estados reproductivos R1 a R7. La variable dependiente fue la probabilidad de ocurrencia de niveles categorizados de la tasa de incremento (TI) de la severidad del TFC causado por C. kikuchii. Se registró diariamente la temperatura máxima y mínima, la precipitación y la humedad relativa. Se calculó el coeficiente de correlación no paramétrico de Kendall Tau-b entre los niveles categorizados binariamente de TI de la severidad del TFC y las variables meteorológicas. Resultados. Las variables meteorológicas con mayor correlación en relación a la TI del TFC fueron aquellas relacionadas con la humedad relativa [Días con humedad relativa (HR)>76 % (DHR), días con temperatura máxima (Tmax) <28 °C temperatura mínima (Tmin) >15 °C y HR >76 % (DHRT), días con Tmax <28 °C, Tmin >15 °C, lluvias >0,5 mm y HR >75 %(MOJro)]. La inclusión de una variable térmica (en los días donde Tmax <28 °C GDTmax: Σtemperatura máxima-28 ºC) resultó importante para el ajuste del modelo predictivo. Conclusión. Se pudo desarrollar un modelo de predicción de la severidad del TFC que incluyó dos variables meteorológicas, una relacionada con los días de humedad relativa y otra térmica relacionada con un límite de temperatura máxima para el desarrollo de la enfermedad. Para validar y robustecer el modelo propuesto es necesario contar con más datos de severidad a través de los años.
Palabras clave: hongo, patología, plaga, Glycine max.
Introduction. In the integrated management of diseases, it is important to incorporate elements such as economic damage thresholds, monitoring, and risk forecasting systems, which constitute tools to define d control strategies. Objective. To develop a predictive model of the severity of Cercospora leaf blight (TFC) using meteorological variables in the northern region of Buenos Aires Province, Argentina. Materials and methods. Data on the incidence and severity of TFC corresponding to five soybean production cycles (2013-2017) in Pergamino, Buenos Aires, at different reproductive stages (R1 to R7) were available. The dependent variable was the probability of occurrences of categorized levels of the rate of increase (TI) in TFC severity caused by C. kikuchii. Daily maximum and minimum temperature, precipitation, and relative humidity were recorded. The non-parametric Kendall Tau-b correlation coefficient was calculated between the binary categorized levels of TI in TFC severity and meteorological variables. Results. Meteorological variables with the highest correlation in relation to TFC TI were those related to relative humidity [Days with relative humidity (HR) >76 % (DHR), days with maximum temperature (Tmax) <28 °C, minimum temperature (Tmin) >15 °C, and HR >76 % (DHRT), days with Tmax <28 °C, Tmin >15 °C, rainfall >0.5 mm, and HR >75 %(MOJro)]. The inclusion of a thermal variable (on days where Tmax <28 °C, GDTmax: ∑maximum temperature-28 °C) was important for the adjustment of the predictive model. Conclusion. A predictive model for TFC severity was developed, which included two meteorological variables, one related to days of relative humidity and another thermal related to a maximum temperature threshold for disease development. To validate and strengthen the proposed model, it is necessary to have more severity data over the years.
Keywords: fungus, pathology, plague, Glycine max.
La reducción de las pérdidas de rendimiento de los cultivos debidas a enfermedades es abordada por el concepto de manejo integrado, el mínimo impacto ambiental y el máximo beneficio económico (Lavilla & Ivancovich, 2021). Para ello, se incorporan elementos como umbrales de daño económico, monitoreo y sistemas de pronóstico de riesgo, los cuales constituyen herramientas valiosas para definir estrategias de manejo y control de las enfermedades. El manejo integrado de enfermedades es una estrategia dinámica que debe generar soluciones en sistemas productivos cambiantes, por acción de la naturaleza o del hombre (March et al., 2010).
