El inhibidor de la histona desacetilasa butirato de sodio estimula la adipogénesis a través de un cambio transcripcional limitado en células troncales derivadas de ligamento periodontal

Autores/as

  • Anahí Torres-Nájera Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Inn, Perif. de Mérida Lic. Manuel Berzunza 13615, Chuburná de Hidalgo. C.P. 97203, Mérida, Yucatán, México. Laboratorio de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-AX Av. Itzaés Costado Sur “Parque de la Paz”, Col. Centro. C.P. 97000, Mérida, Yucatán, México. Autor/a https://orcid.org/0009-0006-0845-0024
  • Angélica Anahí Serralta-Interían Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Inn, Perif. de Mérida Lic. Manuel Berzunza 13615, Chuburná de Hidalgo. C.P. 97203, Mérida, Yucatán, México. Laboratorio de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-AX Av. Itzaés Costado Sur “Parque de la Paz”, Col. Centro. C.P. 97000, Mérida, Yucatán, México. Autor/a https://orcid.org/0000-0003-2062-2141
  • Rodrigo Arturo Rivera-Solís Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Inn, Perif. de Mérida Lic. Manuel Berzunza 13615, Chuburná de Hidalgo. C.P. 97203, Mérida, Yucatán, México Autor/a https://orcid.org/0000-0002-5721-9615
  • Geovanny Nic-Can SECIHTI-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn. C.P. 97203, Mérida, Yucatán, México Autor/a https://orcid.org/0000-0001-8003-7716
  • Leydi Carrillo-Cocom Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Inn, Perif. de Mérida Lic. Manuel Berzunza 13615, Chuburná de Hidalgo. C.P. 97203, Mérida, Yucatán, México Autor/a https://orcid.org/0000-0002-5477-7603
  • Beatriz Adriana Rodas-Junco Laboratorio de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-AX Av. Itzaés Costado Sur “Parque de la Paz”, Col. Centro. C.P. 97000, Mérida, Yucatán, México. SECIHTI-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn. C.P. 97203, Mérida, Yucatán, México Autor/a https://orcid.org/0000-0002-2804-6073

DOI:

https://doi.org/10.15517/m983tw41

Palabras clave:

Células troncales de ligamento periodontal; Acetilación de histonas; Adipogénesis; Inhibidores de histonas desacetilasas.

Resumen

La diferenciación adipogénica desempeña un papel crucial en la biología del tejido adiposo, un órgano endocrino que regula el almacenamiento de energía y la secreción hormonal. La disfunción en este proceso contribuye a enfermedades metabólicas como la obesidad y la diabetes tipo II. Se han desarrollado modelos in vitro para investigar los mecanismos de la adipogénesis, y las células troncales de ligamento periodontal (CTLP) emergen como un modelo prometedor debido a su capacidad multipotente. Estudios previos han demostrado que la manipulación epigenética puede mejorar la respuesta adipogénica en varias líneas celulares. La acetilación de la lisina 9 en la histona H3 (H3K9ac) se asocia con la activación de genes clave, como PPARγ-2. En este estudio, evaluamos si los inhibidores de la histona desacetilasa de clase I, como el ácido valproico (VPA) y el butirato de sodio (NaBu), ambos ácidos grasos de cadena corta, pueden aumentar la acetilación de H3K9 e influir en la diferenciación adipogénica. Utilizamos concentraciones de VPA de 1, 4 y 8 mM y NaBu de 1, 2 y 5 mM para evaluar sus efectos sobre la viabilidad celular, la morfología, la distribución de H3K9ac y la diferenciación adipogénica. Los resultados indicaron que las células tratadas con NaBu de 5 mM presentaron cambios morfológicos, menor viabilidad, mayor intensidad de la señal de H3K9ac y mayor deposición lipídica intracelular. Estos resultados sugieren que la inhibición de las HDAC por NaBu aumenta la plasticidad hacia la adipogénesis de las CTLP mediante un cambio transcripcional limitado en sus genes clave.

Referencias

De Fano M., Malara M., Vermigli C., Murdolo G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int J Mol Sci. 2024; 25 (16). DOI: https://doi.org/10.3390/ijms25168650

Rodríguez-Fuentes D.E., Fernández-Garza L.E., Samia-Meza J.A., Barrera-Barrera S.A., Caplan A.I., Barrera-Saldaña H.A. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch Med Res. 2021; 52 (1): 93-101. DOI: https://doi.org/10.1016/j.arcmed.2020.08.006

Thant L., Kaku M., Kakihara Y., Mizukoshi M., Kitami M., Arai M., et al. Extracellular Matrix-Oriented Proteomic Analysis of Periodontal Ligament Under Mechanical Stress. Front Physiol. 2022; 13: 899699. DOI: https://doi.org/10.3389/fphys.2022.899699

Iwayama T., Sakashita H., Takedachi M., Murakami S. Periodontal tissue stem cells and mesenchymal stem cells in the periodontal ligament. Jpn Dent Sci Rev. 2022; 58: 172-8. DOI: https://doi.org/10.1016/j.jdsr.2022.04.001

Trejo Iriarte C.G., Ramírez Ramírez O., Muñoz García A., Verdín Terán S.L., Gómez Clavel J.F. Aislamiento de células mesenquimales del ligamento periodontal de premolares extraídos. Método simplificado. Rev. Odont. Mex. 2017; 21 (1): 13-21. DOI: https://doi.org/10.1016/j.rodmex.2017.01.003

Wu Y., Wang Y., Ji Y., Ou Y., Xia H., Zhang B., et al. C4orf7 modulates osteogenesis and adipogenesis of human periodontal ligament cells. Am J Transl Res. 2017; 9 (12): 5708.

