Revista geológica de América central ISSN Impreso: 0256-7024 ISSN electrónico: 2215-261X

OAI: https://revistas.ucr.ac.cr/index.php/geologica/oai
Attenuation of response spectra in seismic hazard problems. Use of original published GMPEs or their correction by local characteristics? Study case Nicaragua
Amenaza sísmica - aceleración en [g] - con un percentil 84 para período de retorno de 475 años, y un valor de VS30 = 760 m/seg. Tomado de (Álvarez, 2021)
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Acceleration
Response spectra
GMPE
Seismic hazard
Uniform hazard spectra
Aceleración
Espectros de respuesta
Relaciones de atenuación
Amenaza sísmica
Espectros de amenaza uniforme

How to Cite

Álvarez, L. (2022). Attenuation of response spectra in seismic hazard problems. Use of original published GMPEs or their correction by local characteristics? Study case Nicaragua. Revista geológica De América Central, 67, 1–18. https://doi.org/10.15517/rgac.v67i0.51698

Abstract

An analysis of acceleration response spectra (SA) recorded in Nicaragua and its comparison with those predicted with different published GMPE (Ground Motion Prediction Equations) is presented (a geometric mean of recorded horizontal acceleration components is used). It is discussed a procedure for modification of published GMPE to be locally used, based on the residual analysis of observed SA, converted to expected values in hard rock (VS30 = 1130 m/seg), with respect to predicted by GMPE’s ones: ln{ERAobserved(T)} - ln{ERApredicted(T)}. The modification takes the form of a correction Q(μi,σi) with “i” varying over spectrum periods, being “μ” the bias and “σ” the standard dispersion. A procedure is proposed for its use in seismic hazard assesment that consist in using the modified GMPE for hard rock in the calculations and converting the obtained uniform hazard spectra to desired value of VS30 by using the same method employed to convert the observed SA to hard rock ones. It is considered that this procedure gives better results that the direct use of published GMPE.

https://doi.org/10.15517/rgac.v67i0.51698
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Akkar S., Sandikkaya, M. A., y Bommer J. J. (2014). Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12, 359-387. doi: 10.1007/s10518-013-9461-4

Álvarez, L. (2021). Estudio de amenaza sísmica – MTI. Proyecto “Normativa sismorresistente para la ciudad de Managua”. Informe final. Managua, Nicaragua: Ministerio de Transporte e Infraestructura. Recuperado de https://www.mti.gob.ni/download/informe-sismologico-mti-2021/?wpdmdl=4765&refresh=6201c18cb84601644282252

Álvarez L., y Chuy, T. (1985). Isoseismal model for Greater Antilles. En : Schenk, V. y Schenková, V. (edit.); Československá akademie věd. Geofysikální ústav. Presentado en Proceedings of the 3rd International Symposium on the analysis of seismicity and on seismic risk, Liblice Castle, Czechoslovakia, June 17-22, 1985, (pp. 134-141).

Álvarez L., Lindholm, C., yVillalón, M. (2017). Seismic Hazard for Cuba: A New Approach. Bulletin of the Seismological Society of Ammerica, 107(1), 229-239. doi: 10.1785/0120160074

ASCE. (2017). ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standards. doi: 10.1061/9780784414248

Bard, P-Y., Bora, S. S., Hollender, F., Laurendeau, A., y Traversa, P. (2020). Are the Standard VS-Kappa Host-to-Target Adjustments the Only Way to Get Consistent Hard-Rock Ground Motion Prediction?. Pure and Applied Geophysics, 177(5), 2049–2068. doi: 10.1007/s00024-019-02173-9

Boore, D. (2008). TSPP---A Collection of FORTRAN Programs for Processing and Manipulating Time Series. U.S. Geological Survey Open-File Report, 2008-1111. doi: 10.3133/ofr20081111

Boore, D. M., Watson-Lamprey, J., y Abrahamson, N. A. (2006). Orientation-Independent Measures of Ground Motion. Bulletin of the Seismological Society of America, 96(4A), 1502–1511. doi: 10.1785/0120050209

Brent, R. (1973). Algorithms for minimization without derivatives. Englewood Cliffs, New Jersey: Prentice - Hall.

Cauzzi C., Faccioli E., Vanini M., y Bianchini A. (2015). Updated predictive equations for broadband (0.01-10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bulletin of Earthquake Engineering, 13(6), 1587-1612. doi: 10.1007/s10518-014-9685-y

Chen, Y., Chen, L., Güendel, F., y Kulhánek, K. (2002). Seismic Hazard and Loss Estimation for Central America. Natural Hazards, 25, 161–175. doi: 10.1023/A:1013722926563

Chiou, B., y Youngs R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1), 173–216. doi: 10.1193/1.2894832

Chiou, B., y Youngs, R. (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3), 1117-1153. doi: 10.1193/072813EQS219M

Chuy, T. J., y Álvarez, J. L. (1995). Peligrosidad Sísmica de Cuba con fines de la Norma Sismorresistente Cubana. Santiago de Cuba: Fondos del CENAIS. Reporte de Investigación.

Climent, A., W. Taylor, M., Ciudad Real, M., Strauch, W., Villagran, M., Dahle, A., y Bungum, H. (1994). Spectral strong motion attenuation in Central America. Technical Report 2:17 from the project Reduction Natural Disasters in Central America, NORSAR. Manuscrito inédito.

Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. doi: 10.1785/BSSA0580051583

Douglas, J. (2021). Ground motion prediction equations 1964–2021. Department of Civil and Environmental Engineering, University of Strathclyde. Recuperado de http://www.gmpe.org.uk

Douglas, J., Bungum, H., Dahle, A., Lindholm, C., Climent, A., Taylor Castillo, W. ... Strauch, W. (2004). Dissemination of Central American strong-motion data using Strong-Motion Datascape Navigator. CD-ROM collection. Reino Unido: Engineering and Physical Sciences Research Council.