La interacción simultánea o sincrónica entre hospedante, patógeno y ambiente, gobierna el desarrollo de una enfermedad, que puede causar alteraciones fisiológicas y morfológicas en las plantas hospedantes. En la naturaleza, el llamado triángulo de la enfermedad, resulta de la acción combinada de un patógeno virulento, un hospedante susceptible y un ambiente favorable (Lavilla et al., 2022). Este patosistema interactivo se modifica cuando el hombre incorpora cultivos, con sus prácticas de manejo y estrategias de control de enfermedades.
La información agrometeorológica es fundamental para la predicción de brotes de enfermedades para el uso eficaz y responsable de las medidas de control, la predicción de los rendimientos de los cultivos y del potencial de mercado para el cultivo. Los principales factores meteorológicos responsables de los brotes de fitoenfermedades son la temperatura (tanto del aire como del suelo), la precipitación (lluvia y rocío), la humedad (humedad relativa, humedad del suelo), la radiación solar (intensidad y nubosidad), el viento, entre otros. Entre estas variables, la temperatura y la humedad se consideran como los factores más importantes, ya que todos los patógenos tienen un rango de requerimiento de temperatura y humedad óptimo para su crecimiento (Agrios, 2005).
Los modelos matemáticos y estadísticos permiten representar lo que sucede en los cultivos frente a distintos patógenos y en diferentes condiciones ambientales. En general, se utilizan dos estrategias para el modelado de datos efitiológicos: los modelos empíricos y los mecanísticos. La forma de describir el progreso epifítico, es a través de la relación observada entre dos o más variables, basándose en algunos o todos los factores capaces de expresar la enfermedad (Bombelli, 2011).
Si bien existen diversos métodos para la asociación de las variables meteorológicas con la severidad (SEV) de las enfermedades, el método de regresión logística no requiere el supuesto de normalidad multivariada para que sea válido (Henderson et al., 2007). Esto significa que, aun cuando los datos recopilados de incidencia y SEV no sean normales, igual pueden analizarse y generar un modelo predictivo de la enfermedad.
En Argentina, el cultivo de soja es la principal oleaginosa implantada en el país, con una superficie sembrada cercana a los veinte millones de hectáreas y una producción de 56 millones de toneladas (Lavilla et al., 2022). Entre las enfermedades del follaje, el tizón foliar por Cercospora (TFC) causado por Cercospora kikuchii es una enfermedad endémica en el cultivo de soja para el norte de la provincia de Buenos Aires (Lavilla et al., 2021). El TFC cuando no se controla en tiempo y forma sobre el cultivo de soja, puede causar pérdidas de rendimiento de hasta un 11 % (Lavilla & Ivancovich, 2021). Dentro del manejo integrado de enfermedades, es importante contar con un modelo predictivo y de esta manera poder anticiparce a posibles problemas sanitarios en los cultivo.
El objetivo de este trabajo fue desarrollar un modelo predictivo de la severidad del tizón foliar por Cercospora (TFC), mediante variables meteorológicas para el norte de la provincia de Buenos Aires, Argentina.
Se contó con datos de incidencia y severidad del tizón foliar por Cercospora (TFC) correspondiente a cinco ciclos productivos de soja (Glycine max) (2013-2017) de Pergamino, provincia de Buenos Aires, Argentina, relevados en distintos estados reproductivos (ER=R1 a R7) (Fehr et al., 1971) (Cuadro 1). Los datos fueron obtenidos de cincuenta lotes de soja por año de evaluación, ubicados entre las coordenadas S 33° 35’ 46.752’y O 60° 44’ 26.375’’ y S 34° 11’ 18.168’’y O 60° 42’ 15.552’’. A partir de estos datos, se calculó la tasa de incremento (TI; %/día) como la diferencia entre la severidad medida en un estado reproductivo, menos la severidad medida en el estado reproductivo precedente, dividido entre el número de días transcurridos entre las dos mediciones (Moschini et al., 2006). Se optó por el valor de severidad para el cálculo de TI, debido a que la inclusión de la incidencia no influyó en el resultado final del modelo predictivo y en la selección de las variables climáticas relacionadas con la enfermedad. La escala utilizada para evaluar la severidad del TFC fue la de Lavilla et al. (2021).