Matsushita K., Dzau V.J. Mesenchymal stem cells in obesity: insights for translational applications. Lab. Invest. 2017; 97 (10): 1158-66. DOI: https://doi.org/10.1038/labinvest.2017.42

Musri M.M., Gomis R., Párrizas M. A chromatin perspective of adipogenesis. Organogenesis. 2010; 6 (1): 15-23. DOI: https://doi.org/10.4161/org.6.1.10226

Argaez-Sosa A.A., Rodas-Junco B.A., Carrillo-Cocom L.M., Rojas-Herrera R.A., Coral-Sosa A., Aguilar-Ayala F.J., et al. Higher Expression of DNA (de)methylation-Related Genes Reduces Adipogenicity in Dental Pulp Stem Cells. Front Cell Dev Biol. 2022; 10: 791667. DOI: https://doi.org/10.3389/fcell.2022.791667

Musri M.M., Gomis R., Párrizas M. Chromatin and chromatin-modifying proteins in adipogenesis. Biochem Cell Biol. 2007; 85 (4): 397-410. DOI: https://doi.org/10.1139/O07-068

Zhang Q., Ramlee M.K., Brunmeir R., Villanueva C.J., Halperin D., Xu F. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle. 2012; 11 (23): 4310-22. DOI: https://doi.org/10.4161/cc.22224

Hu W., Jiang C., Kim M., Xiao Y., Richter H.J., Guan D., et al. Isoform-specific functions of PPARγ in gene regulation and metabolism. Genes Dev. 2022; 36 (5-6): 300-12. DOI: https://doi.org/10.1101/gad.349232.121

Fu Y., Luo N., Klein R.L., Garvey W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005; 46 (7): 1369-79. DOI: https://doi.org/10.1194/jlr.M400373-JLR200

Mortada I., Mortada R. Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 2018; 61 (2): 114-8. DOI: https://doi.org/10.1016/j.ejmg.2017.10.015

Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 2010; 24 (10): 1035-44. DOI: https://doi.org/10.1101/gad.1907110

King J., Patel M., Chandrasekaran S. Metabolism, HDACs, and HDAC Inhibitors: A Systems Biology Perspective. Metabolites. 2021; 11 (1): 792. DOI: https://doi.org/10.3390/metabo11110792

Jang S., Hwang J., Jeong H-S. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med J. 2022; 58 (1): 6-12. DOI: https://doi.org/10.4068/cmj.2022.58.1.6

Yoo E.J., Chung J.J., Choe S.S., Kim K.H., Kim J.B. Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem. 2006; 281 (10): 6608-15.

Kuzmochka C., Abdou H-S, Haché R.J.G., Atlas E. Inactivation of Histone Deacetylase 1 (HDAC1) But Not HDAC2 Is Required for the Glucocorticoid-Dependent CCAAT/Enhancer-Binding Protein α (C/EBPα) Expression and Preadipocyte Differentiation. Endocrinology. 2014; 155 (12): 4762-73. DOI: https://doi.org/10.1210/en.2014-1565

Pant R., Alam A., Choksi A., Shah V.K., Firmal P., Chattopadhyay S. Chromatin remodeling protein SMAR1 regulates adipogenesis by modulating the expression of PPARγ. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021; 1866 (12): 159045. DOI: https://doi.org/10.1016/j.bbalip.2021.159045

Lagace D.C., Nachtigal M.W. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J Biol Chem. 2004; 279 (18): 18851-60. DOI: https://doi.org/10.1074/jbc.M312795200

Ho R.H., Chan J.C.Y., Fan H., Kioh D.Y.Q., Lee B.W., Chan E.C.Y. In Silico and in Vitro Interactions between Short Chain Fatty Acids and Human Histone Deacetylases. Biochemistry. 2017; 56 (36): 4871-8. DOI: https://doi.org/10.1021/acs.biochem.7b00508

Sixto-López Y., Bello M., Correa-Basurto J. Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des. 2020; 34 (8): 857-78. DOI: https://doi.org/10.1007/s10822-020-00304-2

Romoli M., Mazzocchetti P., D’Alonzo R., Siliquini S., Rinaldi V.E., Verrotti A., et al. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol. 2019; 17 (10): 926-46. DOI: https://doi.org/10.2174/1570159X17666181227165722