Dipartamento de Scienze della Terra (DST). (2002). Programa “fft”, versión 23. Cálculo de los espectros de Fourier y de respuesta, filtrado y escalado de sismogramas. Trieste: Universidad de Trieste, Departamento de Ciencias de La Tierra.

ENEA-ENEL. (1981). Commissione ENEA-ENEL per lo studio dei problemi sismici connessi con la realizzazione di impianti nucleari. Contributo alla caratterizzazione della sismicità del territorio italiano. Presentado en Progetto Finalizzato Geodinamica Conference, Udine, Italia.

Esteva, L. (1967). Criterio para la construcción de espectros para diseño sísmico. Presentado en XII Jornadas Sudamericanas

de Ingeniería Estructural y III Simposio Panamericano de Estructuras, Caracas.

EUROCODE. (2009). Eurocode 8, Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for building. Recuperado de https://www.phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf

Goldstein, P., Dodge, D., Firpo, M., y Minner, L. (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. En W. H. K. Lee, H. Kanamori, P. C. Jennings y C. Kisslinger (eds), International Handbook of Earthquake and Engineering Seismology, Part B, 85.5 (pp. 1613-1614). Londres: Academic Press. doi: 10.1016/S0074-6142(03)80284-X

Hudson, D. E. (1979). Reading and interpreting strong motion accelerograms. Berkeley: Earthquake Engineering Research Institute.

Idriss I. (2014). An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1155-1177. doi: 10.1193/070613EQS195M

Kanasewitch, E. R. (1981). Time sequence analysis in geophysics. Third Edition. Edmonton, Alberta: The University of Alberta Press. doi: 10.2307/3314985-a

Molina, E., Marroquín, G., Escobar, J., Talavera, E., Rojas, W., Climent, A. ... Lindholm, C. (2008). Proyecto RESIS-II. Evaluación de la amenaza sísmica en Centroamérica. Manuscrito inédito. Recuperado de https://webserver2.ineter.gob.ni/geofisica/sis/web/PSresisII/doc/resis2.pdf

Montalva, G. A., Bastías, N., y Rodríguez-Marek, A. (2017). Ground-motion prediction equation for the Chilean Subduction Zone. Bulletin of the Seismological Society of America, 107(2), 901-911. doi: 10.1785/0120160221

Norma Cubana. (1999). NC 46:1999, Construcciones sismorresistentes. Requisitos básicos para el diseño y construcción. La Habana: Comité Estatal de Normalización.

Netlib. (2020). Netlib Repository at UTK and ORNL. Recuperado de http://www.netlib.org

Ordaz M., y Salgado-Gálvez, M. A. (2019). R-CRISIS v20 Validation and Verification Document. Ciudad de Mexico: Instituto de Ingeniería – Universidad Nacional Autónoma de México y Evaluación de Riesgos Naturales - ERN. Recuperado de http://www.r-crisis.com/Content/files/R-CRISIS%20V_AND_V%20Document_V1%20Full%20document.pdf

Ottemöller, L., Voss, P., y Havskov, J. (2018). SEISAN earthquake analysis software for Windows, Solaris, Linux and MacOSX. Version 11.0. Recuperado de http://seisan.info

Papagiannopoulos, G. A., Hatzigeorgiou, G. D., y Beskos, D. E. (2013). Recovery of spectral absolute acceleration and spectral relative velocity from their pseudo-spectral counterparts. Earthquake and Structures, 4(5), 489-508. doi: 10.12989/EAS.2013.4.5.489

PEER. (2013). PEER’s NGA-West2 Project. Final products. Recuperado de https://peer.berkeley.edu/research/nga-west-2/final-products

Reinoso, E., Zeballos, A., Hernández, O., Moore, F.,Chávez, G., Hernández, J. J. ... Luna, J. (2005). Estudio de la vulnerabilidad sísmica de Managua. Managua: Ineter. Manuscrito inédito.

Sandikkaya, M. A. (2014). Next generation pan-European ground-motion prediction equations for engineering parameters (Tesis de doctorado). Universidad de Grenoble, Francia. Recuperado de https://tel.archives-ouvertes.fr/tel-01233262/file/40105_SANDIKKAYA_MUSTAFA_2014_diffusion.pdf

Schmidt, V. (2014). Ecuaciones predictivas del movimiento del suelo para América Central, con datos de 1972 a 2010. Revista Geológica de América Central, 50, 7-37. doi: 10.15517/rgac.v0i50.15106

USGS. (2020). VS30 Models and Data. Recuperado de https://earthquake.usgs.gov/data/vS30

Yenier E., y Atkinson, G. M. (2015). Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: application to Central and Eastern North America. Bulletin of the Seismological Society of America, 105(4), 1989-2009. doi: 10.1785/0120140332

Youngs R. R., Chiou S. J., Silva W. J., y Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58-73. doi: 10.1785/gssrl.68.1.58

Wessel, P., y Smith, W. H. F. (1998). New, improved version of Generic Mapping Tools released. EOS, Transactions American Geophysical Union, 79(47), 579. doi: 10.1029/98EO00426

Williams, T., y Kelley, C. (2017). Gnuplot 5.0: An interactive plotting program. Recuperado de http://www.gnuplot.info/docs_5.0/gnuplot.pdf

Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T. ... Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898-913. doi: 10.1785/0120050122

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Copyright (c) 2023 Leonardo Álvarez

Downloads

Download data is not yet available.