Cuadro 1. Valores observados por año de la tasa de incremento (TI) con base a los datos de severidad del tizón foliar por Cercospora durante las distintas fases reproductivas de la soya (Glycine max) en Pergamino, Buenos Aires, Argentina, 2013-2017.
Table 1. Yearly observed values of the rate of increase (TI) based on data on the severity of Cercospora leaf blight during different reproductive stages of soybean (Glycine max) in Pergamino, Buenos Aires, Argentina, 2013-2017.
La variable dependiente fue la probabilidad de ocurrencia de niveles categorizados de TI de la SEV del TFC causado por C. kikuchii.
La categorización binaria de la TI se efectuó con relación a un valor umbral en “niveles altos” y “niveles bajos”. El percentil que mejor correlacionó las variables meteorológicas y la TI fue el percentil 50 (0,47). Es decir, TI >0,47 resulta en niveles altos de SEV del TFC y TI <=0,47 resulta en niveles bajos. Las variables meteorológicas se procesaron en un lapso (período crítico) que se extendió desde la fecha correspondiente a cada fase reproductiva menos diez días. Períodos críticos menores y mayores a este valor también fueron analizados.
La variable independiente o regresora se constituyó por valores diarios de temperatura máxima (Tx; °C) y mínima (Tn; °C), precipitación (Prec; mm) y humedad relativa (HR; %), provistos por la estación meteorológica convencional de la Estación Experimental Agropecuaria Pergamino, del Instituto Nacional de Tecnología Agropecuaria, Pergamino, para los años con los que se cuenta con datos de enfermedad.
A partir de estos registros meteorológicos, numerosas variables meteorológicas secundarias (térmicas, hídricas y combinadas) se calcularon en un período crítico susceptible que se extendió desde la fecha correspondiente a cada fase reproductiva menos diez días. Las mismas fueron: NDL: cuantifica el número de días con lluvias >0,5 mm; PRHR: cuantifica el número de días con lluvias >0,5 mm y HR >76 %; DHR: cuantifica el número de días con HR >76 %; DT: cuantifica el número de días con Tmax <28 °C y Tmin >15 °C; TPRE: cuantifica el número de días con Tmax <28°C, Tmin>15 °C y lluvias >0,5 mm; DHRT: cuantifica el número de días con Tmax <28 °C, Tmin >15° C y HR >76 %; MOJro: cuantifica el número de días con Tmax <28 °C, Tmin >15 °C, lluvias >2 mm y HR >75 %; MOJpr: cuantifica el número de días con Tmax <28 °C, Tmin >15 °C, lluvias >0,5 mm y HR >75 %; GDTmax: en los días donde Tmax >28 °C, GDTmax: ∑(Tmax-28 °C) (Cuadro 2).
Cuadro 2. Coeficientes de correlación de Kendall entre la tasa de incremento de tizón foliar por Cercospora en soya (Glycine max) y las variables meteorológicas. Pergamino, Buenos Aires, Argentina, 2013-2017.
Table 2. Kendall correlation coefficients between the rate of increase of Cercospora leaf blight in soybean (Glycine max) and the meteorological variables. Pergamino, Buenos Aires, Argentina, 2013-2017.
Los modelos estadísticos se analizaron con el paquete estadístico SAS (Statistical Analysis System, versión 8.0; SAS Institute, Inc., Cary, NC, USA).
En una primera etapa, a través del procedimiento Freq de SAS, se calcularon los coeficientes de correlación no paramétricos de Kendall Tau-b (t) entre los niveles binarios de TI de la severidad del TFC categorizados y las variables meteorológicas. A partir de la maximización de estos coeficientes quedó establecida la ventana temporal donde se calcularon las variables meteorológicas.