Fu Y., Zhang P., Ge J., Cheng J., Dong W., Yuan H., et al. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Int J Biochem Cell Biol. 2014; 54: 68-77. DOI: https://doi.org/10.1016/j.biocel.2014.07.003

Santos J., Hubert T., Milthorpe B.K. Valproic Acid Promotes Early Neural Differentiation in Adult Mesenchymal Stem Cells Through Protein Signalling Pathways. Cells. 2020; 9 (3). DOI: https://doi.org/10.3390/cells9030619

Um S., Lee H., Zhang Q., Kim H.Y., Lee J-H, Seo B.M. Valproic Acid Modulates the Multipotency in Periodontal Ligament Stem Cells via p53-Mediated Cell Cycle. Tissue Eng Regen Med. 2017; 14 (2):153-62. DOI: https://doi.org/10.1007/s13770-017-0027-4

Serralta-Interian A., Toro J., Nic Can G., Rojas Herrera R., Aguilar-Ayala F.J., Rodas-Junco B. Inhibition of histone deacetylases class I improves adipogenic differentiation of human periodontal ligament cells. Cell Mol Biol. 2024; 70: 40-7. DOI: https://doi.org/10.14715/cmb/2024.70.5.7

Rashid S., Salim A., Qazi R-E-M, Malick T.S., Haneef K. Sodium Butyrate Induces Hepatic Differentiation of Mesenchymal Stem Cells in 3D Collagen Scaffolds. Appl Biochem Biotechnol. 2022; 194 (8): 3721-32. DOI: https://doi.org/10.1007/s12010-022-03941-5

Eung J.Y., Chung J.J., Sung S.C., Kang H.K., Jae B.K. Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol chem. 2006; 281 (10): 6608-15. DOI: https://doi.org/10.1074/jbc.M508982200

Lee H., Lee J.Y., Ha D-H, Jeong J-H, Park J-B. Effects of Valproic Acid on Morphology, Proliferation, and Differentiation of Mesenchymal Stem Cells Derived From Human Gingival Tissue. Implant Dent. 2018; 27 (1): 33-42. DOI: https://doi.org/10.1097/ID.0000000000000711

Jones J., Juengel E., Mickuckyte A., Hudak L., Wedel S., Jonas D., et al. Valproic acid blocks adhesion of renal cell carcinoma cells to endothelium and extracellular matrix. J Cell Mol. 2009; 13 (8b): 2342. DOI: https://doi.org/10.1111/j.1582-4934.2008.00603.x

Knox E.G., Aburto M.R., Tessier C., Nagpal J., Clarke G., O’Driscoll C.M., et al. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience. 2022; 25 (12): 105648. DOI: https://doi.org/10.1016/j.isci.2022.105648

Fock E., Parnova R. Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells. 2023; 12 (4). DOI: https://doi.org/10.3390/cells12040657

López-García J., Lehocký M., Humpolíček P., Sáha P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J Funct Biomater. 2014; 5 (2): 43-57. DOI: https://doi.org/10.3390/jfb5020043

Yu Y., Oh S-Y, Kim H.Y., Choi J-Y, Jo S.A., Jo I. Valproic Acid-Induced CCN1 Promotes Osteogenic Differentiation by Increasing CCN1 Protein Stability through HDAC1 Inhibition in Tonsil-Derived Mesenchymal Stem Cells. Cells. 2022; 11 (3). DOI: https://doi.org/10.3390/cells11030534

Ma X-J, Wang Y-S, Gu W-P, Zhao X. The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Med J. 2017; 58 (5): 349-57. DOI: https://doi.org/10.3325/cmj.2017.58.349

Dowker-Key P.D., Jadi P.K., Gill N.B., Hubbard K.N., Elshaarrawi A., Alfatlawy N.D., et al. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes. 2024; 15 (8): 1017. DOI: https://doi.org/10.3390/genes15081017

Nunn A.D.G., Scopigno T., Pediconi N., Levrero M., Hagman H., Kiskis J., et al. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells. Sci Rep. 2016; 6: 37204. DOI: https://doi.org/10.1038/srep28025

Tugnoli B., Bernardini C., Forni M., Piva A., Stahl C.H., Grilli E. Butyric acid induces spontaneous adipocytic differentiation of porcine bone marrow-derived mesenchymal stem cells. In Vitro Cell Dev Biol Anim. 2019; 55 (1): 17-24. DOI: https://doi.org/10.1007/s11626-018-0307-x

Stachecka J., Kolodziejski P.A., Noak M., Szczerbal I. Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells. Sci Rep. 2021; 11 (1): 1325. DOI: https://doi.org/10.1038/s41598-020-79384-x

Montero-Del-Toro J.A., Serralta-Interian A.A., Nic-Can G.I., Rojas-Herrera R., Carrillo-Cocom L.M., Rodas-Junco B.A. Effect of Epigenetic Inhibitors on Adipogenesis in Human Periodontal Ligament Stem Cells. Odovtos-Int J Dent Sc. 2024; 116-128. DOI: https://doi.org/10.15517/ijds.2024.62008

Publicado

2025-08-27