El procedimiento Logistic del SAS se ajustó a un modelo de regresión para datos de respuesta binaria por medio del método de máxima verosimilitud (De Wolf & Isard, 2007; Moschini et al., 2006). Una función logit =ln (PrS / 1- PrS) establece la unión entre el componente estocástico y las variables regresoras meteorológicas, donde PrS es la probabilidad de una epifitia severa (S), al superar al valor umbral de TI (valor percentil que maximiza la relación entre TI y variables meteorológicas).
El modelo logístico obtenido, con X1 como predictor y β0 y β1 como parámetros fue ln (PrS/1-PrS)= β0 + β1 X1. Al resolver la expresión: 1 /(1+Exp-(ln (PrS/1-PrS)), se obtiene el valor de PrS. La probabilidad de una epifitia moderada a ligera (M) se calcula como 1 – PrS. De esta manera, los eventos son binarios PrM y PrS, donde PrM es la probabilidad de observar una epifitia moderada a ligera y la relación entre ambos: PrM=1-PrS.
Se utilizó el método de selección de variables meteorológicas regresoras Stepwise y los niveles de significancia a priori, para entrar y permanecer en el modelo (NSE y NSP, respectivamente).
Derivado del análisis de regresión logística, se calcularon para cada modelo ajustado la sensibilidad (porcentaje de observaciones epifíticas > al valor umbral mediana de SEV predichas como S), especificidad (% de observaciones epifíticas <= al umbral clasificado como M), falsos S y falsos M. Sensibilidad y especificidad de los modelos se utilizaron para calcular la precisión de predicción (Hughes et al., 1997).
La precisión de predicción es el porcentaje de casos clasificados. Si en cada uno de los casos analizados se compara la TI observada versus la predicha con la máxima probabilidad de ocurrencia por las ecuaciones logísticas desarrolladas, es posible calcular el porcentaje de casos correctamente clasificados.
Las variables meteorológicas con mayor coeficiente de Kendall se presentan en el Cuadro 2. La variable DHR presentó el mayor coeficiente de correlación (t =0,4837) y correspondió a una variable simple compuesta por la humedad relativa. MOJro (t =0,4595) y DHRT (t =0,3907) son variables compuestas que además de humedad relativa tienen temperatura y lluvia como componente. La inclusión de cada uno de estos dos últimos elementos meteorológicos no contribuyó para superar a la variable simple (DHR).
Las variables relacionadas al elemento lluvia (NDL, PRHR y MOJpr) tuvieron muy baja correlación. Entre las variables relacionadas con la temperatura, GDTmax resultó la de mayor correlación (-0,2958) y con pendiente negativa. Esto indica que a mayor número de días con temperaturas >28 °C, es menor la TI del TFC. Variables térmicas que representan condiciones óptimas para el desarrollo de la enfermedad (DT) presentaron baja correlación, lo que indicaría que para este conjunto de datos (cinco años), DT no tuvo un rol importante en el desarrollo del TFC.
El procedimiento Stepwise del proc logistic, con un nivel de significancia de 0,05 %, seleccionó el modelo constituido por DHR y GDTmax como el más apropiado (Cuadro 3). El umbral de riesgo (Cuadro 3; Figura 1), corresponde al valor de probabilidad (p=0,47) para clasificar la ocurrencia de niveles categorizados (bajo y alto) de TFC. El mismo se determinó con la sensibilidad y la especificidad para el rango completo de valores de probabilidad. Se eligió el valor que maximizó la sensibilidad y especificidad. La probabilidad de riesgo severo del TFC obtenida entre los años 2018-2019 (línea negra) y umbral de riesgo (línea roja) se observan en la Figura 1. En dichos años, los niveles de SEV del TFC superaron el umbral de riesgo del 16 al 25 de diciembre de 2018 y del 15 al 25 de enero de 2019, lo cual indicaría la necesidad de la aplicación de fungicidas foliares para el control de la enfermedad.
Cuadro 3. Modelo de regresión logística para estimar la probabilidad de ocurrencia de niveles categorizados como bajos o altos de tizón foliar por Cercospora en soja (Glycine max). Pergamino, Buenos Aires, Argentina, 2013-2017.
Table 3. Logistic regression model to estimate the probability of occurrence of levels categorized as low or high of Cercospora leaf blight in soybean (Glycine max). Pergamino, Buenos Aires, Argentina, 2013-2017.
Figura 1. Evolución de la probabilidad de ocurrencia diaria de TI del tizón foliar por Cercospora (pSev) en soya (Glycine max) y de los valores de las dos variables predictoras meteorológicas DHR (número de días con HR>76%); GDTmax (cuando Tmax>28 acumula los residuales diarios) para los años 2018 y 2019 en Pergamino, Buenos Aires, Argentina. 2013-2017.
La variable GDTmax fue transformada (GDTmax/10) para poder graficarse junto a DHR
Figure 1. Evolution of the probability of daily serve TI of Cercospora leaf blight (pSev) ocurrence in soybean (Glycine max) and of the values of the two meteorological predictor variables, DHR (number of days with HR>76%), and GDTmax (when Tmax>28 accumulates the daily residuals) for the years 2018 and 2019 in Pergamino, Buenos Aires, Argentina. 2013-2017.
The variable GDTmax was transformed (GDTmax/10) to be plotted along side with DHR.
El nuevo modelo para el tizón foliar por Cercospora (TFC) en soja englobó dos variables climáticas importantes para el desarrollo de la enfermedad [días con humedad relativa >76 % (DHR) y días donde temperatura máximas >28 °C (GDTmax)]. Estudios realizados sobre las enfermedades de final de ciclo en soja, solo utilizaron como variable de respuesta a las precipitaciones (Carmona et al., 2010). Sin embargo, en esta investigación no solo son importantes los días con humedad relativa (HR) superior al 76 %, sino que las temperaturas también influyeron en la evolución del TFC en el norte de la provincia de Buenos Aires. Estos resultados son congruentes con los publicados en mijo perla (Pennisetum glaucum), con un aumento significativo de la severidad de las enfermedades con valores elevados de humedad y temperaturas durante el ciclo del cultivo (Yadav et al., 2016).
Otros antecedentes en modelos predictivos que refuerzan los resultados obtenidos en la presente investigación, donde no solo las precipitaciones fueron importantes en la evolución de una enfermedad, fueron los obtenidos en Luxemburgo para roya amarilla causada por Puccinia striiformis del trigo (Triticum aestivum), en dicha investigación se obtuvo que en invierno se requieren elevadas humedades relativas (>92 %), temperaturas entre los 4 °C y los 16 °C, y por lo menos cuatro horas por día para que la enfermedad se desarrolle y pueda causar una epifitia (El Jarroudi et al., 2017). Además, en trigo se ha observado una mayor relación con la humedad relativa que con la temperatura, para la evolución de la severidad del quemado del trigo o Pryricularia o Brusone del trigo causado por Magnaporthe oryzae pathotype Triticum en Asia (Montes et al., 2022).
El modelo propuesto en esta investigación fue validado con los datos de severidad del TFC obtenidos en campo durante los años 2018, 2019 y 2020 en el norte de la provincia de Buenos Aires. Esta validación fue congruente entre la curva predicha con el modelo sobre la evolución del TFC y con las variables patométricas relevadas a campo.
En esta investigación los bajos coeficientes de correlación de Kendall (Cuadro 2) de todas las variables en general, indican que se necesita continuar con la evaluación del TFC sobre el cultivo de soja en los próximos años y robustecer así el modelo propuesto.
Este es el primer modelo predictivo del TFC que asocia a la humedad relativa y las temperaturas, con la intensidad de la enfermedad.
Se pudo desarrollar un modelo de predicción de la severidad del TFC que incluyó dos variables meteorológicas, una relacionada con los días de humedad relativa y otra térmica relacionada con el límite de temperatura máxima para el óptimo desarrollo de la enfermedad. Para validar y robustecer el modelo propuesto, es necesario contar con más datos de severidad a través de los años.
Agrios, G. N. (2005). Plant pathology (5th Ed.). Elsevier Academic Press.
Bombelli, E. C. (2011). Modelado para la predicción de enfermedades en cultivos de alto valor comercial [Tesis de Maestría, Universidad Tecnológica Nacional]. Universidad Tecnológica Nacional. http://www.edutecne.utn.edu.ar/tesis/modelado_prediccion_enfermedades.pdf
Carmona, M., Moschini, R., Cazenave, G., & Sautua, F. (2010). Relación entre la precipitación registrada en estados reproductivos de la soja y la severidad de Septoria glycines y Cercospora kikuchii. Tropical Plant Pathology, 35(2), 71-78. https://doi.org/10.1590/s1982-56762010000200001
De Wolf, E. D., & Isard, S. A. (2007). Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45(1), 203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329
El Jarroudi, M., Kouadio, L., Bock, C. H., El Jarroudi, M., Junk, J., Pasquali, M., Maraite, H., & Delfosse, P. (2017). A threshold-based weather model for predicting stripe rust infection in winter wheat. Plant Disease, 101(5), 693-703. https://doi.org/10.1094/pdis-12-16-1766-re
Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Science, 11(6), 929-931. https://doi.org/10.2135/cropsci1971.0011183x001100060051x
Henderson, D., Williams, C. J., & Miller, J. S. (2007). Forecasting late blight in potato crops of Southern Idaho using logistic regression analysis. Plant Disease, 91(8), 951-956. https://doi.org/10.1094/pdis-91-8-0951
Hughes, G, McRoberts, N., Madden, L. V., & Nelson, S. C. (1997). Validating mathematical models of plant-disease progress in space and time. Mathematical Medicine and Biology, 14(2), 85-112. https://doi.org/10.1093/imammb/14.2.85
Lavilla, M., & Ivancovich, A. (2021). Relación entre enfermedades y rendimiento de granos de soja. Agronomía Mesoamericana, 32(2), 141-148. https://doi.org/10.15517/am.v32i2.44057
Lavilla, M., Ivancovich, A. J., & Díaz-Paleo, A. (2021). Diagrammatic scale for assessment the severity of Cercospora leaf blight on soybean (Glycine max) leaflets. Agronomía Mesoamericana, 33(1), Article 43338. https://doi.org/10.15517/am.v33i1.43338
Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022). Tizón Foliar y la Mancha Púrpura de la semilla causados por Cercospora kikuchii en soja (Glycine max L. Merr.). Agronomía Mesoamericana, 33(3), Artículo 48944. https://doi.org/10.15517/am.v33i3.48494
March, G. J., Oddino, C. M., & Marinelli, A. D. (2010). Manejo de enfermedades de los cultivos según parámetros epidemiológicos (1ª ed.). Biglia Impresores.
Moschini, R. C., Sisterna, M. N., & Carmona, M. A. (2006). Modelling of wheat black point incidence based on meteorological variables in the southern Argentinean Pampas region. Australian Journal of Agricultural Research, 57(11), 1151-1156. https://doi.org/10.1071/ar05275
Montes, C., Ghulam Hussain, S., & Krupnik, T. J. (2022). Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. International Journal of Biometeorology, 66(11), 2237-2249. https://doi.org/10.1007/s00484-022-02352-9
Yadav, R., Bharti, O., Pandya, R. K., Thakur, M. P., & Yadav, A. (2016). Correlation study of individual meteorological parameters and disease severity for prediction of pearl millet blast. International Journal of Current Research, 8(11), 41580-41582. http://www.journalcra.com/article/correlation-study-individual-meteorological-parameters-and-disease-severity-prediction-pearl